Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (9): 2122-2131.DOI: 10.6048/j.issn.1001-4330.2024.09.006
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
HUANG Boxuan1,2(), LI Pengcheng1,2, ZHENG Cangsong2, SUN Miao2, SHAO Jingjing2, FENG Weina2, PANG Chaoyou2, XU Wenxiu1(
), DONG Helin1,2,3(
)
Received:
2024-02-18
Online:
2024-09-20
Published:
2024-10-09
Correspondence author:
XU Wenxiu, DONG Helin
Supported by:
黄铂轩1,2(), 李鹏程1,2, 郑苍松2, 孙淼2, 邵晶晶2, 冯卫娜2, 庞朝友2, 徐文修1(
), 董合林1,2,3(
)
通讯作者:
徐文修,董合林
作者简介:
黄铂轩(1998-),男,广西桂林人,硕士研究生,研究方向为棉花养分高效利用,(E-mail)1142008058@qq.com
基金资助:
CLC Number:
HUANG Boxuan, LI Pengcheng, ZHENG Cangsong, SUN Miao, SHAO Jingjing, FENG Weina, PANG Chaoyou, XU Wenxiu, DONG Helin. Effects of different nitrogen inhibitors on growth, nitrogen utilization and yield of cotton[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2122-2131.
黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131.
Fig.1 Changes of nitrogen inhibitor treatment on cotton plant height Notes:Different lowercase letters indicate significant differences(P<0.05),the same as below
处理 Treatments | 苗期 Seedling stage | 蕾期 Bud stage | 开花期 Flowering stage | 盛花期 Peak flowering stage | 吐絮期 Boll opening stage | 收获期 Harvest stage |
---|---|---|---|---|---|---|
CK | 1.91abc | 6.01c | 21.32a | 30.87c | 98.19c | 108.91d |
N | 1.91abc | 6.79abc | 23.00a | 37.35b | 135.11b | 141.50c |
ND1 | 1.85abc | 8.10ab | 23.11a | 43.49a | 145.42a | 165.30a |
ND2 | 1.75c | 7.17abc | 22.29a | 39.58ab | 138.75ab | 156.63ab |
NC1 | 1.76c | 6.14bc | 20.43a | 41.53ab | 146.17a | 159.44ab |
NC2 | 1.82bc | 5.89c | 21.65a | 40.46ab | 139.23ab | 154.25b |
NM1 | 2.03a | 8.62a | 20.27a | 42.79ab | 146.78a | 153.19b |
NM2 | 2.01ab | 7.64abc | 22.97a | 42.20ab | 138.10ab | 150.74b |
NN1 | 1.99ab | 6.62abc | 22.21a | 40.42ab | 145.29a | 164.12a |
NN2 | 1.96abc | 6.98abc | 21.40a | 38.77ab | 138.25ab | 160.24ab |
Tab.1 Changes of nitrogen inhibitor treatment on dry matter accumulation(g/plant)
处理 Treatments | 苗期 Seedling stage | 蕾期 Bud stage | 开花期 Flowering stage | 盛花期 Peak flowering stage | 吐絮期 Boll opening stage | 收获期 Harvest stage |
---|---|---|---|---|---|---|
CK | 1.91abc | 6.01c | 21.32a | 30.87c | 98.19c | 108.91d |
N | 1.91abc | 6.79abc | 23.00a | 37.35b | 135.11b | 141.50c |
ND1 | 1.85abc | 8.10ab | 23.11a | 43.49a | 145.42a | 165.30a |
ND2 | 1.75c | 7.17abc | 22.29a | 39.58ab | 138.75ab | 156.63ab |
NC1 | 1.76c | 6.14bc | 20.43a | 41.53ab | 146.17a | 159.44ab |
NC2 | 1.82bc | 5.89c | 21.65a | 40.46ab | 139.23ab | 154.25b |
NM1 | 2.03a | 8.62a | 20.27a | 42.79ab | 146.78a | 153.19b |
NM2 | 2.01ab | 7.64abc | 22.97a | 42.20ab | 138.10ab | 150.74b |
NN1 | 1.99ab | 6.62abc | 22.21a | 40.42ab | 145.29a | 164.12a |
NN2 | 1.96abc | 6.98abc | 21.40a | 38.77ab | 138.25ab | 160.24ab |
处理 Treatments | 模型方程 Regression equation | Vmax [g/(plant·d)] | T0 (d) | △T (d) | GT [g/(plant·d)] | R2 |
---|---|---|---|---|---|---|
