Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (4): 925-933.DOI: 10.6048/j.issn.1001-4330.2022.04.017
• Plant Protection • Previous Articles Next Articles
Aliya Alimu(), CONG Xiaohan, XIA Xiaoying, XI Li, WANG Weixia(
)
Received:
2021-08-15
Online:
2022-04-20
Published:
2022-04-24
Correspondence author:
WANG Weixia
Supported by:
阿丽娅·阿力木(), 丛小涵, 夏晓莹, 席丽, 王卫霞(
)
通讯作者:
王卫霞
作者简介:
阿丽娅·阿力木(1996-),女,新疆乌鲁木齐人,硕士研究生,研究方向为森林生态与经营,(E-mail) 772811783@qq.com
基金资助:
CLC Number:
Aliya Alimu, CONG Xiaohan, XIA Xiaoying, XI Li, WANG Weixia. Characteristics of Soil Nutrient under Different Land Use Patterns[J]. Xinjiang Agricultural Sciences, 2022, 59(4): 925-933.
阿丽娅·阿力木, 丛小涵, 夏晓莹, 席丽, 王卫霞. 不同土地利用方式下土壤养分特征变化分析[J]. 新疆农业科学, 2022, 59(4): 925-933.
指标 Analysis | 方法 Analysis method |
---|---|
有机质OM Organic matter | 重铬酸钾容量法 |
全氮TN Total NTN | H2SO4-HClO4消煮,凯氏定氮法 |
全磷TP Total P | H2SO4-HClO4消煮,钼锑抗分光光度法 |
全钾TK Total K | H2SO4-HClO4消煮,火焰光度计法 |
碱解氮AN Available N | 碱解扩散法 |
速效磷AP Available P | NaHCO3浸提,钼锑抗分光光度法 |
速效钾AK Available K | 醋酸铵浸提,火焰光度法 |
Table 1 Soil nutrient index and the analysis method
指标 Analysis | 方法 Analysis method |
---|---|
有机质OM Organic matter | 重铬酸钾容量法 |
全氮TN Total NTN | H2SO4-HClO4消煮,凯氏定氮法 |
全磷TP Total P | H2SO4-HClO4消煮,钼锑抗分光光度法 |
全钾TK Total K | H2SO4-HClO4消煮,火焰光度计法 |
碱解氮AN Available N | 碱解扩散法 |
速效磷AP Available P | NaHCO3浸提,钼锑抗分光光度法 |
速效钾AK Available K | 醋酸铵浸提,火焰光度法 |
养分指标 Nutrient indexes | 土地利用方式 Land use types | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Std.Deviation | 变异系数 Coefficient of variation(%) |
---|---|---|---|---|---|---|
有机质 Organic matter (g/kg) | 小麦 | 1.28 | 10.08 | 6.59b | 2.81 | 42.56 |
枣麦间作 | 3.53 | 19.58 | 10.60a | 4.31 | 40.72 | |
枣园 | 3.78 | 18.01 | 9.40a | 3.84 | 40.80 | |
荒地枣园 | 0.88 | 6.50 | 3.82c | 1.61 | 42.19 | |
荒地 | 0.46 | 2.67 | 1.53d | 0.72 | 46.87 | |
全氮 Total NTN (g/kg) | 小麦 | 0.35 | 1.05 | 0.67b | 0.21 | 31.24 |
枣麦间作 | 0.44 | 1.18 | 0.76a | 0.19 | 24.44 | |
枣园 | 0.52 | 1.31 | 0.82a | 0.22 | 26.53 | |
荒地枣园 | 0.40 | 0.87 | 0.65b | 0.11 | 16.82 | |
荒地 | 0.17 | 0.57 | 0.37c | 0.13 | 34.80 | |
全磷 Total P (g/kg) | 小麦 | 0.47 | 1.30 | 0.8 | 0.21 | 23.70 |
枣麦间作 | 0.68 | 2.10 | 1.16a | 0.36 | 30.48 | |
枣园 | 0.76 | 1.38 | 1.0 | 0.18 | 17.44 | |
荒地枣园 | 0.50 | 1.10 | 0.77c | 0.13 | 17.52 | |
荒地 | 0.28 | 0.56 | 0.41d | 0.07 | 18.25 | |
