

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 975-981.DOI: 10.6048/j.issn.1001-4330.2025.04.022
• Plant Protection · Prataculture • Previous Articles Next Articles
WANG Huan1(
), ZHANG Yiteng1, WANG Bin1, ZHOU Tong1, LIANG Qing2, ZHANG Hong2(
)
Received:2024-09-15
Online:2025-04-20
Published:2025-06-20
Supported by:
王欢1(
), 张轶腾1, 王斌1, 周童1, 梁清2, 张宏2(
)
通讯作者:
张宏(1975-),男,内蒙古武川人,教授,硕士,研究方向为特色农产品无损检测,(E-mail)zhghog@163.com
作者简介:王欢(1989-),女,重庆潼南人,硕士研究生,副高级工程师;研究方向为乳制品,(E-mail)3115261705@qq.com
基金资助:CLC Number:
WANG Huan, ZHANG Yiteng, WANG Bin, ZHOU Tong, LIANG Qing, ZHANG Hong. Study on the moisture content detection method of fresh milk based on dielectric property[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 975-981.
王欢, 张轶腾, 王斌, 周童, 梁清, 张宏. 基于介电特性的生鲜牛奶含水率检测方法[J]. 新疆农业科学, 2025, 62(4): 975-981.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.04.022
Fig.1 Test bench for Electrical parameters of fresh milk Notes:1,Vector network analyzer;2,Connecting cable;3,End opening coaxial probe;4,Liquid to be tested
| 参数 Parameter | 最小值 Minimum(%) | 最大值 Maximum(%) | 平均值±标准偏差 Average value± standard deviation(%) |
|---|---|---|---|
| 含水率Water content | 86.900 | 92.900 | 89.900± 2.16 |
| 非脂乳固体质量分数Non-fat milk solid mass fraction | 4.390 | 8.100 | 6.245±1.336 |
| 碳水化合物质量分数Carbohydrate mass fraction | 2.710 | 5.000 | 3.855±0.824 |
| 脂肪质量分数Fat mass fraction | 1.897 | 3.500 | 2.698±0.577 |
| 蛋白质质量分数Protein mass fraction | 1.789 | 3.300 | 2.544±0.544 |
Tab.1 Main components of the fresh cow milk
| 参数 Parameter | 最小值 Minimum(%) | 最大值 Maximum(%) | 平均值±标准偏差 Average value± standard deviation(%) |
|---|---|---|---|
| 含水率Water content | 86.900 | 92.900 | 89.900± 2.16 |
| 非脂乳固体质量分数Non-fat milk solid mass fraction | 4.390 | 8.100 | 6.245±1.336 |
| 碳水化合物质量分数Carbohydrate mass fraction | 2.710 | 5.000 | 3.855±0.824 |
| 脂肪质量分数Fat mass fraction | 1.897 | 3.500 | 2.698±0.577 |
| 蛋白质质量分数Protein mass fraction | 1.789 | 3.300 | 2.544±0.544 |
| 建模 方法 Modeling method | 建模 变量 Mode- ling variable | 训练阶段 Training phase | 预测阶段 Prediction phase | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | RMSE | R2 | RMSE | ||||||||
| PLSR | ε' | 0.994 4 | 0.001 0 | 0.867 | 0.002 4 | ||||||
| ε″ | 0.999 3 | 0.000 4 | 0.901 5 | 0.001 8 | |||||||
| SVR | ε' | 0.993 6 | 0.001 8 | 0.978 1 | 0.004 0 | ||||||
| ε″ | 0.997 9 | 0.001 5 | 0.792 2 | 0.010 2 | |||||||
| PSO- LSSVR | ε' | 0.991 7 | 0.001 7 | 0.992 0 | 0.002 6 | ||||||
| ε″ | 0.995 3 | 0.001 4 | 0.996 3 | 0.001 3 | |||||||
Tab.2 Comparisons of prediction results for different modeling methods
| 建模 方法 Modeling method | 建模 变量 Mode- ling variable | 训练阶段 Training phase | 预测阶段 Prediction phase | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | RMSE | R2 | RMSE | ||||||||
| PLSR | ε' | 0.994 4 | 0.001 0 | 0.867 | 0.002 4 | ||||||
| ε″ | 0.999 3 | 0.000 4 | 0.901 5 | 0.001 8 | |||||||
| SVR | ε' | 0.993 6 | 0.001 8 | 0.978 1 | 0.004 0 | ||||||
| ε″ | 0.997 9 | 0.001 5 | 0.792 2 | 0.010 2 | |||||||
| PSO- LSSVR | ε' | 0.991 7 | 0.001 7 | 0.992 0 | 0.002 6 | ||||||
| ε″ | 0.995 3 | 0.001 4 | 0.996 3 | 0.001 3 | |||||||
| [1] | GB 5009.3—2016.食品安全国家标准食品中水分的测定[S]. |
| GB 5009.3—2016. National Food Safety Standard Determination of Moisture in Food:[S]. | |
| [2] |
Kasemsumran S, Thanapase W, Kiatsoonthon A. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk[J]. Analytical Sciences, 2007, 23(7): 907-910.