CK | Y=110.432 9/(1+e(5.208 7-0.061 288 t)) | 1.69 | 84.97 | 42.97 | 72.72 | 0.998 1 |
N | Y=143.457 7/(1+e(6.183 2-0.073 818 t)) | 2.65 | 83.78 | 35.69 | 94.46 | 0.998 1 |
ND1 | Y=166.962 1/(1+e(5.532 3-0.063 185 t)) | 2.64 | 87.54 | 41.68 | 109.94 | 0.999 9 |
ND2 | Y=158.200 6/(1+e(5.643 4-0.064 406 t)) | 2.55 | 87.63 | 40.90 | 104.17 | 0.999 8 |
NC1 | Y=160.190 6/(1+e(6.151 1-0.071 982 t)) | 2.88 | 85.43 | 36.58 | 105.48 | 0.999 9 |
NC2 | Y=154.836 7/(1+e(5.820 8-0.068 168 t)) | 2.64 | 85.35 | 38.62 | 101.96 | 0.999 7 |
NM1 | Y=154.778 9/(1+e(6.445 9-0.077 787 t)) | 3.01 | 82.85 | 33.85 | 101.92 | 0.999 6 |
NM2 | Y=151.906 5/(1+e(5.758 1-0.068 060 t)) | 2.59 | 84.55 | 38.68 | 100.03 | 0.999 8 |
NN1 | Y=165.609 7/(1+e(5.755 6-0.065 427 t)) | 2.71 | 88.01 | 40.27 | 109.05 | 0.999 8 |
NN2 | Y=162.202 4/(1+e(5.544 4-0.061 889 t)) | 2.51 | 89.57 | 42.55 | 106.81 | 0.999 8 |
Tab.2 Changes of nitrogen inhibitor treatment on the Logistic simulation equation and characteristic values of dry matter accumulation per cotton plant
处理 Treatments | 模型方程 Regression equation | Vmax [g/(plant·d)] | T0 (d) | △T (d) | GT [g/(plant·d)] | R2 |
---|---|---|---|---|---|---|
CK | Y=110.432 9/(1+e(5.208 7-0.061 288 t)) | 1.69 | 84.97 | 42.97 | 72.72 | 0.998 1 |
N | Y=143.457 7/(1+e(6.183 2-0.073 818 t)) | 2.65 | 83.78 | 35.69 | 94.46 | 0.998 1 |
ND1 | Y=166.962 1/(1+e(5.532 3-0.063 185 t)) | 2.64 | 87.54 | 41.68 | 109.94 | 0.999 9 |
ND2 | Y=158.200 6/(1+e(5.643 4-0.064 406 t)) | 2.55 | 87.63 | 40.90 | 104.17 | 0.999 8 |
NC1 | Y=160.190 6/(1+e(6.151 1-0.071 982 t)) | 2.88 | 85.43 | 36.58 | 105.48 | 0.999 9 |
NC2 | Y=154.836 7/(1+e(5.820 8-0.068 168 t)) | 2.64 | 85.35 | 38.62 | 101.96 | 0.999 7 |
NM1 | Y=154.778 9/(1+e(6.445 9-0.077 787 t)) | 3.01 | 82.85 | 33.85 | 101.92 | 0.999 6 |
NM2 | Y=151.906 5/(1+e(5.758 1-0.068 060 t)) | 2.59 | 84.55 | 38.68 | 100.03 | 0.999 8 |
NN1 | Y=165.609 7/(1+e(5.755 6-0.065 427 t)) | 2.71 | 88.01 | 40.27 | 109.05 | 0.999 8 |
NN2 | Y=162.202 4/(1+e(5.544 4-0.061 889 t)) | 2.51 | 89.57 | 42.55 | 106.81 | 0.999 8 |
处理 Treat- ments | 氮肥农学利用率 Agricultural utilization efficiency of nitrogen fertilizer (g/g) | 氮肥偏生产力 Nitrogen fertilizer partial productivity (g/g) | 氮肥表观利用率 Apparent utilization rate of nitrogen fertilizer (%) |
---|---|---|---|
N | 1.59c | 16.36c | 21.84f |
ND1 | 4.44ab | 19.21abc | 35.32ab |
ND2 | 4.25ab | 19.02abc | 27.79de |
NC1 | 5.00a | 21.76a | 36.92a |
NC2 | 4.19ab | 18.95abc | 26.31e |
NM1 | 4.78ab | 19.55ab | 33.37abc |
NM2 | 3.98b | 18.75bc | 31.91bcd |
NN1 | 4.54ab | 19.30abc | 34.90ab |
NN2 | 3.03b | 17.80bc | 29.62cde |
Tab.3 Changes of nitrogen inhibitor treatment on cotton nitrogen fertilizer utilization efficiency indicators
处理 Treat- ments | 氮肥农学利用率 Agricultural utilization efficiency of nitrogen fertilizer (g/g) | 氮肥偏生产力 Nitrogen fertilizer partial productivity (g/g) | 氮肥表观利用率 Apparent utilization rate of nitrogen fertilizer (%) |
---|---|---|---|
N | 1.59c | 16.36c | 21.84f |
ND1 | 4.44ab | 19.21abc | 35.32ab |