全钾 Total K (g/kg) | 小麦 | 12.34 | 25.46 | 18.34b | 3.74 | 20.37 |
枣麦间作 | 15.88 | 26.64 | 22.67a | 2.50 | 11.04 | |
枣园 | 15.92 | 26.65 | 22.66a | 2.71 | 11.96 | |
荒地枣园 | 11.14 | 15.94 | 12.38c | 1.46 | 11.79 | |
荒地 | 11.15 | 12.35 | 11.28c | 0.33 | 2.95 | |
碱解氮 Available N (mg/kg) | 小麦 | 48.91 | 146.27 | 94.49b | 21.21 | 22.44 |
枣麦间作 | 83.57 | 237.53 | 124.48a | 36.89 | 29.64 | |
枣园 | 45.45 | 199.42 | 102.2 | 32.30 | 31.60 | |
荒地枣园 | 19.59 | 138.60 | 76.9 | 24.86 | 32.32 | |
荒地 | 24.50 | 108.49 | 51.16c | 22.68 | 44.34 | |
速效磷 Available P (mg/kg) | 小麦 | 1.61 | 92.82 | 29.8 | 28.01 | 94.00 |
枣麦间作 | 3.50 | 154.96 | 53.94a | 44.67 | 82.82 | |
枣园 | 1.75 | 110.44 | 39.66b | 33.91 | 85.50 | |
荒地枣园 | 1.08 | 59.19 | 18.7 | 17.63 | 93.80 | |
荒地 | 2.15 | 35.78 | 9.25d | 8.63 | 93.31 | |
速效钾 Available K (mg/kg) | 小麦 | 196.67 | 468.17 | 276.4 | 70.33 | 25.44 |
枣麦间作 | 196.67 | 603.91 | 379.83a | 115.34 | 30.37 | |
枣园 | 219.30 | 581.29 | 349.6 | 83.10 | 23.77 | |
荒地枣园 | 128.80 | 422.92 | 236.5 | 97.81 | 41.35 | |
荒地 | 106.18 | 241.92 | 141.73c | 27.31 | 19.27 |
Table 2 Descriptive statistics of soil fertility of 0-100 cm under different land use types
养分指标 Nutrient indexes | 土地利用方式 Land use types | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Std.Deviation | 变异系数 Coefficient of variation(%) |
---|---|---|---|---|---|---|
有机质 Organic matter (g/kg) | 小麦 | 1.28 | 10.08 | 6.59b | 2.81 | 42.56 |
枣麦间作 | 3.53 | 19.58 | 10.60a | 4.31 | 40.72 | |
枣园 | 3.78 | 18.01 | 9.40a | 3.84 | 40.80 | |
荒地枣园 | 0.88 | 6.50 | 3.82c | 1.61 | 42.19 | |
荒地 | 0.46 | 2.67 | 1.53d | 0.72 | 46.87 | |
全氮 Total NTN (g/kg) | 小麦 | 0.35 | 1.05 | 0.67b | 0.21 | 31.24 |
枣麦间作 | 0.44 | 1.18 | 0.76a | 0.19 | 24.44 | |
枣园 | 0.52 | 1.31 | 0.82a | 0.22 | 26.53 | |
荒地枣园 | 0.40 | 0.87 | 0.65b | 0.11 | 16.82 | |
荒地 | 0.17 | 0.57 | 0.37c | 0.13 | 34.80 | |
全磷 Total P (g/kg) | 小麦 | 0.47 | 1.30 | 0.8 | 0.21 | 23.70 |
枣麦间作 | 0.68 | 2.10 | 1.16a | 0.36 | 30.48 | |
枣园 | 0.76 | 1.38 | 1.0 | 0.18 | 17.44 | |
荒地枣园 | 0.50 | 1.10 | 0.77c | 0.13 | 17.52 | |
荒地 | 0.28 | 0.56 | 0.41d | 0.07 | 18.25 | |
全钾 Total K (g/kg) | 小麦 | 12.34 | 25.46 | 18.34b | 3.74 | 20.37 |
枣麦间作 | 15.88 | 26.64 | 22.67a | 2.50 | 11.04 | |
枣园 | 15.92 | 26.65 | 22.66a | 2.71 | 11.96 | |
荒地枣园 | 11.14 | 15.94 | 12.38c | 1.46 | 11.79 | |
荒地 | 11.15 | 12.35 | 11.28c | 0.33 | 2.95 | |
