Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (3): 521-532.DOI: 10.6048/j.issn.1001-4330.2022.03.001
• Crop Genetics and Breeding·Molecular Genetics·Cultivation Physiology·Germplasm Resources • Previous Articles Next Articles
ZHU Zhen(), LI Tiansheng, CUI Jing, CHEN Jianhua, SHI Xiaoyan, JIANG Menghao, WANG Haijiang(
)
Received:
2021-01-12
Online:
2022-03-20
Published:
2022-03-28
Correspondence author:
WANG Haijiang
Supported by:
祝榛(), 李天胜, 崔静, 陈建华, 史晓艳, 姜孟豪, 王海江(
)
通讯作者:
王海江
作者简介:
祝榛(1995-),男,湖南沅江人,硕士研究生,研究方向为绿洲水土资源高效利用,(E-mail) zhuzhenshzu@163.com
基金资助:
CLC Number:
ZHU Zhen, LI Tiansheng, CUI Jing, CHEN Jianhua, SHI Xiaoyan, JIANG Menghao, WANG Haijiang. Study on Estimation of Water Status of Winter Wheat in Different Growth Stages Based on Hyperspectral Imaging[J]. Xinjiang Agricultural Sciences, 2022, 59(3): 521-532.
祝榛, 李天胜, 崔静, 陈建华, 史晓艳, 姜孟豪, 王海江. 基于高光谱成像估测冬小麦不同生育时期水分状况[J]. 新疆农业科学, 2022, 59(3): 521-532.
处理 Treatment | 灌溉定额 Irrigation quota | 总计 Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
W1 | 60.00 | 90.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 150.00 |
W2 | 60.00 | 90.00 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 300.00 |
W3 | 60.00 | 90.00 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 450.00 |
W4 | 60.00 | 90.00 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 600.00 |
W5 | 60.00 | 90.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 750.00 |
Table 1 Irrigation volume of different irrigation treatments (mm)
处理 Treatment | 灌溉定额 Irrigation quota | 总计 Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
W1 | 60.00 | 90.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 150.00 |
W2 | 60.00 | 90.00 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | 300.00 |
W3 | 60.00 | 90.00 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 37.50 | 450.00 |
W4 | 60.00 | 90.00 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 56.25 | 600.00 |
W5 | 60.00 | 90.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 750.00 |
生育时期 Growth stages | 样本类型 Sample type | 样本数 Numbers | 最大值 Max | 最小值 Min | 平均值 Average | 标准差 SD |
---|---|---|---|---|---|---|
拔节期 Jointing stage | 建模集 | 22 | 86.89 | 78.69 | 83.78 | 2.15 |
预测集 | 8 | 86.88 | 80.16 | 83.42 | 2.74 | |
检验样本 | 25 | 84.10 | 78.62 | 81.95 | 1.31 | |
抽穗期 Heading stage | 建模集 | 22 | 81.70 | 71.64 | 78.66 | 2.28 |
预测集 | 8 | 81.66 | 73.56 | 78.17 | 3.27 | |
检验样本 | 25 | 81.35 | 76.39 | 79.24 | 1.47 | |
扬花期 Flowering stage | 建模集 | 22 | 78.86 | 70.75 | 74.48 | 2.02 |
预测集 | 8 | 78.10 | 70.81 | 74.30 | 2.32 | |
检验样本 | 25 | 80.54 | 69.80 | 76.14 | 2.78 | |
灌浆前期 Pre-grouting stage | 建模集 | 22 | 73.38 | 55.37 | 65.85 | 3.82 |
预测集 | 8 | 73.32 | 58.18 | 65.20 | 5.42 | |
