新疆农业科学 ›› 2025, Vol. 62 ›› Issue (1): 75-86.DOI: 10.6048/j.issn.1001-4330.2025.01.010
• 耕作栽培·生理生化·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
王子健1(), 李刘龙2, 赵焰辉1, 徐林峰1, 邱治中1, 李召锋1, 雷钧杰3, 王笑2, 万文亮1(
), 姜东1,2(
)
收稿日期:
2024-07-21
出版日期:
2025-01-20
发布日期:
2025-03-11
通信作者:
姜东(1970-),男,江苏南京人,教授,博士,硕士生导师,研究方向为作物栽培与生理,(E-mail)jiangd@njau.edu.cn;作者简介:
王子健(1999-),男,安徽巢湖人,硕士研究生,研究方向为作物栽培,(E-mail)1281459828@qq.com
基金资助:
WANG Zijian1(), LI Liulong2, ZHAO Yanhui1, XU Linfeng1, QIU Zhizhong1, LI Zhaofeng1, LEI Junjie3, WANG Xiao2, WAN Wenliang1(
), JIANG Dong1,2(
)
Received:
2024-07-21
Published:
2025-01-20
Online:
2025-03-11
Supported by:
摘要:
【目的】 研究水氮耦合效应及其对春小麦冠层结构和光合速率的影响,为斜坡种植模式的节本高效生产提供水氮管理策略和理论依据。【方法】 以新春44号为供试材料,设置TR6H和TR8H(一条滴灌带位于坡顶,分别供应6行和8行小麦水分,斜坡坡面斜度为15度)2种模式;设置W3、W2和W1(4 500、4 050和3 600 m3/hm2)3个灌水额度和N3、N2、N1和N0(300、270、240和0 kg/(N·hm2))4个施氮量水平,其中W3N3为对照(常规水氮处理)。【结果】 TR6H开花期的株高、茎蘖数、叶面积指数、冠层光截获辐射率和光合速率均高于TR8H。株高和冠层光辐射截获的总体趋势表现为(W3和W2)>W1,(N3和N2)>N1>N0的趋势,而叶角则呈相反的趋势,低水低氮处理叶角越大。叶面积指数和净光合速率总体趋势表现为W3>W2>W1、N2>N3>N1>N0。相较于常规水氮处理(W3N3),TR6H和TR8H 2种模式均显著提高了冠层光截获辐射率和光合速率,增幅分别为3.6%~4.9%和3.9%~10.2%。【结论】 斜坡模式下合理的水氮耦合会优化冠层结构,通过保持较高的茎蘖数和叶面积指数,获得较高的光合有效辐射截获率,同时具有较高的株高和紧凑的株型保持了一定的漏光损失量。筛选出模式为TR6H,水氮处理为W3N2。
中图分类号:
王子健, 李刘龙, 赵焰辉, 徐林峰, 邱治中, 李召锋, 雷钧杰, 王笑, 万文亮, 姜东. 水氮耦合对斜坡滴灌春小麦冠层结构及光合速率的影响[J]. 新疆农业科学, 2025, 62(1): 75-86.
WANG Zijian, LI Liulong, ZHAO Yanhui, XU Linfeng, QIU Zhizhong, LI Zhaofeng, LEI Junjie, WANG Xiao, WAN Wenliang, JIANG Dong. Effects of water and nitrogen coupling on canopy structure and photosynthetic rate of slope drip irrigated spring wheat[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 75-86.
