Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (11): 2667-2675.DOI: 10.6048/j.issn.1001-4330.2024.11.007
• Germplasm Resources·Molecular Genetics·Physiology and Biochemistry·Microbes • Previous Articles Next Articles
ZHAO Wenxuan1(), CHENG Yunxia1, TAN Zhanming1(
), LI Chunyu2, SHU Sheng3, Ayimaimu Shawuti1, YANG Liyu1, MIAO Xianjun4
Received:
2024-04-21
Online:
2024-11-20
Published:
2025-01-08
Correspondence author:
TAN Zhanming
Supported by:
赵文轩1(), 程云霞1, 谭占明1(
), 李春雨2, 束胜3, 阿依买木·沙吾提1, 杨历雨1, 苗献军4
通讯作者:
谭占明
作者简介:
赵文轩(2001-),男,河南郾城人,本科,研究方向为设施农业科学与工程,(E-mail)1587178203@qq.com
基金资助:
CLC Number:
ZHAO Wenxuan, CHENG Yunxia, TAN Zhanming, LI Chunyu, SHU Sheng, Ayimaimu Shawuti, YANG Liyu, MIAO Xianjun. Comparison of chlorophyll fluorescence and photosynthetic characteristics of different processed tomato varieties based on principal component analysis[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2667-2675.
赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675.
处理 Treat- ments | 品种 Varieties | 来源 Source |
---|---|---|
T1 | 佳禾红运 | 新疆石河子佳禾农业有限公司 |
T2 | Q020 | 新疆乌鲁木齐玉麒麟公司 |
T3 | 早得 | 新疆石河子农资种子公司 |
T4 | 美国世纪红 | 山东省寿光市富华种业 |
T5 | 新引198-1 | 新疆昌吉市农业技术推广站 |
T6 | 红宝石 | 新疆天地禾种业有限公司 |
T7 | 红果三号 | 新疆天地禾种业有限公司 |
T8 | 麒麟钻石 | 新疆乌鲁木齐玉麒麟公司 |
T9 | 佳义200 | 新疆新昊农业科技有限公司 |
Tab.1 Processed tomato varieties
处理 Treat- ments | 品种 Varieties | 来源 Source |
---|---|---|
T1 | 佳禾红运 | 新疆石河子佳禾农业有限公司 |
T2 | Q020 | 新疆乌鲁木齐玉麒麟公司 |
T3 | 早得 | 新疆石河子农资种子公司 |
T4 | 美国世纪红 | 山东省寿光市富华种业 |
T5 | 新引198-1 | 新疆昌吉市农业技术推广站 |
T6 | 红宝石 | 新疆天地禾种业有限公司 |
T7 | 红果三号 | 新疆天地禾种业有限公司 |
T8 | 麒麟钻石 | 新疆乌鲁木齐玉麒麟公司 |
T9 | 佳义200 | 新疆新昊农业科技有限公司 |
Fig.1 Comparisons of the relative chlorophyll content of different processed tomato cultivars Notes:The same letter has no significant difference(P>0.05),different letters indicate significant differences(P<0.05),the same as below
指标 Indexes | 最大值 Maximum | 最小值 Minimum | 平均值 Average value | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|
PSⅡ最大光化学量子产量Fv/Fm | 0.84 | 0.70 | 0.8 | 0.05 | 6.11 |
PSⅡ实际光合效率ΦPSⅡ | 0.66 | 0.47 | 0.55 | 0.07 | 12.28 |
非光化学淬灭系数NPQ | 0.44 | 0.26 | 0.36 | 0.06 | 15.98 |
光化学荧光淬灭系数qP | 0.85 | 0.56 | 0.67 | 0.08 | 12.66 |
叶绿素相对含量Chlorophyll relative content | 40.53 | 28.6 | 33.7 | 4.21 | 12.49 |
产量Yield(t/hm2) | 167.72 | 97.57 | 138.59 | 20.46 | 14.76 |