碱解氮 Available N (mg/kg) | 小麦 | 48.91 | 146.27 | 94.49b | 21.21 | 22.44 |
枣麦间作 | 83.57 | 237.53 | 124.48a | 36.89 | 29.64 | |
枣园 | 45.45 | 199.42 | 102.2 | 32.30 | 31.60 | |
荒地枣园 | 19.59 | 138.60 | 76.9 | 24.86 | 32.32 | |
荒地 | 24.50 | 108.49 | 51.16c | 22.68 | 44.34 | |
速效磷 Available P (mg/kg) | 小麦 | 1.61 | 92.82 | 29.8 | 28.01 | 94.00 |
枣麦间作 | 3.50 | 154.96 | 53.94a | 44.67 | 82.82 | |
枣园 | 1.75 | 110.44 | 39.66b | 33.91 | 85.50 | |
荒地枣园 | 1.08 | 59.19 | 18.7 | 17.63 | 93.80 | |
荒地 | 2.15 | 35.78 | 9.25d | 8.63 | 93.31 | |
速效钾 Available K (mg/kg) | 小麦 | 196.67 | 468.17 | 276.4 | 70.33 | 25.44 |
枣麦间作 | 196.67 | 603.91 | 379.83a | 115.34 | 30.37 | |
枣园 | 219.30 | 581.29 | 349.6 | 83.10 | 23.77 | |
荒地枣园 | 128.80 | 422.92 | 236.5 | 97.81 | 41.35 | |
荒地 | 106.18 | 241.92 | 141.73c | 27.31 | 19.27 |
Fig.1 Effects of different land use patterns on soil organic matter Notes: Different lowercase letters in the same column indicate that the difference in different land use types is significant (P<0.05),the same as below
指标Variable | 有机质 Organic matter | 全氮 Total N | 全磷 Total P | 全钾 Total K | 碱解氮 Available N | 速效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|
有机质Organic matter | 1 | ||||||
全氮 Total NTN | 0.846** | 1 | |||||
全磷TP Total P | 0.867** | 0.753** | 1 | ||||
全钾TK Total K | 0.844** | 0.686** | 0.796** | 1 | |||
碱解氮ANAvailable N | 0.840** | 0.839** | 0.731** | 0.693** | 1 | ||
速效磷AP确Available P | 0.860** | 0.824** | 0.791** | 0.646** | 0.804** | 1 | |
速效钾AK Available K | 0.844** | 0.746** | 0.751** | 0.725** | 0.719** | 0.721** | 1 |
Table 3 The correlation of soil nutrients
指标Variable | 有机质 Organic matter | 全氮 Total N | 全磷 Total P | 全钾 Total K | 碱解氮 Available N | 速效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|
有机质Organic matter | 1 | ||||||
全氮 Total NTN | 0.846** | 1 | |||||
全磷TP Total P | 0.867** | 0.753** | 1 | ||||
全钾TK Total K | 0.844** | 0.686** | 0.796** | 1 | |||
碱解氮ANAvailable N | 0.840** | 0.839** | 0.731** | 0.693** | 1 | ||
速效磷AP确Available P | 0.860** | 0.824** | 0.791** | 0.646** | 0.804** | 1 | |
速效钾AK Available K | 0.844** | 0.746** | 0.751** | 0.725** | 0.719** | 0.721** | 1 |
[1] |
Zhao X, Wu P, Gao X, et al. Soil quality indicators in relation to land use and topography in a small catchment on the loess plateau of China[J]. Land Degradation & Development, 2015, 26(1):54-61.