处理 Treatments | 3叶1心 Three-leaf stage(%) | 拔节期 Jointing stage(%) | 孕穗期 Booting stage(%) | 开花期 Anthesis(%) | 乳熟期 Early milk stage(%) | 乳熟末期 Late milk stage(%) |
---|---|---|---|---|---|---|
灌水Irrigation | 15 | 20 | 20 | 20 | 15 | 10 |
施氮Nitrogen | 15 | 35 | 25 | 15 | 10 | 0 |
表1 不同生育时期灌水和施氮策略
Tab.1 Irrigation and nitrogen fertilization strategies at different growth stages
处理 Treatments | 3叶1心 Three-leaf stage(%) | 拔节期 Jointing stage(%) | 孕穗期 Booting stage(%) | 开花期 Anthesis(%) | 乳熟期 Early milk stage(%) | 乳熟末期 Late milk stage(%) |
---|---|---|---|---|---|---|
灌水Irrigation | 15 | 20 | 20 | 20 | 15 | 10 |
施氮Nitrogen | 15 | 35 | 25 | 15 | 10 | 0 |
处理 Treatments | TR6H | TR8H | |||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | ||
W3 | N3 | 87.7a | 85.2a | 91a | 81.3a | 74.8a | 84.2a |
N2 | 88.3a | 84.9a | 92.4a | 79.3a | 75.1a | 84.1a | |
N1 | 84.5bc | 83.7ab | 86.7b | 76.6b | 71.3b | 82.4b | |
N0 | 74.2d | 76.2d | 62.6e | 69.3d | |||
W2 | N3 | 87.4a | 83.5ab | 92.4a | 80.8a | 70.9b | 84.5a |
N2 | 85.2b | 83.6ab | 91a | 76.6b | 71.8b | 81.1b | |
N1 | 83.1cd | 82.1bc | 84.4c | 73.3cd | 69c | 81.4b | |
N0 | 71.7e | 73.6e | 61f | 68.8d | |||
W1 | N3 | 84bc | 82.2bc | 87.6b | 75.6bc | 68.4c | 82b |
N2 | 83.9bc | 82.8b | 88.2b | 72.3d | 69c | 78.6c | |
N1 | 82d | 80.7c | 83.5c | 69e | 66.2d | 77.2c | |
N0 | 67.1f | 71f | 58g | 65e | |||
F | 灌水量(W) | 47.7** | 41** | 39.4** | 47.6** | 186.5** | 63.2** |
施氮量(N) | 42.4** | 323.2** | 442.5** | 38.8** | 505.8** | 486.1** | |
W×N | 3.9* | 3.9** | 2.6* | 0.7 | 1.9 | 2.6* |
表2 不同水氮处理下小麦开花期株高的变化
Tab.2 Changes of plant height of wheat at flowering stage under different water and nitrogen treatments(cm)
处理 Treatments | TR6H | TR8H | |||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | ||
W3 | N3 | 87.7a | 85.2a | 91a | 81.3a | 74.8a | 84.2a |
N2 | 88.3a | 84.9a | 92.4a | 79.3a | 75.1a | 84.1a | |
N1 | 84.5bc | 83.7ab | 86.7b | 76.6b | 71.3b | 82.4b | |
N0 | 74.2d | 76.2d | 62.6e | 69.3d | |||
W2 | N3 | 87.4a | 83.5ab | 92.4a | 80.8a | 70.9b | 84.5a |
N2 | 85.2b | 83.6ab | 91a | 76.6b | 71.8b | 81.1b | |
N1 | 83.1cd | 82.1bc | 84.4c | 73.3cd | 69c | 81.4b | |
N0 | 71.7e | 73.6e | 61f | 68.8d | |||
W1 | N3 | 84bc | 82.2bc | 87.6b | 75.6bc | 68.4c | 82b |
N2 | 83.9bc | 82.8b | 88.2b | 72.3d | 69c | 78.6c | |
N1 | 82d | 80.7c | 83.5c | 69e | 66.2d | 77.2c | |
N0 | 67.1f | 71f | 58g | 65e | |||
F | 灌水量(W) | 47.7** | 41** | 39.4** | 47.6** | 186.5** | 63.2** |
施氮量(N) | 42.4** | 323.2** | 442.5** | 38.8** | 505.8** | 486.1** | |
W×N | 3.9* | 3.9** | 2.6* | 0.7 | 1.9 | 2.6* |