净光合速率Pn(μmol/(m2·s)) | 19.63 | 16.85 | 18.57 | 0.82 | 4.42 |
气孔导度Gs(mmol/(m2·s)) | 0.54 | 0.21 | 0.36 | 0.1 | 29.33 |
胞间CO2浓度Ci(μmol/mol) | 335.76 | 291.59 | 312.47 | 12.79 | 4.09 |
蒸腾速率Tr(mmol/(m2·s)) | 8.25 | 5.66 | 7.18 | 0.78 | 10.89 |
Tab.2 Descriptive statistics of indicators among different processed tomato varieties
指标 Indexes | 最大值 Maximum | 最小值 Minimum | 平均值 Average value | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|
PSⅡ最大光化学量子产量Fv/Fm | 0.84 | 0.70 | 0.8 | 0.05 | 6.11 |
PSⅡ实际光合效率ΦPSⅡ | 0.66 | 0.47 | 0.55 | 0.07 | 12.28 |
非光化学淬灭系数NPQ | 0.44 | 0.26 | 0.36 | 0.06 | 15.98 |
光化学荧光淬灭系数qP | 0.85 | 0.56 | 0.67 | 0.08 | 12.66 |
叶绿素相对含量Chlorophyll relative content | 40.53 | 28.6 | 33.7 | 4.21 | 12.49 |
产量Yield(t/hm2) | 167.72 | 97.57 | 138.59 | 20.46 | 14.76 |
净光合速率Pn(μmol/(m2·s)) | 19.63 | 16.85 | 18.57 | 0.82 | 4.42 |
气孔导度Gs(mmol/(m2·s)) | 0.54 | 0.21 | 0.36 | 0.1 | 29.33 |
胞间CO2浓度Ci(μmol/mol) | 335.76 | 291.59 | 312.47 | 12.79 | 4.09 |
蒸腾速率Tr(mmol/(m2·s)) | 8.25 | 5.66 | 7.18 | 0.78 | 10.89 |
Fv/Fm | ΦPSⅡ | NPQ | qP | SPAD | 产量 Yield | Pn | Gs | Ci | Tr | |
---|---|---|---|---|---|---|---|---|---|---|
Fv/Fm | 1 | — | — | — | — | — | — | — | — | — |
ΦPSⅡ | -0.542** | 1 | — | — | — | — | — | — | — | — |
NPQ | -0.509** | 0.197 | 1 | — | — | — | — | — | — | — |
qP | 0.427* | -0.331 | -0.716** | 1 | — | — | — | — | — | — |
SPAD | 0.171 | 0.01 | -0.422* | 0.553** | 1 | — | — | — | — | — |
产量 Yield | 0.491** | -0.181 | -0.559** | 0.770** | 0.864** | 1 | — | — | — | — |
Pn | 0.511** | -0.176 | -0.525** | 0.729** | 0.826** | 0.991** | 1 | — | — | — |
Gs | 0.328 | -0.1 | -0.579** | 0.744** | 0.897** | 0.935** | 0.918** | 1 | — | — |
Ci | -0.441* | 0.163 | 0.585** | -0.803** | -0.873** | -0.991** | -0.980** | -0.962** | 1 | — |
Tr | 0.415* | -0.133 | -0.500** | 0.727** | 0.861** | 0.988** | 0.989** | 0.933** | -0.985** | 1 |
Tab.3 Correlation analysis of indicators among different processed tomato varieties
Fv/Fm | ΦPSⅡ | NPQ | qP | SPAD | 产量 Yield | Pn | Gs | Ci | Tr | |
---|---|---|---|---|---|---|---|---|---|---|
Fv/Fm | 1 | — | — | — | — | — | — | — | — | — |
ΦPSⅡ | -0.542** | 1 | — | — | — | — | — | — | — | — |
NPQ | -0.509** | 0.197 | 1 | — | — | — | — | — | — | — |
qP | 0.427* | -0.331 | -0.716** | 1 | — | — | — | — | — | — |