ND2 | 4.25ab | 19.02abc | 27.79de |
NC1 | 5.00a | 21.76a | 36.92a |
NC2 | 4.19ab | 18.95abc | 26.31e |
NM1 | 4.78ab | 19.55ab | 33.37abc |
NM2 | 3.98b | 18.75bc | 31.91bcd |
NN1 | 4.54ab | 19.30abc | 34.90ab |
NN2 | 3.03b | 17.80bc | 29.62cde |
处理 Treat- ments | 单株成铃数 Number of bolls per plant (个) | 单铃重 Single boll weight (g) | 单株籽棉产量 Yield of single plant seed cotton (g/plant) |
---|---|---|---|
CK | 11.0c | 4.0c | 44.3e |
N | 12.0bc | 4.1c | 49.1d |
ND1 | 13.7ab | 4.2bc | 57.6bc |
ND2 | 12.3bc | 4.6a | 57.1bc |
NC1 | 14.0a | 4.7a | 65.3a |
NC2 | 12.3bc | 4.6a | 56.9bc |
NM1 | 14.3a | 4.1c | 58.7b |
NM2 | 12.0bc | 4.7a | 56.2bc |
NN1 | 12.3bc | 4.7a | 58.2b |
NN2 | 12.0bc | 4.5ab | 53.4c |
Tab.4 Changes of nitrogen inhibitor treatment on cotton yield and its composition
处理 Treat- ments | 单株成铃数 Number of bolls per plant (个) | 单铃重 Single boll weight (g) | 单株籽棉产量 Yield of single plant seed cotton (g/plant) |
---|---|---|---|
CK | 11.0c | 4.0c | 44.3e |
N | 12.0bc | 4.1c | 49.1d |
ND1 | 13.7ab | 4.2bc | 57.6bc |
ND2 | 12.3bc | 4.6a | 57.1bc |
NC1 | 14.0a | 4.7a | 65.3a |
NC2 | 12.3bc | 4.6a | 56.9bc |
NM1 | 14.3a | 4.1c | 58.7b |
NM2 | 12.0bc | 4.7a | 56.2bc |
NN1 | 12.3bc | 4.7a | 58.2b |
NN2 | 12.0bc | 4.5ab | 53.4c |
[1] | 陈常兵. 我国内地棉区棉花生产现状与发展对策[J]. 中国农技推广, 2022, 38(10): 10-13. |
CHEN Changbing. Present situation and development countermeasures of cotton production in China’s inland cotton areas[J]. China Agricultural Technology Extension, 2022, 38(10): 10-13. | |
[2] | 李淑贤, 鲍锦辉, 姜兰, 等. 缓释氮肥配施脲酶抑制剂对棉花光合特征的影响[J]. 中国棉花, 2021, 48(10): 1-7, 14. |
LI Shuxian, BAO Jinhui, JIANG Lan, et al. Effects of slow-release nitrogen fertilizer combined with urease inhibitor on photosynthetic characteristics of cotton[J]. China Cotton, 2021, 48(10): 1-7, 14. | |
[3] | Lubkowski K, Grzmil B. Controlled release fertilizers[J]. Polish Journal of Chemical Technology, 2007, 9(4). |
[4] | Guertal E A. Preplant slow-release nitrogen fertilizers produce similar bell pepper yields as split applications of soluble fertilizer[J]. Agronomy Journal, 2000, 92(2): 388-393. |
[5] | 林葆, 林继雄, 李家康. 长期施肥的作物产量和土壤肥力变化[J]. 植物营养与肥料学报, 1994, (1): 6-18. |
LIN Bao, LIN Jixiong, LI Jiakang. The changes of crop yield and soil fertility with long-term fertilizer application[J]. Journal of Plant Nutrition and Fertilizers, 1994, 1(1): 6-18. | |
[6] | 郭小琰, 孙桂兰, 熊世武, 等. 施氮量对棉花养分吸收利用及产量和品质的影响[J]. 新疆农业科学, 2021, 58(7): 1246-1254. |
GUO Xiaoyan, SUN Guilan, XIONG Shiwu, et al. Effects of nitrogen application rates on nutrition uptake and utilization, yield and fiber quality of cotton[J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1246-1254. | |
[7] | 文明, 李鹏兵, 王乐, 等. 减施氮肥对北疆滴灌棉花干物质积累及产量的影响[J]. 新疆农业科学, 2019, 56(1): 120-129. |
WEN Ming, LI Pengbing, WANG Le, et al. Effects of Reduced Nitrogen Application on Dry Matter Accumulation and Yield of Cotton under Drip Irrigation in Northern Xinjiang[J]. Xinjiang Agricultural Sciences, 2019, 56(1): 120-129. | |