图2 不同水氮处理下小麦全生育期株高的变化 注:图为2022年的全生育期株高,从左往右各个点对应的生育时期分别为苗期、拔节期、孕穗期、开花期和成熟期。不同小写字母表示同一模式同一时期同一灌水处理下不同氮素处理间的差异显著(P<0.05),从上往下分别对应N3、N2、N1和N0处理
Fig.2 Changes of plant height dynamics of wheat during whole growth period under different water and nitrogen treatments Notes: The picture shows the plant height during the whole growth period in 2022, and the corresponding growth periods at each point from left to right are seedling stage, jointing stage, booting stage, flowering stage and maturity stage.Different lowercase letters indicate significant differences between different nitrogen treatments under the same mode and the same irrigation treatment at the same time (P<0.05), corresponding to N3, N2, N1 and N0 treatments from top to bottom, respectively
处理 Treatments | TR6H | TR8H | |||
---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | ||
W3 | N3 | 25.4fg | 30de | 27.7e | 31.8e |
N2 | 25.9fg | 28.5e | 25.1f | 29.4f | |
N1 | 31.3de | 32.3cd | 28.4e | 33.8d | |
N0 | 37.6b | 34.2bc | 34.2ab | 35.2cd | |
W2 | N3 | 26.8f | 27.9e | 30.8cd | 30.5ef |
N2 | 24.5g | 29.2e | 28.5e | 27.3g | |
N1 | 32.2de | 30.2de | 29.2de | 34.2cd | |
N0 | 37.6b | 34.9ab | 35.1a | 37.7ab | |
W1 | N3 | 33.2cd | 32.7bc | 30.8cd | 31.6e |
N2 | 30.9e | 32.1cd | 31.6c | 36.2bc | |
N1 | 34.5c | 32.2cd | 32.4bc | 35.1cd | |
N0 | 41.1a | 36.6a | 35.3a | 39.4a | |
F | 灌水量(W) | 62** | 21.8** | 30.5** | 30.7** |
施氮量(N) | 170.5** | 41** | 53** | 68.7** | |
W×N | 3.4* | 3.3* | 3.8** | 11.6** |
表3 不同水氮处理下小麦开花期旗叶角(°)的变化
Tab.3 Changes of flag leaf angles of wheat at flowering stage under different water and nitrogen treatments
处理 Treatments | TR6H | TR8H | |||
---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | ||
W3 | N3 | 25.4fg | 30de | 27.7e | 31.8e |
N2 | 25.9fg | 28.5e | 25.1f | 29.4f | |
N1 | 31.3de | 32.3cd | 28.4e | 33.8d | |
N0 | 37.6b | 34.2bc | 34.2ab | 35.2cd | |
W2 | N3 | 26.8f | 27.9e | 30.8cd | 30.5ef |
N2 | 24.5g | 29.2e | 28.5e | 27.3g | |
N1 | 32.2de | 30.2de | 29.2de | 34.2cd | |
N0 | 37.6b | 34.9ab | 35.1a | 37.7ab | |
W1 | N3 | 33.2cd | 32.7bc | 30.8cd | 31.6e |
N2 | 30.9e | 32.1cd | 31.6c | 36.2bc | |
N1 | 34.5c | 32.2cd | 32.4bc | 35.1cd | |
N0 | 41.1a | 36.6a | 35.3a | 39.4a | |
F | 灌水量(W) | 62** | 21.8** | 30.5** | 30.7** |
施氮量(N) | 170.5** | 41** | 53** | 68.7** | |
W×N | 3.4* | 3.3* | 3.8** | 11.6** |
处理 Treatments | TR6H | TR8H | |||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | ||
W3 | N3 | 568.3bc | 585.8a | 585bc | 554.7b | 552a | 545.3b |
N2 | 599.2a | 570.8bc | 592.5ab | 572a | 548a | 571.3a | |