SPAD | 0.171 | 0.01 | -0.422* | 0.553** | 1 | — | — | — | — | — |
产量 Yield | 0.491** | -0.181 | -0.559** | 0.770** | 0.864** | 1 | — | — | — | — |
Pn | 0.511** | -0.176 | -0.525** | 0.729** | 0.826** | 0.991** | 1 | — | — | — |
Gs | 0.328 | -0.1 | -0.579** | 0.744** | 0.897** | 0.935** | 0.918** | 1 | — | — |
Ci | -0.441* | 0.163 | 0.585** | -0.803** | -0.873** | -0.991** | -0.980** | -0.962** | 1 | — |
Tr | 0.415* | -0.133 | -0.500** | 0.727** | 0.861** | 0.988** | 0.989** | 0.933** | -0.985** | 1 |
项目 Items | 主成分1 Principal component 1 | 主成分2 Principal component 2 |
---|---|---|
特征值Eigenvalues | 7.15 | 1.49 |
方差贡献率 Variance contribution rate(%) | 71.45 | 14.87 |
累计贡献率 Cumulative contribution rate(%) | 71.45 | 86.32 |
Fv/Fm(X1) | 0.22 | -0.53 |
ΦPSⅡ(X2) | -0.09 | 0.66 |
NPQ(X3) | -0.28 | 0.28 |
qP(X4) | 0.32 | -0.17 |
SPAD(X5) | 0.32 | 0.33 |
产量Yield(X6) | 0.37 | 0.08 |
Pn(X7) | 0.36 | 0.07 |
Gs(X8) | 0.36 | 0.18 |
Ci(X9) | -0.37 | -0.10 |
Tr(X10) | 0.36 | 0.15 |
Tab.4 Eigenvalues, variance contribution rate, cumulative contribution rate and principal component coefficient
项目 Items | 主成分1 Principal component 1 | 主成分2 Principal component 2 |
---|---|---|
特征值Eigenvalues | 7.15 | 1.49 |
方差贡献率 Variance contribution rate(%) | 71.45 | 14.87 |
累计贡献率 Cumulative contribution rate(%) | 71.45 | 86.32 |
Fv/Fm(X1) | 0.22 | -0.53 |
ΦPSⅡ(X2) | -0.09 | 0.66 |
NPQ(X3) | -0.28 | 0.28 |
qP(X4) | 0.32 | -0.17 |
SPAD(X5) | 0.32 | 0.33 |
产量Yield(X6) | 0.37 | 0.08 |
Pn(X7) | 0.36 | 0.07 |
Gs(X8) | 0.36 | 0.18 |
Ci(X9) | -0.37 | -0.10 |
Tr(X10) | 0.36 | 0.15 |
品种 Varieties | F1 | F2 | F值 F value | 排名 Ranking |
---|---|---|---|---|
T1 | 4.18 | 11.17 | 5.38 | 1 |
T2 | -2.76 | -7.36 | -3.55 | 8 |
T3 | -4.01 | -10.72 | -5.17 | 9 |
T4 | 0.77 | 2.05 | 0.99 | 4 |
T5 | -2.04 | -5.45 | -2.63 | 7 |
T6 | 1.57 | 4.20 | 2.02 | 3 |
T7 | 0.68 | 1.81 | 0.87 | 5 |
T8 | 2.68 | 7.17 | 3.46 | 2 |
T9 | -1.07 | -2.86 | -1.38 | 6 |
权重Weights | 0.83 | 0.17 |
Tab.5 Comprehensive evaluation comparison and ranking of different processed tomato varieties
品种 Varieties | F1 | F2 | F值 F value | 排名 Ranking |
---|---|---|---|---|
T1 | 4.18 | 11.17 | 5.38 | 1 |
T2 | -2.76 | -7.36 | -3.55 | 8 |
T3 | -4.01 | -10.72 | -5.17 | 9 |
T4 | 0.77 | 2.05 | 0.99 | 4 |
T5 | -2.04 | -5.45 | -2.63 | 7 |