[8] | 文明, 李明华, 蒋家乐, 等. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响[J]. 中国农业科学, 2021, 54(16): 3473-3487. |
WEN Ming LI, JIANG, et al. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang[J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487. | |
[9] | Li J, Shi Y, Luo J, et al. Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents[J]. Biology and Fertility of Soils, 2014, 50(1): 133-145. |
[10] | Silva A G B, Sequeira C H, Sermarini R A, et al. Urease inhibitor NBPT on ammonia volatilization and crop productivity: a meta-analysis[J]. Agronomy Journal, 2017, 109(1): 1-13. |
[11] | Cantarella H, Otto R, Soares J R, et al. Agronomic efficiency of NBPT as a urease inhibitor: a review[J]. Journal of Advanced Research, 2018, (13): 19-27. |
[12] | 李君, 刘涛, 褚贵新. 脲酶抑制剂对石灰性土壤尿素转化及N2O排放的影响[J]. 农业环境科学学报, 2014, 33(9): 1866-1872. |
LI Jun, LIU Tao, CHU Guixin. Responses of urea transformation dynamics and nitrous oxide to three urease inhibitors in calcareous soil[J]. Journal of Agro-Environment Science, 2014, 33(9): 1866-1872. | |
[13] | 李思平, 刘蕊, 刘家欢, 等. 稳定性肥料产业发展创新及展望[J]. 现代化工, 2022, 42(11): 1-8. |
LI Siping, LIU Rui, LIU Jiahuan, et al. Development, innovation and prospect of stable fertilizer industry. Modern Chemical Industry, 2022, 42(11): 1-8. | |
[14] | Ruser R, Schulz R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(2): 171-188. |
[15] | Abalos D, Jeffery S, Sanz-Cobena A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems & Environment, 2014, (189): 136-144. |
[16] | Menéndez S, Barrena I, Setien I, et al. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions[J]. Soil Biology and Biochemistry, 2012, (53): 82-89. |
[17] | 刘建涛, 许靖, 孙志梅, 等. 氮素调控剂对不同类型土壤氮素转化的影响[J]. 应用生态学报, 2014, 25(10): 2901-2906. |
LIU Jiantao, XU Jing, SUN Zhimei, et al. Effects of different nitrogen regulators on nitrogen transformation in different soil types[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2901-2906. | |
[18] | 陈承继. 不同硝化抑制剂对玉米生长的影响[D]. 广州: 华南农业大学, 2019. |
CHEN Chengji. Effects of Different Nitrification Inhibitors on Maize Growth[D]. Guangzhou: South China Agricultural University, 2019. | |
[19] | 段文静, 马彤彤, 张永江, 等. 氮肥中不同硝化抑制剂DCD添加比例对棉花生长发育及产量的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2095-2106. |
DUAN Wenjing, MA Tongtong, ZHANG Yongjiang, et al. Effects of different nitrification inhibitor DCD addition ratios in nitrogen fertilizer on cotton growth and yield[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2095-2106. | |
[20] | 肖富容, 李东坡, 杜艳娣, 等. 生化抑制剂和腐植酸联合添加对尿素在黑土水稻种植中氮素供应稳定性的影响[J]. 土壤通报, 2022, 53(5): 1113-1122. |
XIAO Furong, LI Dongpo, DU Yandi, et al. Effects of combined addition of biochemical inhibitors and humic acids on nitrogen supply by stability urea for rice in black soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1113-1122. | |
[21] | 谢婷婷, 赵欢, 肖厚军, 等. 炭基肥对贵州黄壤鲜食玉米光合特性、干物质积累及产量形成的影响[J]. 中国土壤与肥料, 2022, (3): 61-67. |
