Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (3): 531-538.DOI: 10.6048/j.issn.1001-4330.2025.03.002
• Crop Genetics and Breeding·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
ZHANG Lingjian1,2(), ZHANG Kai1,2(
), ZHANG Hui1, GUO Xiaomeng1,2, CHEN Guoyue1,2, WANG Yiding1, JIA Qingyu1,2
Received:
2024-08-05
Online:
2025-03-20
Published:
2025-05-14
Correspondence author:
ZHANG Kai
Supported by:
张凌健1,2(), 张凯1,2(
), 张慧1, 郭小梦1,2, 陈国悦1,2, 王奕丁1, 贾庆宇1,2
通讯作者:
张凯
作者简介:
张凌健(1998-),男,湖南衡阳人,硕士研究生,研究方向为土壤学与植物营养学,(E-mail) 1036914076@qq.com
基金资助:
CLC Number:
ZHANG Lingjian, ZHANG Kai, ZHANG Hui, GUO Xiaomeng, CHEN Guoyue, WANG Yiding, JIA Qingyu. Study on the relationship between plant water content and morphological characteristics of top stem and leaf during the whole growth period of cotton[J]. Xinjiang Agricultural Sciences, 2025, 62(3): 531-538.
张凌健, 张凯, 张慧, 郭小梦, 陈国悦, 王奕丁, 贾庆宇. 棉花全生育期植株含水率与顶部茎叶形态特征的关系[J]. 新疆农业科学, 2025, 62(3): 531-538.
滴灌时间 Drip irrigation time (M/D) | 滴灌量 Drip irrigation (m3/667m2) |
---|---|
6/17 | 70.78 |
7/9 | 77.59 |
7/21 | 73.51 |
8/6 | 73.51 |
8/19 | 78.95 |
Tab.1 Quantity of drip irrigation and the time of drip irrigation
滴灌时间 Drip irrigation time (M/D) | 滴灌量 Drip irrigation (m3/667m2) |
---|---|
6/17 | 70.78 |
7/9 | 77.59 |
7/21 | 73.51 |
8/6 | 73.51 |
8/19 | 78.95 |
生育期 Reproductive period | 形态指标 Morphological indexes | 模型关系 Regression equation | R2 | P |
---|---|---|---|---|
初花期 Initial flowering | 顶两叶间距 | Y=-0.299 8X+28.34 | 0.217 6 | P=0.17 |
叶片-主茎夹角 | Y=4.084X-327.9 | 0.590 9 | P<0.01 | |
叶柄-主茎夹角 | Y=2.272X-134.2 | 0.635 4 | P<0.01 | |
拟合的多元 回归模型方程 | Y=1.83PS-0.159 3MPS+0.938 4HAL+41.33 | 0.924 9 | P<0.01 | |
盛花结铃初期 Early full-bloom bolls | 顶两叶间距 | Y=-0.129 2X+15.42 | 0.057 19 | P=0.51 |
叶片-主茎夹角 | Y=-3.439X+308.7 | 0.776 5 | P<0.05 | |
叶柄-主茎夹角 | Y=2.119X-124.5 | 0.750 1 | P<0.01 | |
拟合的多元 回归模型方程 | Y=0.821 2PS-0.185 9MPS+0.464 5HAL+55.36 | 0.878 7 | P<0.01 | |
盛花结铃中期 Mid-blooming period of full-bloom | 顶两叶间距 | Y=-0.229 7X+20.80 | 0.225 6 | P=0.17 |
叶片-主茎夹角 | Y=-4.276X+267.3 | 0.6547 | P<0.01 | |
叶柄-主茎夹角 | Y=2.275X-132.1 | 0.603 0 | P<0.01 | |
拟合的多元 回归模型方程 | Y=0.781 1PS-0.090 73MPS+0.213 8HAL+67.13 | 0.694 8 | P<0.05 | |
盛花结铃后期 Late full- bloom bolls | 顶两叶间距 | Y=-0.369X+29.95 | 0.935 2 | P<0.01 |
叶片-主茎夹角 | Y=-1.947 8X+192.3 | 0.243 9 | P=0.15 | |
叶柄-主茎夹角 | Y=1.196X-42.21 | 0.1136 | P=0.34 | |
拟合的多元 回归模型方程 | Y=-2.639PS+0.062 89MPS+0.086 92HAL+73.87 | 0.955 1 | P<0.01 |
Tab.2 The relationship between cotton morphological characteristics and cotton plant water content in each growth period(during 16:00-17:00)
生育期 Reproductive period | 形态指标 Morphological indexes | 模型关系 Regression equation | R2 | P |
---|---|---|---|---|