T6 | 1.57 | 4.20 | 2.02 | 3 |
T7 | 0.68 | 1.81 | 0.87 | 5 |
T8 | 2.68 | 7.17 | 3.46 | 2 |
T9 | -1.07 | -2.86 | -1.38 | 6 |
权重Weights | 0.83 | 0.17 |
分类 Classify | 样本数 Number of samples | Fv/Fm | ΦPSⅡ | NPQ | qP | SPAD值 SPAD value | 产量 yield (t/hm2) | Pn (μmol/ (m2·s)) | Gs (mmol/ (m2·s)) | Ci (μmol/mol) | Tr (mmol/ (m2·s)) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ | 2 | 0.82 | 0.54 | 0.29 | 0.78 | 39.68 | 163.19 | 19.43 | 0.50 | 296.21 | 8.05 |
Ⅱ | 6 | 0.81 | 0.55 | 0.38 | 0.65 | 32.56 | 137.22 | 18.57 | 0.33 | 314.01 | 7.15 |
Ⅲ | 1 | 0.70 | 0.61 | 0.42 | 0.56 | 28.60 | 97.57 | 16.85 | 0.21 | 335.76 | 5.66 |
总计 Total | 9 | 0.80 | 0.55 | 0.36 | 0.67 | 33.70 | 138.58 | 18.57 | 0.36 | 312.47 | 7.18 |
Tab.6 Average results of various indicators among different processed tomato varieties
分类 Classify | 样本数 Number of samples | Fv/Fm | ΦPSⅡ | NPQ | qP | SPAD值 SPAD value | 产量 yield (t/hm2) | Pn (μmol/ (m2·s)) | Gs (mmol/ (m2·s)) | Ci (μmol/mol) | Tr (mmol/ (m2·s)) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ | 2 | 0.82 | 0.54 | 0.29 | 0.78 | 39.68 | 163.19 | 19.43 | 0.50 | 296.21 | 8.05 |
Ⅱ | 6 | 0.81 | 0.55 | 0.38 | 0.65 | 32.56 | 137.22 | 18.57 | 0.33 | 314.01 | 7.15 |
Ⅲ | 1 | 0.70 | 0.61 | 0.42 | 0.56 | 28.60 | 97.57 | 16.85 | 0.21 | 335.76 | 5.66 |
总计 Total | 9 | 0.80 | 0.55 | 0.36 | 0.67 | 33.70 | 138.58 | 18.57 | 0.36 | 312.47 | 7.18 |
[1] |
张继峯, 王振华, 张金珠, 等. 滴灌下氮盐交互对加工番茄荧光特性及产量品质的影响[J]. 中国农业科学, 2020, 53(5): 990-1003.
DOI |
ZHANG Jifeng, WANG Zhenhua, ZHANG Jinzhu, et al. The influences of different nitrogen and salt levels interactions on fluorescence characteristics, yield and quality of processed tomato under drip irrigation[J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
DOI |
|
[2] | 王雪铭, 刘中海, 肖莉, 等. 新疆11种加工番茄营养成分分析与研究[J]. 食品安全导刊, 2022,(11): 73-75. |
WANG Xueming, LIU Zhonghai, XIAO Li, et al. Analysis and study on nutritional components of 11 kinds of processed tomato in Xinjiang[J]. China Food Safety Magazine, 2022,(11): 73-75. | |
[3] | 李荣霞, 刘磊, 刘伟, 等. 新疆加工番茄种植现状、问题及建议[J]. 中国蔬菜, 2022,(4): 4-8. |
LI Rongxia, LIU Lei, LIU Wei, et al. Current status, problems and suggestions of processed tomato planting in Xinjiang[J]. China Vegetables, 2022,(4): 4-8. | |
[4] |
宋方圆, 赵志永, 李冀新. 筛选品质优良的新疆主栽加工番茄品种[J]. 新疆农业科学, 2020, 57(7): 1267-1275.
