Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (10): 2491-2499.DOI: 10.6048/j.issn.1001-4330.2024.10.017
• Plant Protection · Soil Fertilizer · Water Saving Irrigation · Agricultural Equipment Engineering and Mechanization · Prataculture • Previous Articles Next Articles
LI Jiaqi1(), FENG Yuhua1, CHEN Shuhuang2, WANG Ziao1, LIU Peng1, LIANG Zhiyong1, SUN Fafu1, CHEN Rong1, GENG Qinglong2(
)
Received:
2024-04-15
Online:
2024-10-20
Published:
2024-11-07
Correspondence author:
GENG Qinglong
Supported by:
李嘉琦1(), 冯宇华1, 陈署晃2, 王子傲1, 刘鹏1, 梁智永1, 孙法福1, 陈荣1, 耿庆龙2(
)
通讯作者:
耿庆龙
作者简介:
李嘉琦(1995-),男,河南鹤壁人,硕士研究生,研究方向为土壤肥料与农业信息技术应用,(E-mail)515815502@qq.com
基金资助:
CLC Number:
LI Jiaqi, FENG Yuhua, CHEN Shuhuang, WANG Ziao, LIU Peng, LIANG Zhiyong, SUN Fafu, CHEN Rong, GENG Qinglong. Estimation of soil organic matter and total nitrogen based on hyperspectral technology[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2491-2499.
李嘉琦, 冯宇华, 陈署晃, 王子傲, 刘鹏, 梁智永, 孙法福, 陈荣, 耿庆龙. 基于高光谱的土壤有机质及全氮估测[J]. 新疆农业科学, 2024, 61(10): 2491-2499.
土壤属性含量 Content of soil properties | 均值 Mean | 最小值 Minimum | 最大值 Maximum | 标准差 SD | 变异系数 CV(%) |
---|---|---|---|---|---|
全氮含量Total nitrogen content(g/kg) | 1 | 0.29 | 1.73 | 0.30 | 30% |
有机质含量Organic matter content(g/kg) | 18.09 | 5.66 | 31.70 | 5.23 | 28.91% |
Tab.1 Status of soil properties
土壤属性含量 Content of soil properties | 均值 Mean | 最小值 Minimum | 最大值 Maximum | 标准差 SD | 变异系数 CV(%) |
---|---|---|---|---|---|
全氮含量Total nitrogen content(g/kg) | 1 | 0.29 | 1.73 | 0.30 | 30% |
有机质含量Organic matter content(g/kg) | 18.09 | 5.66 | 31.70 | 5.23 | 28.91% |
土壤成分 Soil composition | 光谱处理 Spectral processing | 建模集 Calibration set | 验证集 Validation set | |||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | RPD | ||
全氮 Total nitrogen | R | 0.59 | 0.21 | 0.49 | 0.23 | 1.01 |
FD | 0.79 | 0.15 | 0.81 | 0.13 | 2.14 | |
(lgR)’ | 0.77 | 0.16 | 0.75 | 0.18 | 2.02 | |
(1/R)’ | 0.82 | 0.16 | 0.83 | 0.14 | 2.42 | |
MSC | 0.34 | 0.29 | 0.44 | 0.23 | 1.17 | |
有机质 Organic matter | R | 0.67 | 3.55 | 0.64 | 3.36 | 1.35 |
FD | 0.89 | 2.01 | 0.89 | 1.92 | 2.63 | |
(lgR)’ | 0.86 | 2.16 | 0.85 | 2.08 | 2.15 | |
(1/R)’ | 0.87 | 2.12 | 0.87 | 1.98 | 2.22 | |
MSC | 0.66 | 5.91 | 0.42 | 6.24 | 1.21 |
Tab.2 Partial least square regression(PLSR) modeling results