N1 | 554.2d | 561.7cd | 567.5d | 549.3c | 531.3b | 540b | |
N0 | 543.3e | 545.8f | 500ef | 537.3b | |||
W2 | N3 | 595a | 590.8a | 597.5a | 540d | 526.7b | 577.3a |
N2 | 580.8b | 595.8a | 583.3c | 546.7c | 518.7c | 570a | |
N1 | 560.8cd | 575b | 565de | 510.7f | 502.7def | 522.7cd | |
N0 | 539.2e | 527.5g | 495.3fg | 516.7d | |||
W1 | N3 | 552.5d | 565.8bcd | 577.5c | 510.7f | 509.3d | 538.7b |
N2 | 557.5cd | 562.5cd | 568.3d | 518e | 505.3de | 527.3c | |
N1 | 534.2e | 555.8d | 559.2e | 507.3f | 497.3efg | 505.3e | |
N0 | 527.5f | 510h | 490g | 507.3e | |||
F | 灌水量(W) | 45.2** | 45.8** | 54.8** | 600.3** | 150.5** | 144.6** |
施氮量(N) | 38.9** | 108.5** | 295.3** | 147** | 96.9** | 155.9** | |
W×N | 7.4** | 4.3** | 9.1** | 24.7** | 9.4** | 25.3** |
表4 不同水氮处理下小麦开花期茎蘖数的变化
Tab.4 Changes of number of stem tillers at flowering stage of wheat under different water and nitrogen treatments(104/hm2)
处理 Treatments | TR6H | TR8H | |||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | ||
W3 | N3 | 568.3bc | 585.8a | 585bc | 554.7b | 552a | 545.3b |
N2 | 599.2a | 570.8bc | 592.5ab | 572a | 548a | 571.3a | |
N1 | 554.2d | 561.7cd | 567.5d | 549.3c | 531.3b | 540b | |
N0 | 543.3e | 545.8f | 500ef | 537.3b | |||
W2 | N3 | 595a | 590.8a | 597.5a | 540d | 526.7b | 577.3a |
N2 | 580.8b | 595.8a | 583.3c | 546.7c | 518.7c | 570a | |
N1 | 560.8cd | 575b | 565de | 510.7f | 502.7def | 522.7cd | |
N0 | 539.2e | 527.5g | 495.3fg | 516.7d | |||
W1 | N3 | 552.5d | 565.8bcd | 577.5c | 510.7f | 509.3d | 538.7b |
N2 | 557.5cd | 562.5cd | 568.3d | 518e | 505.3de | 527.3c | |
N1 | 534.2e | 555.8d | 559.2e | 507.3f | 497.3efg | 505.3e | |
N0 | 527.5f | 510h | 490g | 507.3e | |||
F | 灌水量(W) | 45.2** | 45.8** | 54.8** | 600.3** | 150.5** | 144.6** |
施氮量(N) | 38.9** | 108.5** | 295.3** | 147** | 96.9** | 155.9** | |
W×N | 7.4** | 4.3** | 9.1** | 24.7** | 9.4** | 25.3** |
[1] |
高新, 汪烨霖, 朱泰武, 等. 不同施氮量对春小麦灌浆速率和产量的影响[J]. 新疆农业科学, 2024, 61(2): 310-317.
DOI |
GAO Xin, WANG Yelin, ZHU Taiwu, et al. Influence of different nitrogen application levels on the grain filling rate and yields of spring wheat[J]. Xinjiang Agricultural Sciences, 2024, 61(2): 310-317.
DOI |
|
[2] |
张宁, 汪子晨, 杨肖, 等. 新疆水资源与农业种植系统耦合协调及时空差异研究——以粮食和棉花种植系统为例[J]. 干旱区地理, 2023, 46(3): 349-359.
DOI |
ZHANG Ning, WANG Zichen, YANG Xiao, et al. Coupling coordination and spatiotemporal differences between water resources and agriculture cropping system in Xinjiang: a case of grain and cotton cropping systems[J]. Arid Land Geography, 2023, 46(3): 349-359.