初花期 Initial flowering | 顶两叶间距 | Y=-0.299 8X+28.34 | 0.217 6 | P=0.17 |
叶片-主茎夹角 | Y=4.084X-327.9 | 0.590 9 | P<0.01 | |
叶柄-主茎夹角 | Y=2.272X-134.2 | 0.635 4 | P<0.01 | |
拟合的多元 回归模型方程 | Y=1.83PS-0.159 3MPS+0.938 4HAL+41.33 | 0.924 9 | P<0.01 | |
盛花结铃初期 Early full-bloom bolls | 顶两叶间距 | Y=-0.129 2X+15.42 | 0.057 19 | P=0.51 |
叶片-主茎夹角 | Y=-3.439X+308.7 | 0.776 5 | P<0.05 | |
叶柄-主茎夹角 | Y=2.119X-124.5 | 0.750 1 | P<0.01 | |
拟合的多元 回归模型方程 | Y=0.821 2PS-0.185 9MPS+0.464 5HAL+55.36 | 0.878 7 | P<0.01 | |
盛花结铃中期 Mid-blooming period of full-bloom | 顶两叶间距 | Y=-0.229 7X+20.80 | 0.225 6 | P=0.17 |
叶片-主茎夹角 | Y=-4.276X+267.3 | 0.6547 | P<0.01 | |
叶柄-主茎夹角 | Y=2.275X-132.1 | 0.603 0 | P<0.01 | |
拟合的多元 回归模型方程 | Y=0.781 1PS-0.090 73MPS+0.213 8HAL+67.13 | 0.694 8 | P<0.05 | |
盛花结铃后期 Late full- bloom bolls | 顶两叶间距 | Y=-0.369X+29.95 | 0.935 2 | P<0.01 |
叶片-主茎夹角 | Y=-1.947 8X+192.3 | 0.243 9 | P=0.15 | |
叶柄-主茎夹角 | Y=1.196X-42.21 | 0.1136 | P=0.34 | |
拟合的多元 回归模型方程 | Y=-2.639PS+0.062 89MPS+0.086 92HAL+73.87 | 0.955 1 | P<0.01 |
[1] |
李雪源, 王俊铎, 郑巨云, 等. 新疆棉花产业发展与供给侧改革[J]. 中国棉花, 2017, 44(8): 1-7.
DOI |
LI Xueyuan, WANG Junduo, ZHENG Juyun, et al. Cotton industry development and the supply-side reform in Xinjiang, China[J]. China Cotton, 2017, 44(8): 1-7.
DOI |
|
[2] | 郑媛芳. 新疆水资源分布及脆弱性评价[J]. 陕西水利, 2018,(S1): 39-41. |
ZHENG Yuanfang. Distribution and vulnerability assessment of water resources in Xinjiang[J]. Shaanxi Water Resources, 2018,(S1): 39-41. | |
[3] | 闫建峰. 新疆维吾尔自治区棉花生产现状及发展对策[J]. 乡村科技, 2020, 11(22): 47-48. |
YAN Jianfeng. Present situation and development countermeasures of cotton production in Xinjiang Uygur Autonomous Region[J]. Rural Science and Technology, 2020, 11(22): 47-48. | |
[4] | 刘超峰, 周雪英. 新疆棉花产业用水灌溉研究[J]. 甘肃科技, 2010, 26(23): 156-157, 121. |
LIU Chaofeng, ZHOU Xueying. Study on water irrigation of cotton industry in Xinjiang[J]. Gansu Science and Technology, 2010, 26(23): 156-157, 121. | |
[5] | 张寄阳, 段爱旺, 孟兆江, 等. 不同水分状况下棉花茎直径变化规律研究[J]. 农业工程学报, 2005, 21(5): 7-11. |
ZHANG Jiyang, DUAN Aiwang, MENG Zhaojiang, et al. Stem diameter variations of cotton under different water conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(5): 7-11. | |
[6] | 尚晓英, 张智韬, 边江, 等. 基于无人机热红外的水分胁迫指数与土壤含水率关系研究[J]. 节水灌溉, 2019(4): 16-21. |
SHANG Xiaoying, ZHANG Zhitao, BIAN Jiang, et al. Study on the relationship between water stress index and soil moisture content based on UAV thermal infrared[J]. Water Saving Irrigation, 2019(4): 16-21. | |
[7] | 吴晓磊, 张寄阳, 刘浩, 等. 基于红外热像仪的棉花水分状况诊断方法[J]. 应用生态学报, 2016, 27(1): 165-172. |
WU Xiaolei, ZHANG Jiyang, LIU Hao, et al. Diagnosis method of cotton water status based on infrared thermal imaging[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 165-172.