DOI |
SONG Fangyuan, ZHAO Zhiyong, LI Jixin. Selection of main-planted tomato varieties in Xinjiang[J]. Xinjiang Agricultural Sciences, 2020, 57(7): 1267-1275.
DOI |
|
[5] | 张瑶, 杨再强, 姜雨函, 等. 低温寡照条件下黄瓜叶片光合作用减弱的机理分析[J]. 中国农业气象, 2022, 43(4): 285-294. |
ZHANG Yao, YANG Zaiqiang, JIANG Yuhan, et al. Mechanism analysis on photosynthetic attenuation in cucumber leaves under low temperature and weak light condition[J]. Chinese Journal of Agrometeorology, 2022, 43(4): 285-294. | |
[6] | 由佳辉, 褚佳瑶, 冯琳骄, 等. 基于光合特性的17个葡萄砧木品种抗旱性比较[J]. 中外葡萄与葡萄酒, 2021,(6): 42-48. |
YOU Jiahui, CHU Jiayao, FENG Linjiao, et al. Comparative study on photosynthetic and chlorophyll fluorescence characteristics of 17 grape rootstock varieties[J]. Sino-Overseas Grapevine & Wine, 2021,(6): 42-48. | |
[7] | 王诗娴, 洪玉, 蔡磊, 等. 不同品种观赏型铁线莲叶绿素荧光特性的研究[J]. 现代园艺, 2022, 45(13): 13-14, 17. |
WANG Shixian, HONG Yu, CAI Lei, et al. Study on chlorophyll fluorescence characteristics of different ornamental cultivars of clematis[J]. Contemporary Horticulture, 2022, 45(13): 13-14, 17. | |
[8] | 程露, 职铭阳, 吴迪, 等. 基于光合和荧光参数探讨不同水稻品种苗期耐寒性差异[J]. 种子, 2022, 41(2): 25-30,39. |
CHENG Lu, ZHI Mingyang, WU Di, et al. Disscussion on the cold-tolerant difference of different rice varieties at seedling stage based on photosynthesis and fluorescence parameters[J]. Seed, 2022, 41(2): 25-30,39. | |
[9] |
Demmig B, Björkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants[J]. Planta, 1987, 171(2): 171-184.
DOI PMID |
[10] | 涂淑萍, 黄航, 杜曲, 等. 不同品种茶树叶片光合特性与叶绿素荧光参数的比较[J]. 江西农业大学学报, 2021, 43(5): 1098-1106. |
TU Shuping, HUANG Hang, DU Qu, et al. Comparison of photosynthetic characteristics and chlorophy ⅡFluorescence parameters of different Camellia sinensis cultivars[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(5): 1098-1106. | |
[11] | 匡经舸, 李琬婷, 程小毛, 等. 两种樱花植物的光合速率日变化及其与环境因子的相关性分析[J]. 北方园艺, 2017,(12): 78-82. |
KUANG Jingge, LI Wanting, CHENG Xiaomao, et al. Correlation between diurnal changes of photosynthetic rate and environmental factors in two Cerasus plants[J]. Northern Horticulture, 2017,(12): 78-82. | |
[12] | 武虹宇, 张宝月, 闫聪硕, 等. 不同加工番茄品种耐盐性筛选与综合评价[J]. 农业科技与装备, 2022,(6): 1-6. |
WU Hongyu, ZHANG Baoyue, YAN Congshuo, et al. Screening and comprehensive evaluation of salt tolerance of different processed tomato varieties[J]. Agricultural Science & Technology and Equipment, 2022,(6): 1-6. | |
[13] | 司天桃, 张国强, 薛琳, 等. 加工番茄叶霉病的防治药剂筛选及其品种抗性鉴定[J]. 植物保护, 2017, 43(5): 225-228. |