DOI URL |
[2] | 潘博, 段良霞, 张凤, 等. 红壤剖面土壤养分对土地利用变化响应的敏感性[J]. 生态学杂志, 2018, 37(9):2707-2716. |
PAN Bo, DUAN Liangxia, ZHANG Feng, et al. Responsive sensitivity of nutrients in red soil profile to land use change[J]. Chinese Journal of Ecology, 2018, 37(9):2707-2716. | |
[3] | 朱祖祥. 土壤学[M]. 北京: 农业出版社, 1983. |
ZHU Zuxiang. Soil Science [M]. Beijing: Agriculture Press, 1983. | |
[4] | 秦川, 何丙辉, 蒋先军. 三峡库区不同土地利用方式下土壤养分含量特征研究[J]. 草业学报, 2016, 25(9):10-19. |
QIN Chuan, HE Binghui, JIANG Xianjun. Soil nutrient characteristics of different land-use types in the Three Gorges Reservoir[J]. Acta Prataculturae Sinica, 2016, 25(9):10-19. | |
[5] | 王少昆, 赵学勇, 张铜会. 造林对沙地土壤微生物的数量、生物量碳及酶活性的影响[J]. 中国沙漠, 2013, 33(2):529-535. |
WANG Shaokun, ZHAO Xueyong, ZHANG Tonghui. Effects of afforestation on the abundance, biomass carbon and enzymatic activities of soil microorganism in sandy dunes[J]. Journal of Desert Research, 2013, 33(2):529-535. | |
[6] | 曲文杰, 宋乃平, 陈林, 等. 荒漠草原两种沙化草地对浅耕翻的响应[J]. 水土保持研究, 2014, 21(1):85-89. |
QUN Wenjie, SONG Naiping, CHEN Lin, et al. Responses of two types of desertification grasslands in desert steppe to shallow ploughing[J]. Research of Soil and Water Conservation, 2014, 21(1):85-89. | |
[7] |
Fu B J, Chen L D, Ma K M, et al. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China[J]. Catena, 2000, 39(1):69-78.
DOI URL |
[8] |
郭旭东, 傅伯杰, 陈利顶, 等. 低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例[J]. 地理学报, 2001, 56(4):447-455.
DOI |
GUO Xüdong, FU Bojie, CHEN Liding, et al. Effects of land use on soil quality in a hilly area—a case study in Zunhua county of Hebei province[J]. Acta Geographica Sinica, 2001, 56(4):447-455.
DOI |
|
[9] |
傅伯杰, 陈利顶, 马克明. 黄土丘陵区小流域土地利用变化对生态环境的影响—以延安市羊圈沟流域为例[J]. 地理学报, 1999, 54(3):241-246.
DOI |
FU Bojie, CHEN Liding, MA Keming. The effect of land use change on the regional environment in the Yangjuangou catchment in the Loess Plateau of China[J]. Acta Geographica Sinica, 1999, 54(3):241-246.
DOI |
|
[10] | Lal R, Mokma D, Lowery B. Relation between soil quality and erosion[A].In: Rattan Lal (ed.), Soil Quality and Soil Erosion [C].Washtington D.C: CRC Press, 1999, 237-258. |
[11] | Warkentin B P. The changing concept of soil quality[J]. Journal of Soil Conservation, 1995, 50:226-228. |
[12] |
Patrick J C, Thomas W K, John O. Assessing land-use impacts on biodiversity using an expert systems tool[J]. Landscape Ecology, 2000, 15(1):47-62.
DOI URL |
[13] |
Morris S J, Boemer R E J. Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hard wood forests[J]. Landscape Ecology, 1998, 13:215-224.
DOI URL |
[14] | 胡江玲, 张高, 赵枫, 等. 新疆精河流域不同土地利用方式对土壤质量的影响[J]. 水土保持研究, 2010, 17(4):92-95, 99. |
HU Jiangling, ZHANG Gao, ZHAO Feng, et al. Effects of land use on soil quality in Jinghe basin of Xinjiang[J]. Research of Soil and Water Conservation, 2010, 17(4):92-95, 99. | |
[15] | 崔东, 肖治国, 孙国军, 等. 伊犁河谷不同土地利用方式下土壤质量评价[J]. 西北师范大学学报(自然科学版), 2017, 53(2):112-117. |
CUI Dong, XIAO Zhiguo, SUN Guojun, et al. Soil quality evaluation of different land use in Yili River Valley[J]. Journal of Northwest Normal University (Natural Science), 2017, 53(2):112-117. | |
[16] | 王雪梅, 柴仲平, 杨雪峰. 荒漠绿洲区不同土地利用方式下土壤养分差异分析[J]. 干旱地区农业研究, 2017, 35(1):91-96. |
WANG Xuemei, CHAI Zhongping, YANG Xuefeng. Analysis on soil nutrients difference under different land use patterns in desert oasis region[J]. Agricultural Research in the Arid Areas, 2017, 35(1):91-96. | |
[17] | 高君亮, 罗凤敏, 高永. 阴山北麓不同土地利用类型土壤养分特征分析与评价[J]. 草业学报, 2016, 25(4):230-238. |
GAO Junliang, LUO Fengmin, GAO Yong. Analysis of soil nutrient characteristics under different land use patterns in the northern piedmont of Yinshan Mountain[J]. Acta Prataculturae Sinica, 2016, 25(4):230-238. | |
[18] | 刘海, 杜明. 阿克苏年鉴[J]. 乌鲁木齐: 新疆人民出版总社, 2017. |
LIU Hai, DU Ming. Aksu Yearbook[J]. Urumqi: Xinjiang People's Press, 2017. | |
[19] |
杨光, 阿丽娅·阿力木, 王卫霞. 阿克苏地区不同土地利用方式对土壤有机碳的影响[J]. 新疆农业科学, 2020, 57(8):1542-1550.