PMID |
|
[8] | Jones H G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling[J]. Agricultural and Forest Meteorology, 1999, 95(3): 139-149. |
[9] | 王方永, 王克如, 王崇桃, 等. 基于图像识别的棉花水分状况诊断研究[J]. 石河子大学学报(自然科学版), 2007, 25(4): 404-407. |
WANG Fangyong, WANG Keru, WANG Chongtao, et al. Diagnosis of cotton water status based on image recognition[J]. Journal of Shihezi University (Natural Science), 2007, 25(4): 404-407. | |
[10] | 郑力嘉, 孙宇瑞, 蔡祥. 基于激光扫描3D图像的植物亏水体态辨识与萎蔫指数比较[J]. 农业工程学报, 2015, 31(2): 79-86. |
ZHENG Lijia, SUN Yurui, CAI Xiang. Identification of plant morphology induced by water stress and comparison of indices using laser scan 3D images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 79-86. | |
[11] | Turner N C. Crop water deficits: a decade of progress[J]. Advances in Agronomy, 1986, 39: 1-51. |
[12] | 张寄阳, 段爱旺, 孙景生, 等. 作物水分状况自动监测与诊断的研究进展[J]. 农业工程学报, 2006, 22(1): 174-178. |
ZHANG Jiyang, DUAN Aiwang, SUN Jingsheng, et al. Advances in automated monitoring and diagnosis of crop water status[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(1): 174-178. | |
[13] |
杨川, 张凯, 陈冰, 等. 棉花植株形态特征对不同水分状况的响应[J]. 新疆农业科学, 2023, 60(9): 2120-2127.
DOI |
YANG Chuan, ZHANG Kai, CHEN Bing, et al. Responses of morphological characteristics of cotton to different water conditions[J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2120-2127.
DOI |
|
[14] | 曹黎. 土壤水分含量与棉花各生育期灌水和棉花产量的关系探讨[J]. 农业与技术, 2020, 40(18): 38-40. |
CAO Li. Discussion on the relationship between soil moisture content and irrigation and cotton yield in different growth stages of cotton[J]. Agriculture and Technology, 2020, 40(18): 38-40. | |
[15] | 龙海燕, 邓伦秀. 植物形态对干旱胁迫的反应与适应性研究[J]. 湖北农业科学, 2019, 58(8): 5-7. |
LONG Haiyan, DENG Lunxiu. Response and adaptation of plant morphology to drought stress[J]. Hubei Agricultural Sciences, 2019, 58(8): 5-7. | |
[16] | 高阳. 土壤水分梯度变化对内蒙古典型草原草本植物形态及成分的影响[D]. 北京: 中央民族大学, 2021. |
GAO Yang. Effect of soil moisture gradient change on morphology and composition of herbaceous plants in typical grassland of Inner Mongolia[D]. Beijing: Central University for Nationalities, 2021. | |
[17] | 冯先伟, 陈曦, 包安明, 等. 水分胁迫条件下棉花生理变化及其高光谱响应分析[J]. 干旱区地理, 2004, 27(2): 250-255. |
FENG Xianwei, CHEN Xi, BAO Anming, et al. Analysis on the cotton physiological change and its hyperspectral response under the water stress conditions[J]. Arid Land Geography, 2004, 27(2): 250-255. | |
[18] | 李彦, 雷晓云, 白云岗. 不同灌水下限对棉花产量及水分利用效率的影响[J]. 灌溉排水学报, 2013, 32(4): 132-134. |
LI Yan, LEI Xiaoyun, BAI Yungang. The effect of different thresholds of soil moisture on yield and water use efficiency of cotton[J]. Journal of Irrigation and Drainage, 2013, 32(4): 132-134. |
[1] | ZHANG Lian, CHEN Xiangyao, WANG Tangang, MA Xiaomei, CHENG Bin, WANG Gang, DUAN Zhenyu. Effects of high-strength mulch on soil temperature, humidity and cotton growth [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 539-545. |
[2] | XU Shouzhen, MA Qi, NING Xinzhu, LI Jilian, SU Junji, HAN Huanyong, WANG Fangyong, LIN Hai. Effects of different row spacing and defoliant on cotton defoliation [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 546-555. |
[3] | ZHAO Yupeng, CHEN Bolang, WANG Zhiguo, FU Yanbo, BIAN Qingyong. Effects of different carbon source inputs on the characteristics of compacted clay and the growth of cotton seedlings [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 556-571. |