SI Tiantao, ZHANG Guoqiang, XUE Lin, et al. Screening of antifungal agents and identification of resistant variety against leaf mold of processed tomato[J]. Plant Protection, 2017, 43(5): 225-228. | |
[14] | 韩泽群, 姜波. 加工番茄品质性状的鉴定指标和筛选方法[J]. 湖北农业科学, 2014, 53(16): 3812-3816. |
HAN Zequn, JIANG Bo. Identification indexes and screening methods of quality traits of processing tomato[J]. Hubei Agricultural Sciences, 2014, 53(16): 3812-3816. | |
[15] | 刘峰娟, 朱靖蓉, 周俊, 等. 新疆主栽加工番茄品种营养品质比较研究[J]. 新疆农业科学, 2016, 53(2): 225-231. |
LIU Fengjuan, ZHU Jingrong, ZHOU Jun, et al. Comparative study on nutritional quality of tomato varieties in Xinjiang[J]. Xinjiang Agricultural Sciences, 2016, 53(2): 225-231. | |
[16] | 任亮, 孙泓希, 李楠, 等. 不同生育期花生品种光合特性及产量比较[J]. 农业科技通讯, 2022,(5): 173-177. |
REN Liang, SUN Hongxi, LI Nan, et al. Comparison of photosynthetic characteristics and yield of peanut varieties at different growth stages[J]. Bulletin of Agricultural Science and Technology, 2022,(5): 173-177. | |
[17] | 李时雨, 姚新转, 安海丽, 等. 不同茶树品种光合特性与冠层指标分析[J]. 茶叶学报, 2022, 63(1):39-45. |
LI Shiyu, YAO Xinzhuan, AN Haili, et al. Photosynthetic characteristics and canopy indices of Camellia sinensis varieties[J]. Acta Tea Sinica, 2022, 63(1):39-45. | |
[18] |
袁祖丽, 孙晓楠, 冯松田, 等. 引种茶树品种光合、荧光特性的比较研究[J]. 河南农业科学, 2010,(7): 26-30.
DOI |
YUAN Zuli, SUN Xiaonan, FENG Songtian, et al. Comparative study on photosynthetic characteristics and fluorescent characteristics among introduced tea varieties[J]. Journal of Henan Agricultural Sciences, 2010,(7): 26-30. | |
[19] | 王卓敏, 薛达, 薛立. 阳江5种滨海园林植物的光合特性和叶片元素[J]. 安徽农业大学学报, 2017, 44(2): 277-282. |
WANG Zhuomin, XUE Da, XUE Li. Photosynthetic characteristics and leaf nutrients of five garden plants in Yangjiang, Guangdong Province[J]. Journal of Anhui Agricultural University, 2017, 44(2): 277-282. | |
[20] | 须海荣, 童启庆, 骆耀平, 等. 福建茶树资源光合特性的研究[J]. 福建茶叶, 1992, 14(1): 15-18. |
XU Hairong, TONG Qiqing, LUO Yaoping, et al. Study on photosynthetic characteristics of Fujian tea resources[J]. Tea In Fujian, 1992, 14(1): 15-18. | |
[21] |
张玲, 王华, 周静, 等. NaCl胁迫对两个辣椒品种幼苗叶绿素荧光参数等生理特性的影响[J]. 浙江农业学报, 2017, 29(4): 597-604.
DOI |
ZHANG Ling, WANG Hua, ZHOU Jing, et al. Effects of NaCl stress on chlorophyll fluorescence characteristics and physiological characteristics in seedlings of two pepper cultivars[J]. Acta Agriculturae Zhejiangensis, 2017, 29(4): 597-604.