PMID |
| [3] | Eltemur D, Robatscher P, Oberhuber M, et al. Applications of solution NMR spectroscopy in quality assessment and authentication of bovine milk[J]. Foods, 2023, 12(17): 3240. |
| [4] | Mabrook M F, Petty M C. A novel technique for the detection of added water to full fat milk using single frequency admittance measurements[J]. Sensors and Actuators B: Chemical, 2003, 96(1/2): 215-218. |
| [5] |
佀博学, 张养东, 郑楠, 等. 生乳新鲜度评价指标研究进展[J]. 动物营养学报, 2023, 35(6): 3499-3507.
DOI |
|
SI Boxue, ZHANG Yangdong, ZHENG Nan, et al. Research progress on freshness evaluation indices of raw milk[J]. Chinese Journal of Animal Nutrition, 2023, 35(6): 3499-3507.
DOI |
|
| [6] | 曹玉栋, 祁伟彦, 李娴, 等. 苹果无损检测和品质分级技术研究进展及展望[J]. 智慧农业, 2019, 1(3): 29-45. |
|
CAO Yudong, QI Weiyan, LI Xian, et al. Research progress and prospect on non-destructive detection and quality grading technology of apple[J]. Smart Agriculture, 2019, 1(3): 29-45.
DOI |
|
| [7] | 胡志晨. 基于介电特性的苹果无损分级测量模块的设计与实现[D]. 杨凌: 西北农林科技大学, 2016. |
| HU Zhichen. Design and implementation of measurement module for nondestructive classification of apples based on dielectric property[D]. Yangling: Northwest A & F University, 2016. | |
| [8] | Clerjon S, Daudin J D, Damez J L. Water activity and dielectric properties of gels in the frequency range 200 MHz-6 GHz[J]. Food Chemistry, 2003, 82(1): 87-97. |
| [9] | 郭文川, 孔繁荣. 不同类型蛋白质及其添加量对牛乳介电特性的影响[J]. 农业机械学报, 2016, 47(8): 248-254. |
| GUO Wenchuan, KONG Fanrong. Influence of different proteins and their additive amounts on permittivities of milk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 248-254. | |
| [10] | 梁志斌. 生鲜牛乳介电特性与脂肪含量关系的试验研究[D]. 杨凌: 西北农林科技大学, 2014. |
| LIANG Zhibin. study of experiment on the relationshiop between dielectric properties and at content of raw milk.[D]. Yangling: Northwest A & F University, 2014. | |
| [11] | Nelson S O, Trabelsi S. Factors influencing the dielectric properties of agricultural and food products[J]. The Journal of Microwave Power and Electromagnetic Energy: a Publication of the International Microwave Power Institute, 2012, 46(2): 93-107. |
| [12] | Sacilik K, Colak A. Determination of dielectric properties of corn seeds from 1 to 100 MHz[J]. Powder Technology, 2010, 203(2): 365-370. |
| [13] | 张本华, 钱长钱, 焦晋康, 等. 基于介电特性与SPA-SVR算法的水稻含水率检测方法[J]. 农业工程学报, 2019, 35(18): 237-244. |
| ZHANG Benhua, QIAN Changqian, JIAO Jinkang, et al. Rice moisture content detection method based on dielectric properties and SPA-SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 237-244. | |
| [14] | 武新慧, 郭玉明, 孙静鑫, 等. 苹果介电特性与微波干燥含水率相关性研究[J]. 农机化研究, 2018, 40(10): 194-198. |