土壤成分 Soil composition | 光谱处理 Spectral processing | 建模集 Calibration set | 验证集 Validation set | |||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | RPD | ||
全氮 Total nitrogen | R | 0.59 | 0.21 | 0.49 | 0.23 | 1.01 |
FD | 0.79 | 0.15 | 0.81 | 0.13 | 2.14 | |
(lgR)’ | 0.77 | 0.16 | 0.75 | 0.18 | 2.02 | |
(1/R)’ | 0.82 | 0.16 | 0.83 | 0.14 | 2.42 | |
MSC | 0.34 | 0.29 | 0.44 | 0.23 | 1.17 | |
有机质 Organic matter | R | 0.67 | 3.55 | 0.64 | 3.36 | 1.35 |
FD | 0.89 | 2.01 | 0.89 | 1.92 | 2.63 | |
(lgR)’ | 0.86 | 2.16 | 0.85 | 2.08 | 2.15 | |
(1/R)’ | 0.87 | 2.12 | 0.87 | 1.98 | 2.22 | |
MSC | 0.66 | 5.91 | 0.42 | 6.24 | 1.21 |
土壤成分 Soil composition | 光谱处理 Spectral processing | 建模集 Calibration set | 验证集 Validation set | |||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | RPD | ||
全氮 Total nitrogen | R | 0.63 | 0.24 | 0.52 | 0.24 | 1.18 |
FD | 0.64 | 0.22 | 0.64 | 0.21 | 1.23 | |
(lgR)’ | 0.58 | 0.24 | 0.55 | 0.26 | 1.09 | |
(1/R)’ | 0.61 | 0.22 | 0.59 | 0.25 | 1.13 | |
MSC | 0.64 | 0.31 | 0.42 | 0.34 | 1.11 | |
有机质 Organic matter | R | 0.59 | 3.45 | 0.51 | 3.34 | 1.24 |
FD | 0.65 | 3.22 | 0.61 | 3.12 | 1.51 | |
(lgR)’ | 0.61 | 2.98 | 0.59 | 3.33 | 1.41 | |
(1/R)’ | 0.63 | 3.32 | 0.62 | 3.07 | 1.43 | |
MSC | 0.52 | 6.11 | 0.39 | 4.82 | 1.14 |
Tab.3 Back propagation neural network (BP) modeling results
土壤成分 Soil composition | 光谱处理 Spectral processing | 建模集 Calibration set | 验证集 Validation set | |||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | RPD | ||
全氮 Total nitrogen | R | 0.63 | 0.24 | 0.52 | 0.24 | 1.18 |
FD | 0.64 | 0.22 | 0.64 | 0.21 | 1.23 | |
(lgR)’ | 0.58 | 0.24 | 0.55 | 0.26 | 1.09 | |
(1/R)’ | 0.61 | 0.22 | 0.59 | 0.25 | 1.13 | |
MSC | 0.64 | 0.31 | 0.42 | 0.34 | 1.11 | |
有机质 Organic matter | R | 0.59 | 3.45 | 0.51 | 3.34 | 1.24 |
FD | 0.65 | 3.22 | 0.61 | 3.12 | 1.51 | |
(lgR)’ | 0.61 | 2.98 | 0.59 | 3.33 | 1.41 | |
(1/R)’ | 0.63 | 3.32 | 0.62 | 3.07 | 1.43 | |
MSC | 0.52 | 6.11 | 0.39 | 4.82 | 1.14 |
土壤成分 Soil composition | 光谱处理 Spectral processing | 建模集 Calibration set | 验证集 Validation set | |||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | RPD | ||
全氮 Total nitrogen | R | 0.52 | 0.24 | 0.43 | 0.24 | 1.18 |
FD | 0.72 | 0.17 | 0.73 | 0.17 | 1.84 | |
(lgR)’ | 0.68 | 0.19 | 0.66 | 0.18 | 1.52 | |
(1/R)’ | 0.71 | 0.19 | 0.70 | 0.18 | 1.73 | |
MSC | 0.35 | 0.27 | 0.39 | 0.25 | 1.12 | |