DOI |
|
[22] | 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4): 444-448. |
ZHANG Shouren. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 34(4): 444-448. | |
[23] | 刘兴, 马萧萧, 周正, 等. 丁香6个品种荧光参数比较[J]. 衡水学院学报, 2020, 22(4): 31-34,50. |
LIU Xing, MA Xiaoxiao, ZHOU Zheng, et al. Comparison and cluster analysis of photosynthetic traits of different clove varieties[J]. Journal of Hengshui University, 2020, 22(4): 31-34,50. | |
[24] | 丁俊男, 王慧, 于少鹏. 叶绿素荧光分析技术在野生植物响应多环芳烃(菲)胁迫的应用研究[J]. 光谱学与光谱分析, 2022, 42(7): 2207-2212. |
DING Junnan, WANG Hui, YU Shaopeng. Application of rapid fluorescence analysis technology on study on Glycine soja response to PAHs(phenanthrene)[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2207-2212. | |
[25] | 唐贤慧, 郭澎涛, 罗微, 等. 基于主成分分析的海南橡胶园土壤化学肥力的评价[J]. 热带生物学报, 2022, 13(1): 36-41. |
TANG Xianhui, GUO Pengtao, LUO Wei, et al. Evaluation of soil chemical fertility in Hainan rubber plantations based on principal component analysis[J]. Journal of Tropical Biology, 2022, 13(1): 36-41. | |
[26] | 齐连芬, 王丹丹, 牛瑞生, 等. 基于主成分分析的温室番茄最佳有机肥与微生物菌剂配比[J]. 北方园艺, 2019,(1): 7-13. |
QI Lianfen, WANG Dandan, NIU Ruisheng, et al. Comparison of optimum tomato ratio of organic fertilizer and microbial bacteria based on principal component analysis in solar greenhouse[J]. Northern Horticulture, 2019,(1): 7-13. | |
[27] | 王丹丹, 李燕, 张庆银, 等. 基于主成分分析的黄瓜新品种引进筛选综合评价[J]. 北方园艺, 2022,(23): 21-28. |
WANG Dandan, LI Yan, ZHANG Qingyin, et al. Comprehensive evaluation of introduction and screening of new cucumber varieties based on principal component analysis[J]. Northern Horticulture, 2022,(23): 21-28. | |
[28] | 李伟明, 吴旭东, 胡卫丛, 等. 基于主成分分析和聚类分析的不同品种辣椒综合评价[J]. 北方园艺, 2022,(9): 55-60. |
LI Weiming, WU Xudong, HU Weicong, et al. Comprehensive evaluation of different pepper varieties based on principal component analysis and cluster analysis[J]. Northern Horticulture, 2022,(9): 55-60. |
[1] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[2] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[3] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[4] | HUANG Boxuan, LI Pengcheng, ZHENG Cangsong, SUN Miao, SHAO Jingjing, FENG Weina, PANG Chaoyou, XU Wenxiu, DONG Helin. Effects of different nitrogen inhibitors on growth, nitrogen utilization and yield of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2122-2131. |
[5] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[6] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[7] | ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L. [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830. |
[8] | HOU Lili, WANG Wei, CUI Xinju, ZHOU Dawei. Effects of organic and inorganic combined application on yield, soil nutrients and enzyme activities of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1845-1852. |
[9] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[10] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[11] | NIU Tingting, MA Mingsheng, ZHANG Jungao. Effects of straw returning and plastic film mulching on soil physical and chemical properties and spring maize yield in rain-fed upland farmland [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1896-1906. |
[12] | ZHAO Minhua, SONG Bingxi, ZHANG Yupeng, GAO Zhihong, ZHU Yongyong, CHEN Xiaoyuan. Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial factor productivity under dry farming conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1907-1915. |
[13] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
[14] | YANG Mei, ZHAO Hongmei, Dilireba Xiamixiding, YANG Weijun, ZHANG Jinshan, HUI Chao. Effects of nitrogen fertilizer reduction and biochar application on population structure, photosynthetic characteristics and yield of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1582-1589. |
[15] | LU Weidan, ZHOU Yuanhang, MA Xiaolong, GAO Jianglong, FAN Xiaoqin, GUO Jianfu, LI Jianqiang, LIN Ming. Effects of replacing chemical fertilizer with organic fertilizer in different proportions and plant nutrients and sugar beet yield [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1631-1639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||