DOI |
|
[3] | Yu S B, Khan S, Mo F, et al. Determining optimal nitrogen input rate on the base of fallow season precipitation to achieve higher crop water productivity and yield[J]. Agricultural Water Management, 2021, 246: 106689. |
[4] | 吕广德, 亓晓蕾, 张继波, 等. 中、高产型小麦干物质和氮素累积转运对水氮的响应[J]. 植物营养与肥料学报, 2021, 27(9): 1534-1547. |
LYU Guangde, QI Xiaolei, ZHANG Jibo, et al. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534-1547. | |
[5] | 韩东伟, 何建宁, 李浩然, 等. 灌水时期对冬小麦个体、群体结构和冠层光合作用的影响[J]. 江苏农业学报, 2022, 38(3): 577-586. |
HAN Dongwei, HE Jianning, LI Haoran, et al. Effects of irrigation period on individual structure, population structure and canopy photosynthesis of winter wheat[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 577-586. | |
[6] | Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61: 235-261. |
[7] | Kumar Jha S, Ramatshaba T S, Wang G S, et al. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain[J]. Agricultural Water Management, 2019, 217: 292-302. |
[8] |
王海琪, 王荣荣, 蒋桂英, 等. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
DOI |
WANG Haiqi, WANG Rongrong, JIANG Guiying, et al. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves[J]. Acta Agronomica Sinica, 2023, 49(1): 211-224.
DOI |
|
[9] | Lv Z Y, Diao M, Li W H, et al. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system[J]. Agricultural Water Management, 2019, 212: 252-261. |
[10] | 吕钊彦. 不同行管比滴灌模式对新疆春小麦产量及品质行间差异形成的影响及其生理机理[D]. 南京: 南京农业大学, 2017. |
LYU Zhaoyan. Effects of drip irrigation modes with different row-to-tube ratios on the formation of inter-row differences in yield and quality of spring wheat in Xinjiang and its physiological mechanism[D]. Nanjing: Nanjing Agricultural University, 2017. | |
[11] | Wan W L, Li L L, Jing J G, et al. Narrowing row space improves productivity and profit of enlarged lateral space drip irrigated spring wheat system in Xinjiang, China[J]. Field Crops Research, 2022, 280: 108474. |
[12] | 肖治林, 吴昊, 顾汉柱, 等. 不同栽培措施集成对稻茬小麦产量、农艺及光合特性的影响[J]. 麦类作物学报, 2022, 42(8): 988-1000. |
XIAO Zhilin, WU Hao, GU Hanzhu, et al. Effect of different integrated cultivation modes on yield, agronomic and photosynthetic characteristics of wheat following rice stubble[J]. Journal of Triticeae Crops, 2022, 42(8): 988-1000. | |
[13] | 郭培武, 赵俊晔, 石玉, 等. 水肥一体化条件下施氮量对小麦冠层光截获特性和产量的影响[J]. 山东农业科学, 2018, 50(8): 81-85. |
GUO Peiwu, ZHAO Junye, SHI Yu, et al. Effects of nitrogen application rate on canopy photosynthetic active radiation interception and yield of wheat under integration of water and fertilizer[J]. Shandong Agricultural Sciences, 2018, 50(8): 81-85. | |
[14] | 杨建平, 吕钊彦, 刁明, 等. 滴灌春小麦植株干物质积累与分配特性及对产量的影响[J]. 西北农业学报, 2021, 30(1): 50-59. |
YANG Jianping, LYU Zhaoyan, DIAO Ming, et al. Accumulation and distribution of dry matter in plants and their contribution to grain yield in drip-irrigated spring wheat[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(1): 50-59. | |
[15] | Wan W L, Zhao Y H, Wang Z J, et al. Mitigation fluctuations of inter-row water use efficiency of spring wheat via narrowing row space in enlarged lateral space drip irrigation systems[J]. Agricultural Water Management, 2022, 274: 107958. |
[16] | Guo Y J, Zhang L, Qin Y H, et al. Exploring the vertical distribution of structural parameters and light radiation in rice canopies by the coupling model and remote sensing[J]. Remote Sensing, 2015, 7(5): 5203-5221. |
[17] |
王立红, 张宏芝, 李剑峰, 等. 新疆冬小麦不同产量群体冠层光截获与干物质分布特性分析[J]. 干旱区研究, 2021, 38(1): 275-282.
DOI |
WANG Lihong, ZHANG Hongzhi, LI Jianfeng, et al. Analysis of canopy light interception and dry matter distribution characteristics of different winter wheat yield groups in Xinjiang[J]. Arid Zone Research, 2021, 38(1): 275-282.
