[1] |
安显金, 李维. 基于CNKI的我国生物炭研究趋势文献计量学分析[J]. 农业资源与环境学报, 2018, 35(6): 483-491.
|
|
AN Xianjin, LI Wei. Bibliometric analysis on research trend of biochar in China based on CNKI[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 483-491.
|
[2] |
张林, 林庆毅, 张梦阳, 等. 生物炭对不同土壤改良及生态效应影响的研究进展[J]. 中国农学通报, 2019, 35(15): 54-58.
DOI
|
|
ZHANG Lin, LIN Qingyi, ZHANG Mengyang, et al. A review on biocar: effect on soil improvement and ecology[J]. Chinese Agricultural Science Bulletin, 2019, 35(15): 54-58.
DOI
|
[3] |
金梁, 魏丹, 李玉梅, 等. 生物炭对有机无机污染物的修复作用与机理研究进展[J]. 土壤通报, 2016, 47(2): 505-510.
|
|
JIN Liang, WEI Dan, LI Yumei, et al. Remediation of organic and inorganic pollutants by biochar: a review[J]. Chinese Journal of Soil Science, 2016, 47(2): 505-510.
|
[4] |
Xu X Y, Zhao Y H, Sima J K, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review[J]. Bioresource Technology, 2017, 241: 887-899.
DOI
PMID
|
[5] |
计海洋, 汪玉瑛, 吕豪豪, 等. 不同炭化温度制备的蚕丝被废弃物生物炭对重金属Cd2+的吸附性能[J]. 应用生态学报, 2018, 29(4): 1328-1338.
DOI
|
|
JI Haiyang, WANG Yuying, LYU Haohao, et al. Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures[J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1328-1338.
DOI
|
[6] |
Frišták V, Pipíška M, Lesny J, et al. Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study[J]. Environmental Monitoring and Assessment, 2014, 187(1): 4093.
|
[7] |
闫翠侠, 贾宏涛, 孙涛, 等. 鸡粪生物炭表征及其对水和土壤镉铅的修复效果[J]. 农业工程学报, 2019, 35(13): 225-233.
|
|
YAN Cuixia, JIA Hongtao, SUN Tao, et al. Characteristics of chicken manure biochars and its effect on Cd and Pb remediation in water and soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 225-233.
|
[8] |
Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159(2): 474-480.
DOI
PMID
|
[9] |
Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2282-2287.
DOI
PMID
|
[10] |
Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1): 235-246.
|
[11] |
鲁秀国, 过依婷, 奉向东. 生物炭对土壤中重金属作用及影响研究进展[J]. 应用化工, 2018, 47(4): 775-779.
|
|
LU Xiuguo, GUO Yiting, FENG Xiangdong. Research progress of the effects and impacts of biochar on heavy metals in soil[J]. Applied Chemical Industry, 2018, 47(4): 775-779.
|
[12] |
Wei J, Tu C, Yuan G D, et al. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar[J]. Environmental Pollution, 2019, 251: 56-65.
DOI
PMID
|
[13] |
Shen Z T, Zhang Y Y, Jin F, et al. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars[J]. Science of the Total Environment, 2017, 609: 1401-1410.
|
[14] |
金冠宇, 李卫华, 杨厚云. 污泥基生物炭对重金属Cd2+的吸附性能[J]. 安徽建筑大学学报, 2020, 28(4): 21-27, 116.
|
|
JIN Guanyu, LI Weihua, YANG Houyun. Adsorption of heavy metal Cd2+ on sludge based biochar[J]. Journal of Anhui Jianzhu University, 2020, 28(4): 21-27, 116.
|
[15] |
秦凤辉, 王贵胤, 王新月, 等. 4种秸秆类农业废弃物对废水中Pb2+去除效率[J]. 环境科学与技术, 2020, 43(S2): 87-94.
|
|
QIN Fenghui, WANG Guiyin, WANG Xinyue, et al. Removal efficiency of Pb2+ from wastewater by four straw-based agricultural wastes[J]. Environmental Science & Technology, 2020, 43(S2): 87-94.
|
[16] |
高亮, 李志合, 李玉峰, 等. 棉秆生物炭去除水中Zn(Ⅱ)的试验研究[J]. 中国农机化学报, 2021, 42(2): 197-202.
DOI
|
|
GAO Liang, LI Zhihe, LI Yufeng, et al. Experimental study for the removal of Zn(Ⅱ) from aqueous solution by biochar derived from cotton stalk[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 197-202.
|
[17] |
Gu Z G, Wu M, Li K, et al. Variation of heavy metal speciation during the pyrolysis of sediment collected from the Dianchi Lake, China[J]. Arabian Journal of Chemistry, 2017, 10: 2196-2204.
|
[18] |
Inyang M I, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433.
|
[19] |
Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: the role of aromatic pi-systems[J]. Environmental Science & Technology, 2009, 43(10): 3421-3429.
|
[20] |
Wang Z Y, Liu G C, Zheng H, et al. Investigating the mechanisms of biochar’s removal of lead from solution[J]. Bioresource Technology, 2015, 177: 308-317.
|
[21] |
李明遥, 杜立宇, 张妍, 等. 不同裂解温度水稻秸秆生物炭对土壤Cd形态的影响[J]. 水土保持学报, 2013, 27(6): 261-264.
|
|
LI Mingyao, DU Liyu, ZHANG Yan, et al. Influence of pyrolysis temperatures of biochar obtained from the rice straw on cadmium forms[J]. Journal of Soil and Water Conservation, 2013, 27(6): 261-264.
|
[22] |
李洪达, 李艳, 周薇, 等. 稻壳生物炭对矿区重金属复合污染土壤中Cd、Zn形态转化的影响[J]. 农业环境科学学报, 2018, 37(9): 1856-1865.
|
|
LI Hongda, LI Yan, ZHOU Wei, et al. Effects of rice-husk-derived biochar on the morphological transformation of Cd and Zn in mining area soils polluted by heavy metals[J]. Journal of Agro-Environment Science, 2018, 37(9): 1856-1865.
|
[23] |
孟莉蓉, 俞浩丹, 杨婷婷, 等. 2种生物炭对Pb、Cd污染土壤的修复效果[J]. 江苏农业学报, 2018, 34(4): 835-841.
|
|
MENG Lirong, YU Haodan, YANG Tingting, et al. Immobilization of two biochars to Pb, Cd in contaminated soils[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 835-841.
|