有机质 Organic matter | R | 0.64 | 3.31 | 0.55 | 3.11 | 1.27 |
FD | 0.86 | 2.08 | 0.85 | 1.16 | 2.31 | |
(lgR)’ | 0.76 | 1.31 | 0.69 | 1.18 | 1.64 | |
(1/R)’ | 0.79 | 1.69 | 0.72 | 1.16 | 1.79 | |
MSC | 0.56 | 3.70 | 0.41 | 4.21 | 1.18 |
Tab.4 Random forest regression(RF) modeling results
土壤成分 Soil composition | 光谱处理 Spectral processing | 建模集 Calibration set | 验证集 Validation set | |||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | RPD | ||
全氮 Total nitrogen | R | 0.52 | 0.24 | 0.43 | 0.24 | 1.18 |
FD | 0.72 | 0.17 | 0.73 | 0.17 | 1.84 | |
(lgR)’ | 0.68 | 0.19 | 0.66 | 0.18 | 1.52 | |
(1/R)’ | 0.71 | 0.19 | 0.70 | 0.18 | 1.73 | |
MSC | 0.35 | 0.27 | 0.39 | 0.25 | 1.12 | |
有机质 Organic matter | R | 0.64 | 3.31 | 0.55 | 3.11 | 1.27 |
FD | 0.86 | 2.08 | 0.85 | 1.16 | 2.31 | |
(lgR)’ | 0.76 | 1.31 | 0.69 | 1.18 | 1.64 | |
(1/R)’ | 0.79 | 1.69 | 0.72 | 1.16 | 1.79 | |
MSC | 0.56 | 3.70 | 0.41 | 4.21 | 1.18 |
[1] | 沈润平, 丁国香, 魏国栓, 等. 基于人工神经网络的土壤有机质含量高光谱反演[J]. 土壤学报, 2009, 46(3): 391-397. |
SHEN Runping, DING Guoxiang, WEI Guoshuan, et al. Retrieval of soil organic matter content from hyper-spectrum based on ann[J]. Acta Pedologica Sinica, 2009, 46(3): 391-397. | |
[2] | 叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017, 48(3): 164-172. |
YE Qin, JIANG Xueqin, LI Xican, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 164-172. | |
[3] |
张娟娟, 田永超, 朱艳, 等. 不同类型土壤的光谱特征及其有机质含量预测[J]. 中国农业科学, 2009, 42(9): 3154-3163.
DOI |
ZHANG Juanjuan, TIAN Yongchao, ZHU Yan, et al. Spectral characteristics and estimation of organic matter contents of different soil types[J]. Scientia Agricultura Sinica, 2009, 42(9): 3154-3163. | |
[4] | 洪永胜, 于雷, 耿雷, 等. 应用DS算法消除室内几何测试条件对土壤高光谱数据波动性的影响[J]. 华中师范大学学报(自然科学版), 2016, 50(2): 303-308. |
HONG Yongsheng, YU Lei, GENG Lei, et al. Using Direct Standardization algorithm to eliminate the effect of laboratory geometric parameters on soil hyperspectral data fluctuate characteristic[J]. Journal of Central China Normal University (Natural Sciences), 2016, 50(2): 303-308. | |
[5] | 栾福明, 熊黑钢, 王芳, 等. 基于小波分析的土壤碱解氮含量高光谱反演[J]. 光谱学与光谱分析, 2013, 33(10): 2828. |
LUAN Fuming, XIONG Heigang, WANG Fang, et al. The inversion of soil alkaline hydrolysis nutrient content with hyperspectral reflectance based on wavelet analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2828.