检验样本 | 25 | 72.25 | 60.51 | 66.42 | 3.26 | |
灌浆中期 Mid-grouting stage | 建模集 | 22 | 66.86 | 52.45 | 59.85 | 3.93 |
预测集 | 8 | 66.72 | 53.73 | 59.52 | 4.77 | |
检验样本 | 25 | 65.95 | 52.10 | 59.53 | 4.30 | |
全生育期 Whole growth stage | 建模集 | 112 | 86.89 | 53.73 | 72.47 | 9.15 |
预测集 | 38 | 86.62 | 52.45 | 72.26 | 9.54 | |
检验样本 | 125 | 84.10 | 52.10 | 73.51 | 8.42 |
Table 2 Descriptive statistical analysis of plant moisture content in different growth stage of winter wheat(%)
生育时期 Growth stages | 样本类型 Sample type | 样本数 Numbers | 最大值 Max | 最小值 Min | 平均值 Average | 标准差 SD |
---|---|---|---|---|---|---|
拔节期 Jointing stage | 建模集 | 22 | 86.89 | 78.69 | 83.78 | 2.15 |
预测集 | 8 | 86.88 | 80.16 | 83.42 | 2.74 | |
检验样本 | 25 | 84.10 | 78.62 | 81.95 | 1.31 | |
抽穗期 Heading stage | 建模集 | 22 | 81.70 | 71.64 | 78.66 | 2.28 |
预测集 | 8 | 81.66 | 73.56 | 78.17 | 3.27 | |
检验样本 | 25 | 81.35 | 76.39 | 79.24 | 1.47 | |
扬花期 Flowering stage | 建模集 | 22 | 78.86 | 70.75 | 74.48 | 2.02 |
预测集 | 8 | 78.10 | 70.81 | 74.30 | 2.32 | |
检验样本 | 25 | 80.54 | 69.80 | 76.14 | 2.78 | |
灌浆前期 Pre-grouting stage | 建模集 | 22 | 73.38 | 55.37 | 65.85 | 3.82 |
预测集 | 8 | 73.32 | 58.18 | 65.20 | 5.42 | |
检验样本 | 25 | 72.25 | 60.51 | 66.42 | 3.26 | |
灌浆中期 Mid-grouting stage | 建模集 | 22 | 66.86 | 52.45 | 59.85 | 3.93 |
预测集 | 8 | 66.72 | 53.73 | 59.52 | 4.77 | |
检验样本 | 25 | 65.95 | 52.10 | 59.53 | 4.30 | |
全生育期 Whole growth stage | 建模集 | 112 | 86.89 | 53.73 | 72.47 | 9.15 |
预测集 | 38 | 86.62 | 52.45 | 72.26 | 9.54 | |
检验样本 | 125 | 84.10 | 52.10 | 73.51 | 8.42 |
光谱 类型 Spectral types | SLR | PCR | PLSR | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
波段 数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | 波段 数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | 波段 数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | |||||||
| RMSEc (%) | | RMSEp (%) | | RMSEc (%) | | RMSEp (%) | | RMSEc (%) | | RMSEp (%) | |||||||
T0 | 1 | 0.530 5 | 6.244 7 | 0.670 2 | 5.512 3 | 1.730 7 | 319 | 0.807 7 | 3.996 9 | 0.765 4 | 4.568 1 | 2.088 4 | 319 | 0.872 2 | 3.258 0 | 0.800 8 | 3.986 4 | 2.393 2 |
T1 | 1 | 0.530 3 | 6.246 0 | 0.677 7 | 5.461 1 | 1.746 9 | 319 | 0.749 6 | 4.112 0 | 0.769 9 | 4.517 5 | 2.111 8 | 319 | 0.878 5 | 3.176 2 | 0.843 4 | 3.727 0 | 2.559 7 |
T2 | 1 | 0.585 6 | 5.867 2 | 0.755 3 | 4.910 6 | 1.942 7 | 319 | 0.780 2 | 4.273 0 | 0.788 3 | 4.332 5 | 2.202 0 | 319 | 0.853 2 | 3.492 4 | 0.861 1 | 3.509 8 | 2.718 1 |
T3 | 1 | 0.597 3 | 5.783 4 | 0.757 8 | 4.954 8 | 1.925 4 | 319 | 0.843 4 | 3.606 9 | 0.873 5 | 3.348 8 | 2.848 8 | 319 | 0.863 2 | 3.371 2 | 0.880 8 | 3.251 2 | 2.934 3 |
T4 | 1 | 0.510 2 | 6.378 5 | 0.579 6 | 6.376 8 | 1.496 0 | 319 | 0.471 9 | 6.622 8 | 0.508 7 | 6.600 8 | 1.445 3 | 319 | 0.499 2 | 6.449 4 | 0.505 4 | 6.623 0 | 1.440 4 |