XIE Tingting, ZHAO Huan, XIAO Houjun, et al. Effects of carbon fertilizer on photosynthetic characteristics,dry matter accumulation and yield formation of fresh corn from Yellow soil in Guizhou Province[J]. China Soil and Fertilizer, 2022, (3): 61-67. | |
[22] | 万年鑫, 黄强, 郑顺林, 等. 硝化/脲酶抑制剂对秋马铃薯植株及土壤氮素利用的影响[J]. 中国土壤与肥料, 2021, (1): 83-89. |
WAN Nianxin, HUANG Qiang, ZHENG Shunlin, et al. Effects of nitrification/urease inhibitors on potato yield and soil mineral nitrogen content[J]. Soil and Fertilizer Sciences in China, 2021, (1): 83-89. | |
[23] | 肖富容, 李东坡, 薛妍, 等. 添加腐植酸与生化抑制剂尿素在黄土水稻栽培中施用效果[J]. 生态学杂志, 2022, 41(9): 1717-1725. |
XIAO Furong, LI Dongpo, XUE Yan, et al. Effects of urea added with humic acid and biochemical inhibitors on rice cultivation in loess[J]. Chinese Journal of Ecology, 2022, 41(9): 1717-1725. | |
[24] | 黄强, 郑顺林, 郭函, 等. 尿素配施硝化/脲酶抑制剂对春季和秋季马铃薯产量及土壤矿质氮的影响[J]. 西北农业学报, 2019, 28(9): 1499-1507. |
HUANG Qiang, ZHENG Shunlin, GUO Han, et al. Effects of urea combined with nitrification/urease inhibitors on potato yield and soil mineral nitrogen in spring and autumn[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(9): 1499-1507. | |
[25] | 李学红, 李东坡, 武志杰, 等. 添加NBPT/DMPP/CP的高效稳定性尿素在黑土和褐土中的施用效应[J]. 植物营养与肥料学报, 2021, 27(6): 957-968. |
LI Xuehong, LI Dongpo, WU Zhijie, et al. Effects of stabilized urea containing NBPT/DMPP/CP on nitrogen use efficiency and maize yield in black and cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 957-968. | |
[26] | 韩婷婷, 孙庆元, 宗娟, 等. 脲酶抑制剂NBPT对马铃薯幼苗生长的影响[J]. 作物杂志, 2010, (2): 66-68. |
HAN Tingting, SUN Qingyuan, ZONG Juan, et al. Effects of urease inhibitor NBPT on growth of potato seedlings[J]. Crops, 2010, (2): 66-68. | |
[27] | Crawford D M, Chalk P M. Sources of N uptake by wheat (Triticum aestivum L.) and N transformations in soil treated with a nitrification inhibitor (nitrapyrin)[J]. Plant and Soil, 1993, 149(1): 59-72. |
[28] | 刘红江, 殷跃军, 郭智, 等. 硝化抑制剂对小麦产量和氮素吸收利用的影响[J]. 生态学杂志, 2019, 38(2): 443-449. |
LIU Hongjiang, YIN Yuejun, GUO Zhi, et al. Effects of nitrification inhibitor on yield and nitrogen use efficiency of wheat[J]. Chinese Journal of Ecology, 2019, 38(2): 443-449. | |
[29] | Cui L, Li D P, Wu Z J, et al. Effects of combined nitrification inhibitors on nitrogen transformation, maize yield and nitrogen uptake in two different soils[J]. Communications in Soil Science and Plant Analysis, 2022, 53(8): 1039-1049. |
[30] | Chaves B, Opoku A, De Neve S, et al. Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues[J]. Biology and Fertility of Soils, 2006, 43(1): 62-68. |
[31] | Yu Y X, Jia H T, Zhao C Y. Evaluation of the effects of plastic mulching and nitrapyrin on nitrous oxide emissions and economic parameters in an arid agricultural field[J]. Geoderma, 2018, (324): 98-108. |
[32] | Kawakami E M, Oosterhuis D M, Snider J L, et al. Physiological and yield responses of field-grown cotton to application of urea with the urease inhibitor NBPT and the nitrification inhibitor DCD[J]. European Journal of Agronomy, 2012, (43): 147-154. |
