| [1] |
赵绪生, 齐永志, 闫翠梅, 等. 小麦、玉米两熟秸秆还田土壤中6种有机酸对小麦纹枯病的化感作用[J]. 中国农业科学, 2020, 53(15): 3095-3107.
|
|
ZHAO Xusheng, QI Yongzhi, YAN Cuimei, et al. Allelopathy of six organic acids on wheat sheath blight in the soil of winter wheat-summer maize double cropping straw returning system[J]. Scientia Agricultura Sinica, 2020, 53(15): 3095-3107.
|
| [2] |
程洁. 小麦纹枯病的发生及防治技术[J]. 安徽农学通报, 2021, 27(4): 97, 131.
|
|
CHENG Jie. The occurrence and control technology of wheat sheath blight[J]. Anhui Agricultural Science Bulletin, 2021, 27(4): 97, 131.
|
| [3] |
肖茜, 闫翠梅, 齐永志, 等. 小麦纹枯病化学和生物防治研究进展[J]. 农药, 2020, 59(9): 630-635, 679.
|
|
XIAO Qian, YAN Cuimei, QI Yongzhi, et al. Advances in chemical and biological control of wheat sharp eyespot[J]. Agrochemicals, 2020, 59(9): 630-635, 679.
|
| [4] |
Parte A C, Sardà Carbasse J, Meier-Kolthoff J P, et al. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(11): 5607-5612.
|
| [5] |
Anderson A S, Wellington E M. The taxonomy of Streptomyces and related Genera[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(Pt 3): 797-814.
|
| [6] |
Gopalakrishnan S, Srinivas V, Alekhya G, et al. Evaluation of broad-spectrum streptomyces sp. for plant growth promotion traits in chickpea (Cicer arietinum L.)[J]. Philippine Agriculturist, 2017, 98(3): 270-278.
|
| [7] |
Kurth F, Mailänder S, Bönn M, et al. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways[J]. Molecular Plant-Microbe Interactions, 2014, 27(9): 891-900.
|
| [8] |
Awla H K, Kadir J, Othman R, et al. Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae[J]. Biological Control, 2017, 112: 55-63.
|
| [9] |
Suvala S D, Kokati V B R. Defense priming of tomato plants by Streptomyces metabolites to combat Corynespora cassiicola and Pseudomonas syringae infestations[J]. Environmental Sustainability, 2019, 2(2): 189-198.
|
| [10] |
Park S W, Kaimoyo E, Kumar D, et al. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance[J]. Science, 2007, 318(5847): 113-116.
|
| [11] |
Mahmoud A, Hassan A. Evaluation of the local isolate Streptomyces kanamyceticus strain Tikrit-5 in control of gray rot disease on eggplant caused by Botrytis cinerea[J]. Tikrit Journal for Agricultural Sciences, 2023, 23(2): 25-41.
|
| [12] |
郭博铖, 柯希望, 高尚雨, 等. 褪黑素诱导小豆抗锈病机理的初步研究[J]. 植物保护, 2020, 46(1): 145-150, 156.
|
|
GUO Bocheng, KE Xiwang, GAO Shangyu, et al. A preliminary study on the mechanisms of melatonin-induced rust resistance of adzuki bean[J]. Plant Protection, 2020, 46(1): 145-150, 156.
|
| [13] |
Musidlak O, Nawrot R, Goẑdzicka-Józefiak A. Which plant proteins are involved in antiviral defense?review on in vivo and in vitro activities of selected plant proteins against viruses[J]. International Journal of Molecular Sciences, 2017, 18(11): 2300.
|
| [14] |
Hull R. Ecology, Epidemiology, and Control of Plant Viruses[M]. Elsevier Inc. 2014.
|
| [15] |
Dyakov Y T, Dzhavakhiya V G, Korpela T. Comprehensive and molecular phytopathology[M]. Amsterdam; London: Elsevier, 2007
|
| [16] |
龙艳玲, 苏基平, 胡军华, 等. 柑桔褐斑病菌侵染对不同抗性柑桔种质防御酶活性的影响[J]. 中国南方果树, 2018, 47(1): 6-11, 16.
|
|
LONG Yanling, SU Jiping, HU Junhua, et al. Effects of Alternariaalternata infection on defense enzyme activity of different resistant citrus germplasm[J]. South China Fruits, 2018, 47(1): 6-11, 16.
|
| [17] |
徐志荣, 傅雁辉, 赵英杰, 等. 链霉菌JD211发酵液对水稻防御稻瘟病菌诱导抗性的作用[J]. 浙江农业学报, 2017, 29(6): 971-976.
|
|
XU Zhirong, FU Yanhui, ZHAO Yingjie, et al. Effect of Streptomyces JD211 fermentation products on the induced resistance to Magnaporthe grisea in rice[J]. Acta Agriculturae Zhejiangensis, 2017, 29(6): 971-976.