T5 | 1 | 0.651 7 | 5.378 6 | 0.675 5 | 5.375 9 | 1.774 6 | 319 | 0.809 9 | 3.974 1 | 0.794 1 | 4.272 8 | 2.232 7 | 319 | 0.854 2 | 3.480 2 | 0.820 4 | 3.990 6 | 2.390 6 |
T6 | 1 | 0.398 1 | 7.070 6 | 0.469 9 | 7.035 2 | 1.356 0 | 319 | 0.795 4 | 4.122 1 | 0.665 4 | 5.447 3 | 1.751 3 | 319 | 0.892 7 | 2.985 1 | 0.014 | 4.196 6 | 2.273 3 |
T7 | 1 | 0.638 0 | 5.483 3 | 0.799 6 | 4.369 2 | 2.183 5 | 319 | 0.831 3 | 3.743 4 | 0.820 2 | 3.993 4 | 2.388 9 | 319 | 0.882 1 | 3.129 6 | 0.877 1 | 3.301 9 | 2.889 3 |
T8 | 1 | 0.424 0 | 6.917 0 | 0.465 9 | 7.029 0 | 1.357 2 | 319 | 0.803 6 | 4.038 7 | 0.773 5 | 4.481 5 | 2.128 8 | 319 | 0.922 1 | 2.544 1 | 0.820 9 | 3.984 8 | 2.394 1 |
T9 | 1 | 0.660 4 | 5.311 4 | 0.704 0 | 5.412 5 | 1.762 6 | 319 | 0.509 1 | 6.385 5 | 0.571 8 | 6.162 4 | 1.548 1 | 319 | 0.321 4 | 7.507 5 | 0.471 8 | 6.844 3 | 1.393 9 |
T10 | 1 | 0.548 6 | 6.123 6 | 0.571 0 | 6.445 8 | 1.480 0 | 319 | 0.385 3 | 8.936 2 | 0.446 0 | 7.851 3 | 1.215 1 | 319 | 0.632 6 | 5.523 9 | 0.489 7 | 6.635 0 | 1.437 8 |
T11 | 1 | 0.775 1 | 4.321 9 | 0.800 4 | 4.305 4 | 2.215 8 | 319 | 0.681 8 | 5.141 1 | 0.775 3 | 4.463 7 | 2.137 2 | 319 | 0.857 6 | 3.439 2 | 0.859 1 | 3.546 9 | 2.689 7 |
T12 | 1 | 0.694 4 | 5.038 5 | 0.767 7 | 4.823 1 | 1.978 0 | 319 | 0.779 2 | 4.650 0 | 0.756 2 | 4.649 7 | 2.051 8 | 319 | 0.781 5 | 4.259 7 | 0.657 6 | 5.510 5 | 1.731 3 |
Table 3 Estimation model of plant moisture content of winter wheat
光谱 类型 Spectral types | SLR | PCR | PLSR | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
波段 数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | 波段 数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | 波段 数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | |||||||
| RMSEc (%) | | RMSEp (%) | | RMSEc (%) | | RMSEp (%) | | RMSEc (%) | | RMSEp (%) | |||||||
T0 | 1 | 0.530 5 | 6.244 7 | 0.670 2 | 5.512 3 | 1.730 7 | 319 | 0.807 7 | 3.996 9 | 0.765 4 | 4.568 1 | 2.088 4 | 319 | 0.872 2 | 3.258 0 | 0.800 8 | 3.986 4 | 2.393 2 |
T1 | 1 | 0.530 3 | 6.246 0 | 0.677 7 | 5.461 1 | 1.746 9 | 319 | 0.749 6 | 4.112 0 | 0.769 9 | 4.517 5 | 2.111 8 | 319 | 0.878 5 | 3.176 2 | 0.843 4 | 3.727 0 | 2.559 7 |
T2 | 1 | 0.585 6 | 5.867 2 | 0.755 3 | 4.910 6 | 1.942 7 | 319 | 0.780 2 | 4.273 0 | 0.788 3 | 4.332 5 | 2.202 0 | 319 | 0.853 2 | 3.492 4 | 0.861 1 | 3.509 8 | 2.718 1 |
T3 | 1 | 0.597 3 | 5.783 4 | 0.757 8 | 4.954 8 | 1.925 4 | 319 | 0.843 4 | 3.606 9 | 0.873 5 | 3.348 8 | 2.848 8 | 319 | 0.863 2 | 3.371 2 | 0.880 8 | 3.251 2 | 2.934 3 |
T4 | 1 | 0.510 2 | 6.378 5 | 0.579 6 | 6.376 8 | 1.496 0 | 319 | 0.471 9 | 6.622 8 | 0.508 7 | 6.600 8 | 1.445 3 | 319 | 0.499 2 | 6.449 4 | 0.505 4 | 6.623 0 | 1.440 4 |