[33] | O’Connor P J, Hennessy D, Brophy C, et al. The effect of the nitrification inhibitor dicyandiamide (DCD) on herbage production when applied at different times and rates in the autumn and winter[J]. Agriculture, Ecosystems & Environment, 2012, (152): 79-89. |
[34] | 胡佳玉, 张晶, 孔波, 等. 氮肥增效剂的应用与展望[J]. 肥料与健康, 2023, 50(1): 1-13. |
HU Jiayu, ZHANG Jing, KONG Bo, et al. Application and Prospect of Nitrogen FertilizerSynergist[J]. China Soil and Fertilizer, 2023, 50(1): 1-13. | |
[35] | 张忠庆, 高强. 硝化抑制剂2-氯-6-三氯甲基吡啶在农业中应用研究进展及其影响因素[J]. 中国土壤与肥料, 2022, (4): 249-258. |
ZHANG Zhongqing, GAO Qiang. Effects of nitrification inhibitor nitrapyrin application in agricultural ecosystems and influencing factors: a review[J]. Soil and Fertilizer Sciences in China, 2022, (4): 249-258. | |
[36] | 刘涛, 陶瑞, 李君, 等. 氯甲基吡啶对滴灌棉花生物量、氮素吸收及氮肥利用率的影响[J]. 棉花学报, 2015, 27(5): 463-468. |
LIU Tao, TAO Rui, LI Jun, et al. Effect of Nitrapyrin on Biomass, Nitrogen Uptake and Nitrogen Use Efficiency in Drip-irrigated Cotton Plants[J]. Cotton Science, 2015, 27(5): 463-468. | |
[37] | 刘洪亮, 梁永超, 刘涛, 等. 新型硝化抑制剂对膜下滴灌棉田抑制效果及棉花产量的影响[J]. 新疆农业科学, 2010, 47(11): 2200-2204. |
LIU Hongliang, LIANG Yongchao, LIU Tao, et al. The Effect of the New Nitrification Inhibitor on the Soil Nitrogen Trans-formati on and Cotton Yield Under Plastic Mulch Drip Irrigation in Northern Xinjiang[J]. Xinjiang Sciences, 2010, 47(11): 2200-2204. | |
[38] | Zhu W B, Zeng K, Tian Y H, et al. Coupling side-deep fertilization with Azolla to reduce ammonia volatilization while achieving a higher net economic benefits in rice cropping system[J]. Agriculture, Ecosystems & Environment, 2022, (333): 107976. |
[39] | 刘涛, 梁永超, 褚贵新, 等. 三种硝化抑制剂在石灰性土壤中的应用效果比较[J]. 土壤, 2011, 43(5): 758-762. |
LIU Tao, LIANG Yongchao, CHU Guixin, et al. Effect comparison of three different types of nitrification inhibitors (DCD, DMPP and nitrapyrin) in calcareous soils[J]. Soils, 2011, 43(5): 758-762. | |
[40] | 孙志梅, 武志杰, 陈利军, 等. 硝化抑制剂的施用效果、影响因素及其评价[J]. 应用生态学报, 2008, (7): 1611-1618. |
SUN Zhimei, WU Zhijie, CHEN Lijun, et al. Application effect, affecting factors, and evaluation of nitrification inhibitor: A review.[J]. Chinese Journal of Applied Ecology, 2008, (7): 1611-1618. | |
[41] | 顾艳, 吴良欢, 刘彦伶, 等. 氯甲基吡啶剂型对土壤硝化的抑制效果初步研究[J]. 农业环境科学学报, 2013, 32(2): 251-258. |
GU Yan, WU Lianghuan, LIU Yanling, et al. A preliminary study on the inhibitory effect of nitrapyrin formulations on soil nitrification[J]. Journal of Agro-Environment Science, 2013, 32(2): 251-258. | |
[42] | Ren B Z, Zhang J W, Dong S T, et al. Nitrapyrin improves grain yield and nitrogen use efficiency of summer maize waterlogged in the field[J]. Agronomy Journal, 2017, 109(1): 185-192. |
[43] | Qiao C L, Liu L L, Hu S J, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input[J]. Global Change Biology, 2015, 21(3): 1249-1257. |
[44] | 卢九斤, 盛海彦, 刘青, 等. 硝化抑制剂对枸杞园土壤的作用效果研究[J]. 干旱地区农业研究, 2020, 38(5): 1-7, 93. |