|
| [18] |
Xu L, Xu Y C, Lv H H, et al. Transcriptomic analysis reveals the mechanism of MtLOX24 in response to methyl jasmonate stress in Medicago truncatula[J]. Agriculture, 2024, 14(7): 1076.
|
| [19] |
Guo A H, Yang Y, Wu J, et al. Lipidomic and transcriptomic profiles of glycerophospholipid metabolism during Hemerocallis citrina Baroni flowering[J]. BMC Plant Biology, 2023, 23(1): 50.
|
| [20] |
González-Gordo S, López-Jaramillo J, Palma J M, et al. Soybean (Glycine max L.) lipoxygenase 1 (LOX 1) is modulated by nitric oxide and hydrogen sulfide: an in vitro approach[J]. International Journal of Molecular Sciences, 2023, 24(9): 8001.
|
| [21] |
王玉倩, 薛秀花. 实时荧光定量PCR技术研究进展及其应用[J]. 生物学通报, 2016, 51(2): 1-6.
|
|
WANG Yuqian, XUE Xiuhua. Research progress and application of real-time fluorescence quantitative PCR[J]. Bulletin of Biology, 2016, 51(2): 1-6.
|
| [22] |
Conn V M, Walker A R, Franco C M. Endophytic Actinobacteria induce defense pathways in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 2008, 21(2): 208-218.
|
| [23] |
Tarkka M T, Lehr N A, Hampp R, et al. Plant behavior upon contact with streptomycetes[J]. Plant Signaling & Behavior, 2008, 3(11): 917-919.
|
| [24] |
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63: 541-556.
|
| [25] |
Gamir J, Darwiche R, Van’t Hof P, et al. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein[J]. The Plant Journal, 2017, 89(3): 502-509.
|
| [26] |
Peĉenková T, Pleskot R, Žárský V. Subcellular localization of Arabidopsis pathogenesis-related 1 (PR1) protein[J]. International Journal of Molecular Sciences, 2017, 18(4): 825.
|
| [27] |
Castorina G, Grassi F, Consonni G, et al. Characterization of the biogenic volatile organic compounds (BVOCs) and analysis of the PR1 molecular marker in Vitis vinifera L. inoculated with the nematode Xiphinema index[J]. International Journal of Molecular Sciences, 2020, 21(12): 4485.
|
| [28] |
Vögeli U, Meins F Jr, Boller T. Co-ordinated regulation of chitinase and β-1, 3-glucanase in bean leaves[J]. Planta, 1988, 174(3): 364-372.
|
| [29] |
Wojtkowiak A, Witek K, Hennig J, et al. Structures of an active-site mutant of a plant 1, 3-β-glucanase in complex with oligosaccharide products of hydrolysis[J]. Acta Crystallographica Section D, Biological Crystallography, 2013, 69(Pt 1): 52-62.
|
| [30] |
Sharma V. Pathogenesis related defence functions of plant chitinases and β-1, 3-glucanases[J]. Vegetos- an International Journal of Plant Research, 2013, 26(2s): 205.
|
| [31] |
Patil S, Shivannavar C T, Bheemaraddi M C, et al. Antiphytopathogenic and plant growth promoting attributes of Bacillus strains isolated from rhizospheric soil of chickpea[J]. Journal of Agricultural Science and Technology, 2015, 17(5): 1365-1377.
|
| [32] |
Cao S M, Wang W K, Wang F, et al. Drought-tolerant Streptomyces pactum Act12 assist phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus: great potential application in arid/semi-arid areas[J]. Environmental Science and Pollution Research International, 2016, 23(15): 14898-14907.
|
| [33] |
Liu R J, Xia R, Xie Q, et al. Endoplasmic reticulum-related E3 ubiquitin ligases: key regulators of plant growth and stress responses[J]. Plant Communications, 2021, 2(3): 100186.
|
| [34] |
Zhang S W, Yang Y, Wu Z M, et al. Induced defense responses against Rhizoctonia solani in rice seedling by a novel antifungalmycin N2 from Streptomyces sp. N2[J]. Australasian Plant Pathology, 2020, 49(3): 267-276.
|
| [35] |
杜茜, 初佳芮, 郭永霞, 等. 不吸水链霉菌公主岭变种诱导大豆抗病性与根际土壤微环境的变化[J]. 大豆科学, 2020, 39(1): 97-107.
|
|
DU Qian, CHU Jiarui, GUO Yongxia, et al. Changes of soybean disease resistance and the rhizosphere micro-environment induced by Streptomyces gongzhulingensis n.var[J]. Soybean Science, 2020, 39(1): 97-107.
|
| [36] |
邵正英, 聂丽, 李张, 等. 链霉菌JD211对水稻根系形态特征和抗性酶活的影响[J]. 西南农业学报, 2017, 30(4): 739-743.
|
|
SHAO Zhengying, NIE Li, LI Zhang, et al. Effect of Streptomyces JD211 on root morphology and resistive enzyme activity of rice[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(4): 739-743.
|