T5 | 1 | 0.651 7 | 5.378 6 | 0.675 5 | 5.375 9 | 1.774 6 | 319 | 0.809 9 | 3.974 1 | 0.794 1 | 4.272 8 | 2.232 7 | 319 | 0.854 2 | 3.480 2 | 0.820 4 | 3.990 6 | 2.390 6 |
T6 | 1 | 0.398 1 | 7.070 6 | 0.469 9 | 7.035 2 | 1.356 0 | 319 | 0.795 4 | 4.122 1 | 0.665 4 | 5.447 3 | 1.751 3 | 319 | 0.892 7 | 2.985 1 | 0.014 | 4.196 6 | 2.273 3 |
T7 | 1 | 0.638 0 | 5.483 3 | 0.799 6 | 4.369 2 | 2.183 5 | 319 | 0.831 3 | 3.743 4 | 0.820 2 | 3.993 4 | 2.388 9 | 319 | 0.882 1 | 3.129 6 | 0.877 1 | 3.301 9 | 2.889 3 |
T8 | 1 | 0.424 0 | 6.917 0 | 0.465 9 | 7.029 0 | 1.357 2 | 319 | 0.803 6 | 4.038 7 | 0.773 5 | 4.481 5 | 2.128 8 | 319 | 0.922 1 | 2.544 1 | 0.820 9 | 3.984 8 | 2.394 1 |
T9 | 1 | 0.660 4 | 5.311 4 | 0.704 0 | 5.412 5 | 1.762 6 | 319 | 0.509 1 | 6.385 5 | 0.571 8 | 6.162 4 | 1.548 1 | 319 | 0.321 4 | 7.507 5 | 0.471 8 | 6.844 3 | 1.393 9 |
T10 | 1 | 0.548 6 | 6.123 6 | 0.571 0 | 6.445 8 | 1.480 0 | 319 | 0.385 3 | 8.936 2 | 0.446 0 | 7.851 3 | 1.215 1 | 319 | 0.632 6 | 5.523 9 | 0.489 7 | 6.635 0 | 1.437 8 |
T11 | 1 | 0.775 1 | 4.321 9 | 0.800 4 | 4.305 4 | 2.215 8 | 319 | 0.681 8 | 5.141 1 | 0.775 3 | 4.463 7 | 2.137 2 | 319 | 0.857 6 | 3.439 2 | 0.859 1 | 3.546 9 | 2.689 7 |
T12 | 1 | 0.694 4 | 5.038 5 | 0.767 7 | 4.823 1 | 1.978 0 | 319 | 0.779 2 | 4.650 0 | 0.756 2 | 4.649 7 | 2.051 8 | 319 | 0.781 5 | 4.259 7 | 0.657 6 | 5.510 5 | 1.731 3 |
生育时期 Growth stages | 波段数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | ||
---|---|---|---|---|---|---|
| RMSEc (%) | | RMSEp (%) | |||
拔节期 Jointing stage | 6 | 0.348 2 | 1.520 3 | 0.281 8 | 2.476 7 | 1.104 7 |
抽穗期 Heading stage | 5 | 0.476 3 | 1.801 4 | 0.318 1 | 2.912 2 | 1.123 8 |
扬花期 Flowering stage | 10 | 0.849 3 | 0.597 1 | 0.837 9 | 0.867 5 | 2.679 6 |
灌浆前期 Pre-grouting stage | 5 | 0.852 2 | 2.499 1 | 0.853 0 | 1.993 1 | 2.720 8 |
灌浆中期 Mid-grouting stage | 13 | 0.908 7 | 1.490 5 | 0.904 8 | 1.381 1 | 3.454 7 |
全生育期 Whole growth stage | 9 | 0.856 1 | 3.457 4 | 0.892 5 | 3.088 0 | 3.089 4 |
Table 4 PLSR estimation model of winter wheat plant moisture content in different growth stages based on SPA
生育时期 Growth stages | 波段数量 Numbers | 建模集 Calibration sample | 预测集 Prediction sample | RPD | ||
---|---|---|---|---|---|---|
| RMSEc (%) | | RMSEp (%) | |||
拔节期 Jointing stage | 6 | 0.348 2 | 1.520 3 | 0.281 8 | 2.476 7 | 1.104 7 |
抽穗期 Heading stage | 5 | 0.476 3 | 1.801 4 | 0.318 1 | 2.912 2 | 1.123 8 |
扬花期 Flowering stage | 10 | 0.849 3 | 0.597 1 | 0.837 9 | 0.867 5 | 2.679 6 |
灌浆前期 Pre-grouting stage | 5 | 0.852 2 | 2.499 1 | 0.853 0 | 1.993 1 | 2.720 8 |
灌浆中期 Mid-grouting stage | 13 | 0.908 7 | 1.490 5 | 0.904 8 | 1.381 1 | 3.454 7 |