| WU Xinhui, GUO Yuming, SUN Jingxin, et al. Study on coaxial electric properties of apple as a function of microwave drying moisture content[J]. Journal of Agricultural Mechanization Research, 2018, 40(10): 194-198. | |
| [15] | 李大伟, 陈超, 兰海鹏, 等. 基于电特性的新疆骏枣含水率的试验研究[J]. 农机化研究, 2016, 38(7): 212-215. |
| LI Dawei, CHEN Chao, LAN Haipeng, et al. Experimental research on the electrical characteristics of Xinjiang Junzao moisture[J]. Journal of Agricultural Mechanization Research, 2016, 38(7): 212-215. | |
| [16] | 周世平, 张海红, 李海峰, 等. 基于果品介电特性的无损检测技术研究综述[J]. 食品研究与开发, 2015, 36(1): 131-134, 144. |
| ZHOU Shiping, ZHANG Haihong, LI Haifeng, et al. Review of fruit nondestructive testing technology research based on the dielectric characteristics[J]. Food Research and Development, 2015, 36(1): 131-134, 144. | |
| [17] | McKeown M S, Trabelsi S, Tollner E W, et al. Dielectric spectroscopy measurements for moisture prediction in Vidalia Onions[J]. Journal of Food Engineering, 2012, 111(3): 505-510. |
| [18] | 郭文川, 林碧莹. 牛奶含水率介电谱结合化学计量学检测方法[J]. 农业机械学报, 2016, 47(9): 249-255. |
| GUO Wenchuan, LIN Biying. Detecting moisture content of cow’s milk using dielectric spectra and chemometrics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 249-255. | |
| [19] | GB/T 35680—2017.中国国家标准化管理委员会.液体材料微波频段使用开口同轴探头的电磁参数测量方法[S]. |
| GB/T 35680—2017. Measuring method for electromagnetic parameters of liquid materials at microwave frequencies using an open-ended coaxial probe[S]. | |
| [20] | Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109-130. |
| [21] | 王建国, 张文兴. 支持向量机建模及其智能优化[M]. 北京: 清华大学出版社, 2015: 12-16. |
| WANG Jianguo, ZHANG Wenxing. The SVM modeling and its intelligent optimization[M]. Beijing: Tsinghua University Press, 2015: 12-16. | |
| [22] | Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. |
| [23] |
刘昱, 赵国新. 基于粒子群优化算法的无摩擦气缸结构优化[J]. 系统仿真学报, 2018, 30(9): 3564-3570.
DOI |
|
LIU Yu, Zhao Guoxin. Optimization of frictionless cylinder-structure based on PSO[J]. Journal of System Simulation, 2018, 30(9): 3564-3570.
DOI |
|
| [24] | 刘贺, 张弘强, 刘斌. 基于粒子群优化神经网络算法的深基坑变形预测方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1609-1614. |
| LIU He, ZHANG Hongqiang, LIU Bin. A prediction method for the deformation of deep foundation pit based on the particle swarm optimization neural network[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5): 1609-1614. | |
| [25] |
朱新华, 郭文川. 影响食品射频-微波介电特性的因素及影响机理分析[J]. 食品科学, 2010, 31(17): 410-414.
DOI |
|
ZHU Xinhua, GUO Wenchuan. A review of affecting factors and their mechanisms of the radio frequency-microwave dielectric properties of foods[J]. Food Science, 2010, 31(17): 410-414.