DOI |
YANG Guang, Aliya Alimu, WANG Weixia. Effects of different land use patterns on soil organic carbon in Aksu area[J]. Xinjiang Agricultural Sciences, 2020, 57(8):1542-1550.
DOI |
|
[20] | 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 86- 87, 107-116. |
Office of the National Soil Survey. Chinese Soil Survey Technology[M]. Beijing: Agriculture Press, 1992: 86- 87, 107-116. | |
[21] | 信忠保, 余新晓, 张满良, 等. 黄土高原丘陵沟壑区不同土地利用的土壤养分特征[J]. 干旱区研究, 2012, 29(3):379-384. |
XIN Zhongbao, YU Xinxiao, ZHANG Manliang, et al. Soil nutrient characteristics under different land use types in a gully-hilly region of the Loess Plateau[J]. Arid Zone Research, 2012, 29(3):379-384. | |
[22] | 张正杨. 植烟土壤肥力变异特征研究[D]. 郑州:河南农业大学, 2008:19-21. |
ZHANG Zhengyang. Study on character of soil fertility variation in tobacco-planted regions[D]. Zhengzhou: Henan Agricultural University, 2008: 19-21. | |
[23] | 肖烨, 张于光, 张小全, 等. 土地利用变化对土壤肥力影响研究进展[J]. 世界林业研究, 2007,(1):6-9. |
XIAO Ye, ZHANG Yuguang, ZHANG Xiaoquan, et al. Review on the influence of land use changes on soil fertility[J]. World Forestry Research, 2007,(1):6-9. | |
[24] | 施陈银, 马礼. 北方农牧交错带不同土地利用对土壤养分的影响——以张家口市塞北管理区为例[J]. 河北师范大学学报(自然科学版), 2009, 33(6):815-819. |
SHI Chenyin, MA Li. Effect of different land use on soil nutrient in northern agriculture-pasturage eco-zone[J]. Journal of Hebei Normal University (Natural Science), 2009, 33(6):815-819. | |
[25] |
Laganière J, Angers D A, Paré D. Carbon accumulation in agricultural soils after afforestation: ameta‐analysis[J]. Global Change Biology, 2010, 16(1):439-453.