全生育期 Whole growth stage | 9 | 0.856 1 | 3.457 4 | 0.892 5 | 3.088 0 | 3.089 4 |
[1] | 赵祥, 李援农, 方恒, 等. 微喷灌不同供水条件对石羊河春小麦耗水和产量的影响[J]. 中国农村水利水电, 2019,(10): 134-138. |
ZHAO Xiang, LI Yuannong, FANG Heng, et al. The effects of different water supply conditions of micro-spray irrigation on water consumption and yield of spring wheat in Shiyang river basin[J]. China Rural Water and Hydropower, 2019,(10): 134-138. | |
[2] | 梁硕硕, 关劼兮, 李璐, 等. 水分处理对冬小麦生育期耗水分配及产量影响[J]. 灌溉排水学报, 2019, 38(5): 52-59. |
LIANG Shuoshuo, GUAN Jiexi, LI Lu, et al. Impact of irrigation schedules on yield, water consumption and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2019, 38(5): 52-59. | |
[3] | 吴琼. 基于高光谱成像技术的小麦苗期监测研究[D]. 长春:吉林大学, 2012. |
WU Qiong. Study on Wheat seedling monitoring based on hyperspectral imaging technology[D]. Changchun: Jilin University, 2012. | |
[4] | 张东彦. 基于高光谱成像技术的作物叶绿素信息诊断机理及方法研究[D]. 杭州:浙江大学, 2012. |
ZHANG Dongyan. Diagnosis mechanism and methods of crop chlorophyll information based on hyperspectral imaging technology[D]. Hangzhou: Zhejiang University, 2012. | |
[5] | 吴龙国. 基于高光谱成像技术的土壤水盐及番茄植株水分诊断机理与模型研究[D]. 银川:宁夏大学, 2017. |
WU Longguo. Research on diagnosis mechanism and model of soil’s water and salt content and tomato plants’ moisture based on hyperspectral imaging technique[D]. Yinchuan: Ningxia University, 2017. | |
[6] | 王海江, 刘凡, YUNGER John A, 等. 不同粒径处理的土壤全氮含量高光谱特征拟合模型[J]. 农业机械学报, 2019, 50(2): 195-204. |
WANG Haijing, LIU Fan, Yunger John A, et al. Fitting model of soil total nitrogen content in different soil particle sizes using hyperspectral analysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 195-204. | |
[7] | 许英超, 王相友, 印祥, 等. 马铃薯干物质空间分布状态可视化研究[J]. 农业机械学报, 2018, 49(2): 339-344, 357. |
XU Yingchao, WANG Xiangyou, YIN Xiang, et al. Visualization spatial assessment of potato dry matter [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2):339-344, 357. | |
[8] | 张雪茹, 冯美臣, 杨武德, 等. 基于光谱变换的低温胁迫下冬小麦叶绿素含量估测研究[J]. 中国生态农业学报, 2017, 25(9): 1351-1359. |
ZHANG Xueru, FENG Meicheng, YANG Wude, et al. Using spectral transformation processes to estimate chlorophyll content of winter wheat under low temperature[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1351-1359. | |
[9] | Qi H, Paz-Kagan T, Karnieli A, et al. Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data[J]. Soil and Tillage Research, 2018, (175): 267-275. |
[10] | 曹晓兰, 邓梦洁, 汪佩佩. 基于PLSR的苎麻叶片含水量估测模型建立及优化[J]. 激光生物学报, 2018, 27(5): 467-473. |
CAO Xiaolan, DENG Mengjie, WANG Peipei. Building and optimizing of the PLSR-based estimation model on ramie leaf’s water content[J]. Acta Laser Biology Sinica, 2018, 27(5): 467-473. | |
[11] |
王凌, 赵庚星, 朱西存, 等. 苹果盛果期冠层高光谱与其组分特征的定量模型研究[J]. 光谱学与光谱分析, 2010, 30(10): 2719-2723.