DOI |
|
| [26] | Zhu X H, Guo W C, Liang Z B. Determination of the fat content in cow’s milk based on dielectric properties[J]. Food and Bioprocess Technology, 2015, 8(7): 1485-1494. |
| [27] | Zhu X H, Guo W C, Jia Y P, et al. Dielectric properties of raw milk as functions of protein content and temperature[J]. Food and Bioprocess Technology, 2015, 8(3): 670-680. |
| [1] | GAO Feng, MENG Jun, ZENG Yaqi, ZENG Mingmin, XUE Yuheng, SHANG Tingting, YUAN Xinxin, REN Wanlu, YAO Xinkui. Comparative analysis of milk components and plasma metabolomes between colostrum and regular milk periods in Ili horses [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 1002-1013. |
| [2] | ZHANG Lingjian, ZHANG Kai, ZHANG Hui, GUO Xiaomeng, CHEN Guoyue, WANG Yiding, JIA Qingyu. Study on the relationship between plant water content and morphological characteristics of top stem and leaf during the whole growth period of cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 531-538. |
| [3] | SUN Jian, LI Xue, CHU Min, GU Meiying, Ainijiang Ersiman, ZHU Jin, HE Qi, TAN Huilin, ZHANG Zhidong. Screening,identification and characteristics of Lactic acid bacteria from raw camel milk [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 1021-1028. |
| [4] | ZHANG Lei, YAO Mengyao, LIU Zhigang, LI Juan, YANG Yang, CAI Darun, CHEN Guo, LI Bo, LI Xiaorong, CHEN Xunji, ZHAI Yunlong. Research of maize yield estimation based on unmanned aerial vehicle multispectral NDVI [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 845-851. |
| [5] | LU Hongqin, BAI Yungang, CHAI Zhongping, LU Zhenlin, LIU Hongbo, ZHENG Ming, XIAO Jun. Research on the effect of "dry sowing and wet discharge" cotton field seedling preservation technology in an arched shed environment [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2872-2882. |
| [6] | LIU Chenyang, ZHANG Liping, ZHENG Weiqiang, LUO Haowei. Effects of different moisture contents on the mechanical properties and peeling effect of Apocynum venetum [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2797-2806. |
| [7] | LI Jiaqi, FENG Yuhua, CHEN Shuhuang, WANG Ziao, LIU Peng, LIANG Zhiyong, SUN Fafu, CHEN Rong, GENG Qinglong. Estimation of soil organic matter and total nitrogen based on hyperspectral technology [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2491-2499. |
| [8] | WANG Hui, SHAO Wei, ZHANG Shaoying, WANG Fulan, WANG Shuai, WU Yating, FAN Xue, ZHAO Yankun. Effect of dominant psychrophilic bacteria in fresh milk on the concentration of UHT Milk protein [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2314-2322. |
| [9] | LI Xueling, GUO Junxian, CHEN Li, SONG Heling, ZHANG Zhong. Effects of Different Film Mulching Width on Cotton Farmland Environment [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1840-1847. |
| [10] | LIANG Zhiguo, WANG Zepeng, JIA Songnan, FAN Fengcui, LIU Shengyao, ZHANG Zhe, DU Fenghuan, QIN Yong. Effects of different soil moisture on growth, yield, quality and water use efficiency of greenhouse eggplant [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1713-1721. |
| [11] | YANG Hanjun, HUANG Xingyu, WANG Xuzhe, ZHANG Fenghua, LUWeihua , ZHANG Fanfan. Effect of drying time in the field on the quality of fermentation of Brassica napus [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1433-1441. |
| [12] | Bahatiguli Manatibai, YAO Weiqin, Gaoshaer Kayierhali, GUO Hengxin, Dulati Kayimaerdan, Ailati gemadi, SHI Bo, GONG Zhiguo. Analysis of the volatile aromatic components in fresh horse milk by headspace solid phase microextraction-Gas chromatography-Mass spectrometry [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 3080-3085. |
| [13] | SONG Wenwen, CHEN Zhuo, LI Xin, CHEN Lijing, SHU Zhan, LI Ziqian, GUO Xueping, YE Qianwen, MA Xuelian, SU Zhanqiang, YAO Gang. A Comparative Analysis of Milk Nutritional and Functional Components between Junggar Bactrian Camel and Holstein Cow [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 234-241. |
| [14] | XU Yanjun, LIAN Weijia, LIU Xiangyu, Slayidin Smayi, TANG Qiuju, Ernival Abdulah. Effects of Water - Nitrogen Coupling on Soil Water Distribution and Yield in Cotton Field [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1051-1059. |
| [15] | ZHU Zhen, LI Tiansheng, CUI Jing, CHEN Jianhua, SHI Xiaoyan, JIANG Menghao, WANG Haijiang. Study on Estimation of Water Status of Winter Wheat in Different Growth Stages Based on Hyperspectral Imaging [J]. Xinjiang Agricultural Sciences, 2022, 59(3): 521-532. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||