DOI |
|
[18] | 刘兆晔, 于经川, 辛庆国. 小麦株高问题的探讨[J]. 山东农业科学, 2014, 46(3): 130-134. |
LIU Zhaoye, YU Jingchuan, XIN Qingguo. Study on plant height of wheat[J]. Shandong Agricultural Sciences, 2014, 46(3): 130-134. | |
[19] | 杨旸, 王金龙, 刘双禄, 等. 水氮耦合对河套灌区春小麦生长发育及产量的影响[J]. 耕作与栽培, 2020, 40(4): 28-30, 33. |
YANG Yang, WANG Jinlong, LIU Shuanglu, et al. Influence of water-nitrogen coupling on growthand yield of spring wheat of Hetao irrigation areas[J]. Tillage and Cultivation, 2020, 40(4): 28-30, 33. | |
[20] | Mantilla-Perez M B, Salas Fernandez M G. Differential manipulation of leaf angle throughout the canopy: current status and prospects[J]. Journal of Experimental Botany, 2017, 68(21/22): 5699-5717. |
[21] | Liu Y K, Li M J, Li J Y, et al. Dynamic changes in flag leaf angle contribute to high photosynthetic capacity[J]. Chinese Science Bulletin, 2009, 54(17): 3045-3052. |
[22] | 胡语妍, 万文亮, 王江丽, 等. 不同水氮处理对滴灌春小麦氮素积累转运及产量的影响[J]. 石河子大学学报(自然科学版), 2018, 36(4): 448-456. |
HU Yuyan, WAN Wenliang, WANG Jiangli, et al. Effects of different water and nitrogen application rates on the accumulation and translocation of nitrogen and yield of spring wheat under drip irrigation[J]. Journal of Shihezi University (Natural Science), 2018, 36(4): 448-456. | |
[23] | 刘其, 刁明, 王江丽, 等. 施氮对滴灌春小麦干物质、氮素积累和产量的影响[J]. 麦类作物学报, 2013, 33(4): 722-726. |
LIU Qi, DIAO Ming, WANG Jiangli, et al. Effect of nitrogen application on accumulation of dry matter and nitrogen, yield of spring wheat under drip irrigation[J]. Journal of Triticeae Crops, 2013, 33(4): 722-726. | |
[24] | 欧阳雪莹, 蒋桂英, 冉辉, 等. 水氮运筹对新疆滴灌春小麦群体质量和产量的影响[J]. 麦类作物学报, 2020, 40(5): 585-593. |
OUYANG Xueying, JIANG Guiying, RAN Hui, et al. Effect of water and nitrogen application on population quality and yield of spring wheat under drip irrigation in Xinjiang[J]. Journal of Triticeae Crops, 2020, 40(5): 585-593. | |
[25] | Zhao D D, Shen J Y, Lang K, et al. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain[J]. Agricultural Water Management, 2013, 118: 87-92. |
[26] | 闻磊, 张富仓, 邹海洋, 等. 水分亏缺和施氮对春小麦生长和水氮利用的影响[J]. 麦类作物学报, 2019, 39(4): 478-486. |
WEN Lei, ZHANG Fucang, ZOU Haiyang, et al. Effect of water deficit and nitrogen rate on the growth, water and nitrogen use of spring wheat[J]. Journal of Triticeae Crops, 2019, 39(4): 478-486. | |
[27] | 李艳大, 汤亮, 张玉屏, 等. 水稻冠层光截获与叶面积和产量的关系[J]. 中国农业科学, 2010, 43(16): 3296-3305. |
LI Yanda, TANG Liang, ZHANG Yuping, et al. Relationship of PAR interception of canopy to leaf area and yield in rice[J]. Scientia Agricultura Sinica, 2010, 43(16): 3296-3305. | |
[28] | Salvagiotti F, Miralles D J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat[J]. European Journal of Agronomy, 2008, 28(3): 282-290. |
[29] | Zhang Z, Wang Y F, Chen Y Y, et al. Effects of different fertilization methods on grain yield, photosynthetic characteristics and nitrogen synthetase enzymatic activities of direct-seeded rice in South China[J]. Journal of Plant Growth Regulation, 2022, 41(4): 1642-1653. |
[30] |
刘国宏, 付彦博, 扁青永, 等. 水氮耦合对滴灌小麦生理生长及产量的影响[J]. 新疆农业科学, 2022, 59(7): 1582-1589.