PMID |
WANG Ling, ZHAO Gengxing, ZHU Xicun, et al. Quantitative models between canopy hyperspectrum and its component features at apple tree prosperous fruit stage[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2719-2723.
PMID |
|
[12] | Erkinbaev C, Derksen K, Paliwal J. Single kernel wheat hardness estimation using near infrared hyperspectral imaging[J]. Infrared Physics&Technology, 2019, (98): 250-255. |
[13] | 刘燕德, 邓清. 基于高光谱成像技术的脐橙叶片的叶绿素含量及其分布测量[J]. 发光学报, 2015, 36(8): 957-961. |
LIU Yande, DENG Qing. Measurement of chlorophyll distribution in navel orange leaves based on hyperspectral imaging technique[J]. Chinese Journal of Luminescence, 2015, 36(8): 957-961.
DOI URL |
|
[14] | 黄慧, 张德钧, 詹舒越, 等. 干贝水分检测的建模及分级方法[J]. 光谱学与光谱分析, 2019, 39(1): 185-192. |
HUANG Hui, ZHANG Dejun, ZHAN Shuyue, et al. Research on sample division and modeling method of spectrum detection of moisture content in dehydrated scallops[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 185-192. | |
[15] | 张筱蕾. 基于高光谱成像技术的油菜养分及产量信息快速获取技术和方法研究[D]. 杭州:浙江大学, 2013. |
ZHANG Xiaolei. Rapid determination of growth information and yield of Brassica napus based on hyperspectral imaging[D]. Hangzhou: Zhejiang University, 2013. | |
[16] | 夏俊芳. 基于近红外光谱的贮藏脐橙品质无损检测方法研究[D]. 武汉:华中农业大学, 2008. |
XIA Junfang. The method study to nondestructive determination qualification of the storage navel orange based on near-infrared spectroscopy[D]. Wuhan: Huazhong Agricultural University, 2008. | |
[17] | 如则麦麦提·米吉提. 基于控制实验的盐渍化土壤光谱特征研究[D]. 乌鲁木齐:新疆大学, 2018. |
Ruzimamat Mijit. Study on spectral characteristics of salinized soil based on controlled experiment[D]. Urumqi: Xinjiang University, 2018. | |
[18] | 哈布热, 张宝忠, 李思恩, 等. 基于冠层光谱特征的冬小麦植株含水率诊断研究[J]. 灌溉排水学报, 2018, 37(10): 9-15. |
Habure, ZHANG Baozhong, LI Sien, et al. Estimating water content of winter wheat canopy based on its spectral characteristics[J]. Journal of Irrigation and Drainage, 2018, 37(10): 9-15. | |
[19] | 韩刚. 基于高光谱的小麦植株水分状况监测研究[D]. 南京:南京农业大学, 2011. |
HAN Gang. Monitoring water status with hyperspectral sensing in wheat[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[20] | 谭海珍. 基于成像光谱的冬小麦生长近地监测研究[D]. 石河子:石河子大学, 2008. |
TAN Haizhen. The study of winter wheat growth monitoring by using imaging spectrometer near ground[D]. Shihezi: Shihezi University, 2008. | |
[21] | Yi Q, Wang F, Bao A, et al. Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative transfer models[J]. International Journal of Applied Earth Observation &Geoinformation, 2014, (33): 67-75. |
[22] | 张亚坤. 基于多尺度高光谱成像的大豆养分检测方法研究[D]. 哈尔滨:东北农业大学, 2018. |
ZHANG Yakun. Research on detection method of soybean nutrient based on multiscale hyperspectral imaging technology[D]. Harbin: Northeast Agricultural University, 2018. | |
[23] | 刘晓旭. 基于不同预处理方法的小麦叶片氮素含量的高光谱估测[D]. 泰安:山东农业大学, 2018. |
LIU Xiaoxu. Estimation of nitrogen content in wheat leaves based on different pretreatment methods[D]. Tai’an: Shandong Agricultural University, 2018. | |
[24] | 张超, 余哲修, 黄田, 等. 基于不同光谱变换的剑湖茭草鲜生物量估测研究[J]. 西南林业大学学报(自然科学), 2019, 39(6): 105-115. |