PMID |
|
[6] | 林楠, 刘海琪, 杨佳佳, 等. BA-Adaboost模型的黑土区土壤养分含量高光谱估测[J]. 光谱学与光谱分析, 2020, 40(12): 3825-3831. |
LIN Nan, LIU Haiqi, YANG Jiajia, et al. Hyperspectral estimation of soil nutrient content in the black soil region based on BA-adaboost[J]. Spectroscopy and Spectral Analysis, 2020, 40(12): 3825-3831. | |
[7] | 陈奕云, 齐天赐, 黄颖菁, 等. 土壤有机质含量可见-近红外光谱反演模型校正集优选方法[J]. 农业工程学报, 2017, 33(6): 107-114. |
CHEN Yiyun, QI Tianci, HUANG Yingjing, et al. Optimization method of calibration dataset for VIS-NIR spectral inversion model of soil organ ic matter content[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 107-114. | |
[8] | Liu Y L, Jiang Q H, Fei T, et al. Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes[J]. Remote Sensing, 2014, 6(5): 4305-4322. |
[9] | 王一丁, 赵铭钦, 刘鹏飞, 等. 基于高光谱分析的植烟土壤有机质和全氮含量预测研究[J]. 中国烟草学报, 2016, 22(3): 44-51. |
WANG Yiding, ZHAO Mingqin, LIU Pengfei, et al. Prediction of organic matter and total nitrogen contents in tobacco-growing soil based on hyper-spectral analysis[J]. Acta Tabacaria Sinica, 2016, 22(3): 44-51. | |
[10] | 杜军, 古军伟, 邱士可, 等. 基于支持向量回归的土壤全氮含量高光谱估测研究[J]. 河南科学, 2020, 38(10): 1585-1590. |
DU Jun, GU Junwei, QIU Shike, et al. Prediction of total nitrogen by using hyperspectral data based on support vector regression[J]. Henan Science, 2020, 38(10): 1585-1590. | |
[11] | Chang C W, Laird D A, Mausbach M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2): 480-490. |
[12] | 王海江, 刘凡, YUNGER John A, 等. 不同粒径处理的土壤全氮含量高光谱特征拟合模型[J]. 农业机械学报, 2019, 50(2): 195-204. |
WANG Haijiang, LIU Fan, YUNGER J A, et al. Fitting model of soil total nitrogen content in different soil particle sizes using hyperspectral analysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 195-204. | |
[13] |
南锋, 朱洪芬, 毕如田. 黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测[J]. 中国农业科学, 2016, 49(11): 2126-2135.
DOI |
NAN Feng, ZHU Hongfen, BI Rutian. Hyperspectral prediction of soil organic matter content in the reclamation cropland of coal mining areas in the Loess Plateau[J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
DOI |
|
[14] |
朱亚星, 于雷, 洪永胜, 等. 土壤有机质高光谱特征与波长变量优选方法[J]. 中国农业科学, 2017, 50(22): 4325-4337.
DOI |
ZHU Yaxing, YU Lei, HONG Yongsheng, et al. Hyperspectral features and wavelength variables selection methods of soil organic matter[J]. Scientia Agricultura Sinica, 2017, 50(22): 4325-4337.
DOI |
|
[15] | 杨玉军. 基于机器学习的时间序列模型研究及其应用[D]. 成都: 电子科技大学, 2018. |
YANG Yujun. Research and Application of Time Series Model Based on Machine Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
[16] | 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1): 137-141. |
YAO Dengju, YANG Jing, ZHAN Xiaojuan. Feature selection algorithm based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1): 137-141. | |
[17] | 赵宁博, 秦凯, 赵英俊, 等. 土壤铬的航空高光谱间接反演模型及可迁移性研究[J]. 光谱学与光谱分析, 2021, 41(5): 1617-1624. |
ZHAO Ningbo, QIN Kai, ZHAO Yingjun, et al. Study on indirect inversion model and migration ability of chromium in soil by aerial hyperspectral method[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1617-1624. | |
[18] | 郭云开, 谢晓峰, 谢琼, 等. 基于小波变换的土壤重金属铬含量定量反演[J]. 测绘工程, 2021, 30(3): 66-71. |
GUO Yunkai, XIE Xiaofeng, XIE Qiong, et al. Quantitative inversion of heavy metal chromium content in soil based on wavelet transform[J]. Engineering of Surveying and Mapping, 2021, 30(3): 66-71. | |
[19] | Chang C W, Laird D A. Near-infrared reflectance spectroscopic analysis of soil C and N[J]. Soil Science, 2002, 167(2): 110-116. |
[20] |
侯化刚, 王丹阳, 马斯琦, 等. 黄河三角洲不同盐渍度土壤有机质含量的高光谱预测研究[J]. 中国农业科学, 2023, 56(10): 1905-1919.