DOI |
LIU Guohong, FU Yanbo, BIAN Qingyong, et al. Effects of water and nitrogen coupling on physiological growth and yield of wheat under drip irrigation[J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1582-1589.
DOI |
[1] | 陈慧, 张永强, 毕海燕, 谭军, 陈传信, 徐其江, 聂石辉, 于建新, 陆东, 雷钧杰. 不同春小麦品种在新疆旱作区产量形成的特征分析[J]. 新疆农业科学, 2025, 62(1): 13-20. |
[2] | 李娜, 吕彩霞, 信会男, 李永福, 赖宁, 耿庆龙, 陈署晃. 不同施氮量对滴灌小麦性状及根区土壤养分的影响[J]. 新疆农业科学, 2025, 62(1): 87-94. |
[3] | 王春生, 李剑峰, 张跃强, 樊哲儒, 王重, 高新, 时佳, 张宏芝, 王立红, 夏建强, 王芳平, 赵奇. 新疆主栽春小麦品种花药培养力基因型差异分析[J]. 新疆农业科学, 2024, 61(9): 2081-2086. |
[4] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[5] | 袁以琳, 颜安, 左筱筱, 侯正清, 张振飞, 肖淑婷, 孙哲, 马梦倩, 赵宇航. 氮肥减量配施生物有机肥对春小麦增产及土壤培肥的影响[J]. 新疆农业科学, 2024, 61(8): 1872-1882. |
[6] | 刘旭欢, 于姗, 刘跃, 石书兵. 不同粒级春小麦种子活力差异比较[J]. 新疆农业科学, 2024, 61(8): 1883-1887. |
[7] | 杨梅, 赵红梅, 迪丽热巴·夏米西丁, 杨卫君, 张金汕, 惠超. 氮肥减量配施生物质炭对春小麦群体结构、光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1582-1589. |
[8] | 王一钊, 杨其志, 刘玉秀, 阿拉依·努尔卡马力, Vladimir Shvidchenko, 张正茂. 20%PEG胁迫下评价引进哈萨克斯坦不同春小麦种质苗期的抗旱性 [J]. 新疆农业科学, 2024, 61(6): 1352-1360. |
[9] | 张宏芝, 王立红, 时佳, 孔德鹏, 王重, 高新, 李剑峰, 王春生, 夏建强, 樊哲儒, 张跃强. 土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1041-1047. |
[10] | 侯献飞, 宋贤明, 李强, 顾元国, 苗昊翠, 曾幼玲, 郭美丽, 贾东海. 水氮耦合对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 791-803. |
[11] | 古力尼尕尔·吐尔洪, 张金汕, 李丹丹, 张路路, 王润琪, 石书兵. 不同引发剂处理对春小麦种子活力及生理特性的影响[J]. 新疆农业科学, 2024, 61(4): 869-877. |
[12] | 董艳雪, 贾永红, 张金汕, 李丹丹, 王凯, 罗四维, 王润琪, 石书兵. 不同生态区环境下春小麦干物质积累及产量形成分析[J]. 新疆农业科学, 2023, 60(8): 1848-1857. |
[13] | 李怀胜, 艾洪玉, 孟玲, 王贺亚, 张磊, 艾海峰. 减氮下运筹养分吸收高峰期追施比例对春小麦的影响[J]. 新疆农业科学, 2023, 60(8): 1866-1872. |
[14] | 张超, 白云岗, 郑明, 肖军, 丁平. 极端干旱区葡萄水肥协同效应[J]. 新疆农业科学, 2023, 60(8): 1931-1939. |
[15] | 马新超, 轩正英, 闵昊哲, 齐志文, 成宏宇, 谭占明, 王旭峰. 水氮耦合对沙培黄瓜光合日变化及叶绿素荧光参数的影响[J]. 新疆农业科学, 2023, 60(8): 1966-1974. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||