ZHANG Chao, YU Zhexiu, HUANG Tian, et al. The study on fresh biomass estimation of Zizanialatifoliabased on different spectral transformations of spectral reflectance[J]. Journal of Southwest Forestry University, 2019, 39(6): 105-115. | |
[25] |
张筱蕾, 刘飞, 聂鹏程, 等. 高光谱成像技术的油菜叶片氮含量及分布快速检测[J]. 光谱学与光谱分析, 2014, 34(9): 2513-2518.
PMID |
ZHANG Xiaolei, LIU Fei, NIE Pengcheng, et al. Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2513-2518.
PMID |
|
[26] | 李丹. 基于高光谱成像技术的灵武长枣品质无损检测研究[D]. 银川:宁夏大学, 2015. |
LI Dan. Non-destructive detection of quality in lingwu jujube based on hyperspectral imaging technology[D]. Yinchuan: Ningxia University, 2015. | |
[27] | 温鹏飞. 玉米单叶和冠层氮素营养参数垂直分布反演及遥感监测研究[D]. 杨凌:西北农林科技大学, 2019. |
WEN Pengfei. Monitoring the vertical distribution of nitrogen status at leaf and canopy scales with remote sensing data in maize[D]. Yangling: Northwest A & F University, 2019. | |
[28] | 贺佳, 刘冰锋, 李军. 不同生育时期冬小麦叶面积指数高光谱遥感监测模型[J]. 农业工程学报, 2014, 30(24): 141-150. |
HE Jia, LIU Bingfeng, LI Jun. Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 141-150. | |
[29] | 马驿, 汪善勤, 李岚涛, 等. 基于高光谱的油菜叶面积指数估计[J]. 华中农业大学学报, 2017, 36(2): 69-77. |
MA Yi, WANG Shanqin, LI Lantao, et al. Prediction of rapeseed leaf area index based on hyperspectral data[J]. Journal of Huazhong Agricultural University, 2017, 36(2): 69-77. | |
[30] | 姚付启. 冬小麦高光谱特征及其生理生态参数估算模型研究[D]. 杨凌:西北农林科技大学, 2012. |
YAO Fuqi. Hyperspectral characteristics and estimating models about physiological ecological parameters of winter wheat[D]. Yangling: Northwest A & F University, 2012. | |
[31] | 程晓娟, 杨贵军, 徐新刚, 等. 基于近地高光谱与TM遥感影像的冬小麦冠层含水量反演[J]. 麦类作物学报, 2014, 34(2): 227-233. |
CHENG Xiaojuan, YANG Guijun, XU Xingang, et al. Inferred water content of winter wheat based on ground hyperspectral and remote sensing data of TM5[J]. Journal of Triticeae Crops, 2014, 34(2): 227-233. | |
[32] | 王小平. 基于高光谱的半干旱区作物水分胁迫及其生理参数监测模型研究[D]. 兰州:兰州大学, 2014. |
WANG Xiaoping. Study on the crop water stress and the physiological parameters monitoring model based on canopy hyperspectral reflectance data in semi-arid region, northwest China[D]. Lanzhou: Lanzhou University, 2014. | |
[33] | 张初. 基于光谱与光谱成像技术的油菜病害检测机理与方法研究[D]. 杭州:浙江大学, 2016. |
ZHANG Chu. Detection mechanism and methodology of Brassicanapus disease using spectroscopy and spectral imaging technologies[D]. Hangzhou: Zhejiang University, 2016. | |
[34] | 李粉玲. 关中地区冬小麦叶片氮素高光谱数据与卫星影像定量估算研究[D]. 杨凌:西北农林科技大学, 2016. |
LI Fenling. Leaf nitrogen content estimation of winter wheat based on hyper-spectral and satellite imagery data in guanzhongregion[D]. Yangling: Northwest A & F University, 2016. |
[1] | HOU Lili, WANG Wei, CUI Xinju, ZHOU Dawei. Effects of organic and inorganic combined application on yield, soil nutrients and enzyme activities of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1845-1852. |
[2] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[3] | DU Yun, ZHANG Jingjing, LEI Jiacheng, LI Bo, LI Yongfu. Forecasting method of water requirement of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1590-1596. |
[4] | WANG Runqi, JIA Yonghong, WANG Yujiao, LIU Yue, LI Dandan, DONG Yanxue, Gulinigaer Tuerhong, ZHANG Lulu, ZHANG Jinshan, SHI Shubing. Effect of different drip irrigation on the growth, development, and yield of uniform sowing winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1048-1056. |