DOI URL |
[26] | Wu J G, Zhang X Q, Xu D Y. Impact of land-use change on soil carbon storage[J]. Chinese Journal of Applied Ecology, 2004, 15(4):593-599. |
[27] | 王来, 高鹏翔, 仲崇高, 等. 核桃-小麦复合系统土壤碳密度动态特征[J]. 西北林学院学报, 2018, 33(4):58-63. |
WANG Lai, GAO Pengxiang, ZHONG Chonggao, et al. Dynamic characteristics of soil organic carbon density in walnut-wheat agroforestry system[J]. Journal of Northwest Forestry University, 2018, 33(4):58-63. | |
[28] | Powers J S. Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica[J]. Ecosystems, 2004, 7(2):134-146. |
[29] | 高丽娟, 吕光辉, 王芸, 等. 艾比湖地区盐生植物群落土壤氮素的垂直分布特征[J]. 干旱区研究, 2014, 31(1):51-56. |
GAO Lijuan, LÜ Guanghui, WANG Yun, et al. Vertical distribution of soil nitrogen under halophyte community in the Ebinur Lake area[J]. Arid Zone Research, 2014, 31(1):51-56. | |
[30] | 朱梓弘, 杨程, 谢银财, 等. 重度石漠化区不同土地利用方式下土壤养分特征[J]. 中国岩溶, 2018, 37(6):842-849. |
ZHU Zihong, YANG Cheng, XIE Yingcai, et al. Characteristics of soil nutrient in karst rocky regions with heavy desertification under different land-use patterns[J]. Carsologica Sinica, 2018, 37(6):842-849. | |
[31] | 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002,(1):83-90. |
XUN Yangchun, SHEN Qirong, RAN Wei. Effects of long-term no-tillage and organic fertilizer application on soil microbial biomass carbon, nitrogen and phosphorus[J]. Acta Pedologica Sinica, 2002,(1):83-90. | |
[32] | 薄慧娟, 朱嘉磊, 文春燕, 等. 栽植密度对毛白杨林地土壤垂直方向养分的影响[J]. 浙江农林大学学报, 2020, 37(2):266-272. |
BUO Huijuan, ZHU Jialei, WEN Chunyan, et al. Planting densities and vertical soil nutrients in a Populus tomentosa stand[J]. Journal of Zhejiang A & F University, 2020, 37(2):266-272. | |
[33] | 张杨, 梁爱华, 王平平, 等. 黄土丘陵区不同植被恢复模式土壤养分效应[J]. 西北农业学报, 2010, 19(9):114-118. |
ZHANG Yang, LIANG Aihua, WANG Pingping, et al. Effect of different vegetation restoration models on soil fertility in Zhifanggou watershed in gully region of Loess Region[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(9):114-118. | |
[34] | 崔楠, 吕光辉, 刘晓星, 等. 胡杨、梭梭群落土壤理化性质及其相互关系[J]. 干旱区研究, 2015, 32(3):476-482. |
CUI Nan, LÜ Guanghui, LIU Xiaoxing, et al. Soil physical-chemical properties of populous euphratica and haloxylonpersicum communities and their relationship[J]. Arid Zone Research, 2015, 32(3):476-482. | |
[35] | 马俊梅, 马剑平, 满多清, 等. 石羊河下游天然胡杨林分布特征及土壤特性分析[J]. 西北林学院学报, 2020, 35(2):15-23. |
MA Junmei, MA Jianping, MAN Duoqing, et al. Distribution and soil characteristics of natural populuseuphratica forests in the lower reaches of Shiyang River[J]. Journal of Northwest Forestry University, 2020, 35(2):15-23. |
[1] | LI Jiaqi, FENG Yuhua, CHEN Shuhuang, WANG Ziao, LIU Peng, LIANG Zhiyong, SUN Fafu, CHEN Rong, GENG Qinglong. Estimation of soil organic matter and total nitrogen based on hyperspectral technology [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2491-2499. |
[2] | WANG Zhenguo, MA Yuanyuan, WANG Xina, LIU Shaoquan, GU Chaofeng, JI Qiang. Effects of Biochar Input on Soil Organic Carbon and Maize Growth [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 818-826. |
[3] | WANG Weixia, Aliya Alimu, YANG Guang, WANG Zhenxi. Effects of Land Use Patterns on Soil Liable Organic Carbon and Dissolved Organic Carbon in Typical Arid Desert Oasis Area [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 441-450. |
[4] | Hazirtiali Keyim, LI Xinguo, ZHAO Hui, Mamattursun Eziz. Hyperspectral Estimation of Surface Soil Organic Matter Content in the Oasis Based on Geographically Weighted Regression Model [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 223-230. |
[5] | YANG Guang, Aliya Alimu, WANG Weixia. Effects of Different Land Use Patterns on Soil Organic Carbon in Aksu Area [J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1542-1550. |
[6] | CHEN Shu-huang;GENG Qing-long;MA Yan-ru;FENG Yao-zu;Karabaev Nurudin;DONG Ju-he;WANG Xin-yong. Analysis of Variations on Soil Organic Matter between Xinjiang and the Kyrgyz Republic [J]. , 2013, 50(9): 1748-1752. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||