DOI |
HOU Huagang, WANG Danyang, MA Siqi, et al. Hyperspectral prediction of organic matter in soils of different salinity levels in the Yellow River Delta[J]. Scientia Agricultura Sinica, 2023, 56(10): 1905-1919.
DOI |
|
[21] | Viscarra Rossel R A, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 2010, 158(1/2): 46-54. |
[22] | 玉米提·买明, 王雪梅. 连续小波变换的土壤有机质含量高光谱估测[J]. 光谱学与光谱分析, 2022, 42(4): 1278-1284. |
Yumiti Maiming, WANG Xuemei. Hyperspectral estimation of soil organic matter content based on continuous wavelet transformation[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1278-1284. | |
[23] | 谢文, 赵小敏, 郭熙, 等. 基于RBF组合模型的山地红壤有机质含量光谱估测[J]. 林业科学, 2018, 54(6): 16-23. |
XIE Wen, ZHAO Xiaomin, GUO Xi, et al. Spectrum based estimation of the content of soil organic matters in mountain red soil using RBF combination model[J]. Scientia Silvae Sinicae, 2018, 54(6): 16-23. | |
[24] | 王婷, 刘振华, 彭一平, 等. 华南地区土壤有机质含量高光谱反演[J]. 江苏农业学报, 2020, 36(2): 350-357. |
WANG Ting, LIU Zhenhua, PENG Yiping, et al. Predicting soil organic matter content in South China based on hyperspectral reflectance[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(2): 350-357. | |
[25] | 张恒, 梁太波, 江鸿, 等. 基于高光谱成像的区域尺度植烟土壤有机质含量和pH值估测[J]. 烟草科技, 2023, 11(17): 1-15. |
ZHANG Heng, LIANG Taibo, Jiang Hong, et al. Estimation of organic matter content and pH of regional-scale tobacco-growing soils using hyperspectral imaging[J]. Tobacco Science & Technology, 2023, 11(17): 1-15. | |
[26] | 张娟娟, 牛圳, 马新明, 等. 基于离散小波的土壤全氮高光谱特征提取与反演[J]. 光谱学与光谱分析, 2023, 43(10): 3223-3229. |
ZHANG Juanjuan, NIU Zhen, MA Xinming, et al. Hyperspectral feature extraction and estimation of soil total nitrogen based on discrete wavelet transform[J]. Spectroscopy and Spectral Analysis, 2023, 43(10): 3223-3229. | |
[27] | 于锦涛, 李西灿, 曹双, 等. 土壤有机质高光谱自反馈灰色模糊估测模型[J]. 山东农业大学学报(自然科学版), 2023, 54(4): 495-499. |
YU Jintao, LI Xican, CAO Shuang, et al. Self-feedback grey fuzzy estimation model of soil organic matter using Hyper-spectral data[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2023, 54(4): 495-499. | |
[28] | 刘杰亚, 李西灿, 任文静, 等. 利用卷积神经网络的土壤有机质含量高光谱估测[J]. 河北农业大学学报, 2023, 46(4): 118-124. |
LIU Jieya, LI Xican, REN Wenjing, et al. Hyperspectral estimation of soil organic matter content using convolutional neural network[J]. Journal of Hebei Agricultural University, 2023, 46(4): 118-124. | |
[29] | 赵明松, 谢毅, 陆龙妹, 等. 基于高光谱特征指数的土壤有机质含量建模[J]. 土壤学报, 2021, 58(1): 42-54. |
ZHAO Mingsong, XIE Yi, LU Longmei, et al. Modeling for soil organic matter content based on hyperspectral feature indices[J]. Acta Pedologica Sinica, 2021, 58(1): 42-54. | |
[30] | 王动民, 纪俊敏, 高洪智. 多元散射校正预处理波段对近红外光谱定标模型的影响[J]. 光谱学与光谱分析, 2014, 34(9): 2387-2390. |
WANG Dongmin, JI Junmin, GAO Hongzhi. The effect of MSC spectral pretreatment regions on near infrared spectroscopy calibration results[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2387-2390.