[4] | WANG Yongpan, MA Jun, LI Chenyu, YAO Mengyao, WANG Zixuan, HUANG Lingzhi, ZHU Haiyan, LIU Wanrong, LI Bo, YANG Yang, GAO Wenwei. Salt tolerance in germination period of cotton seeds based on convolutional neural network and synthetic dataset [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 261-269. |
[5] | HU Shasha, SHAO Liping, CHEN Lihua, SONG Weiping, ZHAO Hai, ZHANG Xinyu, SUN Jie. Effect of defoliant on boll development and fiber quality of machine-picked cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 270-277. |
[6] | LU Mingkun, LI Junhong, Nilupaier Yusufujiang, PAN Xipeng, LIU Xiaocheng, ZHANG Zhenggui, PAN Zhanlei, ZHAI Menghua, ZHANG Yaopeng, ZHAO Wenqi, WANG Lihong, WANG Zhanbiao. Effect of silic on fertiliser application on the growth and development of cotton and its yield and quality [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 286-293. |
[7] | WANG Yiding, ZHANG Kai, ZHANG Lingjian, ZHANG Hui, GUO Xiaomeng, CHEN Guoyue. Effects of drip irrigation on the growth and development, yield formation, and water use efficiency of cotton in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 294-301. |
[8] | WANG Xiaoyan, BAI Yungang, CHAI Zhongping, LU Zhenlin, LIU Hongbo, XIAO Jun, Amannisa . Effect of "dry sowing and wet emergence" on cotton growth and yield under the control of winter drip irrigation in off-cropping period [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 302-313. |
[9] | SUN Caiqin, WU Jia, HUANG Hai, GUO Jiaxin, MIN Wei, GUO Huijuan. Effects of different saline and alkaline stress on the proteome of cotton root system [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 146-160. |
[10] | LAI Chengxia, YANG Yanlong, WANG Penglong, ZHU Mengyu, YANG Dong, LI Chunping, GE Fengwei, Mayila Yusuyin, YANG Ni, MA Jun. Pathogen colony’s morphological characteristics and pathogenicity identification of defioating cotton Verticillium wilt in some areas in northern Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 174-181. |
[11] | WANG Wei, ZHANG Renfu, LIU Haiyang, LI Xiaowei, YAO Ju. Occurrence dynamics and spatial distribution pattern of Frankliniella intonsa in cotton fields in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 202-209. |
[12] | WEN Fang, LIAO Na, WANG Na, JIN Jing, YAO Yiqiang. Adsorption and immobilization of Cd2+ by cotton straw biochar [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 225-233. |
[13] | ZHOU Xin, LIU Xuanfeng, JIANG Yuhan, ZHANG Haichun, YANG Yuxin, Yeerbdati Tiemuer, JIANG Yongxin, ZHANG Li. Current situation and development proposal of mechanized recovery and resource utilization of used mulch film in cotton fields in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 131-141. |
[14] | MIAO Hongping, WANG Xiaowei, TIAN Conghua, LI Zhi, ZHANG Yuxin, DAI Junsheng. Evolution characteristics and driving factors of cotton production and distribution in Tarim River basin [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 217-226. |
[15] | WANG Junduo, CUI Yujiang, LIANG Yajun, GONG Zhaolong, ZHENG Junyun, LI Xueyuan. Xinjiang cotton production advantageous regional layout scheme [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 60-69. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||