[5] | XIE Zhong, YE Hanchun, WANG Zhenhua, LI Haiqiang, LIU Jian, CHEN Rui, XU Yushuang. Effects of water and nitrogen application on winter wheat growth, yield, and water use efficiency under shallow buried drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1057-1066. |
[6] | ZHANG Zhao, ZHANG Guilong, TANG Qiuxiang, YAN Xueying, ZHANG Yanjun. Effects of combination of organic and inorganic fertilizers on fertility and yield of winter wheat in fluvo-aquic soil [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1067-1076. |
[7] | LU Hongqin, BAI Yungang, CHAI Zhongping, LU Zhenlin, LIU Hongbo, ZHENG Ming, XIAO Jun. Research on the effect of "dry sowing and wet discharge" cotton field seedling preservation technology in an arched shed environment [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2872-2882. |
[8] | LIU Chenyang, ZHANG Liping, ZHENG Weiqiang, LUO Haowei. Effects of different moisture contents on the mechanical properties and peeling effect of Apocynum venetum [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2797-2806. |
[9] | TANG Li, TIAN Kechuan, ZHANG Xinning, LIU Li, Abulikemu Adili, YANG Zhi, YANG Cunming, ZHANG Xiaoxue, HUANG Xixia, TIAN Yuezhen. Clustering and principal component analysis of Hotan sheep body weight indexes in different growth stages [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2853-2860. |
[10] | SUN Fafu, LAI Ning, GENG Qinglong, LI Yongfu, LYU Caixia, XIN Huinan, LI Na, CHEN Shuhuang. Study on recommended nitrogen fertilizer quota for winter wheat under drip irrigation based on SPAD value [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2366-2373. |
[11] | CHEN Chuanxin, ZHNAG Yongqiang, NIE Shihui, KONG Depeng, Sailihan Sai, XU Qijiang, LEI Junjie. Effects of biomass charcoal application rate on the growth, development, and yield of winter wheat under drip irrigation [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2146-2151. |
[12] | WANG Xiaoyu, WANG Xiaoping, SHI Wenyu, LIU Meiyan, MA Jian, GUO Yunpeng, SONG Ruixin, WANG Qingtao. Responses of photosynthetic characteristics, dry matter accumulation and yield to drought stress in winter wheat at jointing stage [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2163-2172. |
[13] | YANG Hongmei, ZHANG Yueqiang, SHI Yingwu, Omarjan Kurban, LIN Qing, WANG Ning, CHU Min, ZENG Jun. Effects of different types of foliar fertilizers on grain yield and 1uality of winter wheat [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2182-2188. |
[14] | LI Xueling, GUO Junxian, CHEN Li, SONG Heling, ZHANG Zhong. Effects of Different Film Mulching Width on Cotton Farmland Environment [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1840-1847. |
[15] | ZHANG Yongqiang, CHEN Chuanxin, NIE Shihui, XU Qijiang, Sailihan Sai, LEI Junjie. Regulation of chlormequat on lodging resistance of winter wheat stem during the period of drip application of CCC [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1873-1878. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 184
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||