PMID |
[1] | YANG Jixiang, LI Xinguo. Support vector machines estimation model of soil organic carbon content in lakeside oasis [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1477-1486. |
[2] | ZHANG Lei, YAO Mengyao, LIU Zhigang, LI Juan, YANG Yang, CAI Darun, CHEN Guo, LI Bo, LI Xiaorong, CHEN Xunji, ZHAI Yunlong. Research of maize yield estimation based on unmanned aerial vehicle multispectral NDVI [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 845-851. |
[3] | LV Jincheng, WANG Zhenxi, YANG Yongqiang, QU Yanbin, MA Qiyao. Inversion of Picea schrenkiana var. tianshanica Growing Stock Based on WorldView-2 Image and Random Forest Algorithm [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1992-1998. |
[4] | WANG Zhenguo, MA Yuanyuan, WANG Xina, LIU Shaoquan, GU Chaofeng, JI Qiang. Effects of Biochar Input on Soil Organic Carbon and Maize Growth [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 818-826. |
[5] | Aliya Alimu, CONG Xiaohan, XIA Xiaoying, XI Li, WANG Weixia. Characteristics of Soil Nutrient under Different Land Use Patterns [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 925-933. |
[6] | YUN Jing, ZHENG Fengling, AN Shazhou, Asiya Manlike, LI Chao, , TIAN Cong. Hyperspectral Inversion of Leaf Area Index in Mountain Steppe Ecosystems Based on the PROSAIL Model [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 451-457. |
[7] | Hazirtiali Keyim, LI Xinguo, ZHAO Hui, Mamattursun Eziz. Hyperspectral Estimation of Surface Soil Organic Matter Content in the Oasis Based on Geographically Weighted Regression Model [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 223-230. |
[8] | LONG Xiang, ZHAO Qingzhan, WANG Xuewen, MA Yongjian, JIANG Ping. Analysis of Spectral Change of Cotton During Growth Period Based on Endmember Extraction of UAV Hyperspectral Image [J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1207-1216. |
[9] | TAN Jinghong, WU Qixia, ZHU Jianqiang, SHE Zihao, KE Xinyao, MA Hongyu. Diagnosis of Nitrogen Nutrition and Recommended Model of Topdressing for Transplanting Cotton after Wheat Harvest in Jianghan Plain [J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1225-1235. |
[10] | LI Zhi, SU Wuzheng, LI Xinguo, WANG Yinfang, MAO Donglei, Mamattursun Eziz. Modeling and Verification of Soil Salt Content Based on Hyperspectral Characteristic Parameter Optimization [J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2342-2352. |
[11] | WANG Weixia, YANG Guang, WANG Zhenxi. Effects of Regeneration Patterns on Soil Carbon and Nitrogen in Picea schrenkiana var tianshanica [J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1474-1483. |
[12] | WU Wenli, YUAN Ye, LI Yuanyuan, CHU Guangming, ZHANG Hao. Comparison of Hyperspectral and Optical Image Vegetation Index (VI) in Desert Forest [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 149-156. |
[13] | ZHANG Feng, ZHAO Zhong-guo, LI Gang, CHEN Gang. Study on Classification and Extraction of Agricultural Land in Qitai County of Xinjiang Based on Different Classifiers [J]. Xinjiang Agricultural Sciences, 2019, 56(8): 1560-1568. |
[14] | GE Yuan-mei, CHEN Xiang-yu, HONG Shuai, MA Lu-lu, L Xin , ZHANG Ze. Establishment of Estimation Model for Different Varieties Based on Red Edge Parameters [J]. Xinjiang Agricultural Sciences, 2019, 56(6): 1032-1040. |
[15] | LI Tian-sheng, CUI Jing, WANG Hai-jiang, YANG Jin. Study on Water Content Estimation Model of Winter Wheat Based on Hyperspectral Characteristic Wavelength [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1772-1782. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||