LU Jiujin, SHENG Haiyan, LIU Qing, et al. Effect of nitrification inhibitors on the soil in wolfberry orchard[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 1-7, 93. |
[1] | ZHOU Xin, LIU Xuanfeng, JIANG Yuhan, ZHANG Haichun, YANG Yuxin, Yeerbdati Tiemuer, JIANG Yongxin, ZHANG Li. Current situation and development proposal of mechanized recovery and resource utilization of used mulch film in cotton fields in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 131-141. |
[2] | MIAO Hongping, WANG Xiaowei, TIAN Conghua, LI Zhi, ZHANG Yuxin, DAI Junsheng. Evolution characteristics and driving factors of cotton production and distribution in Tarim River basin [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 217-226. |
[3] | WANG Junduo, CUI Yujiang, LIANG Yajun, GONG Zhaolong, ZHENG Junyun, LI Xueyuan. Xinjiang cotton production advantageous regional layout scheme [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 60-69. |
[4] | ZHENG Juyun, GONG Zhaolong, LIANG Yajun, GENG Shiwei, SUN Fenglei, YANG ni, LI Xueyuan, WANG Junduo. Key technology model of machine-picked cotton production in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 70-74. |
[5] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[6] | LI Jie, LIU Jia, WANG Liang, ZHANG Na, YANG Yanlong, ZHENG Zipiao, WEI Xin, WANG Meng, ZHOU Zixin, YANG Ni, GONG Zhaolong, HOU Xianfei, HUANG Qixiu, Abudukadier kuerban, ZHANG Jipeng, CHANG Pengzhong. Current situation of transformation and application of scientific and technological achievements of "cotton, oil and sugar" [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 89-94. |
[7] | BIAN Qingyong, FU Yanbo, QI Tong, HUANG Jian, PU Shenghai, MENG Ajing, Halihashi Yibati. Study on influencing factors of cotton emergence and protection measures in saline-alkali land in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 95-100. |
[8] | LI Yongtai, GAO Axiang, LI Yanjun, ZHANG Xinyu. Effects of defoliants on the physiological characteristics of cotton varieties with different sensitivities [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2094-2102. |
[9] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[10] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[11] | WANG Chao, XU Wenxiu, LI Pengcheng, ZHENG Cangsong, SUN Miao, FENG Weina, SHAO Jingjing, DONG Helin. Response of cotton seedling growth and development to soil available potassium levels [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2132-2139. |
[12] | ZHANG Tingjun, LI Zihui, CUI Yujiang, SUN Xiaogui, CHEN Fang. Effects of microbial agents on cotton growth and soil physico-chemical properties [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2269-2276. |
[13] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[14] | ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L. [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830. |
[15] | DONG Zhiduo, XU Fei, FU Qiuping, HUANG Jian, QI Tong, MENG Ajing, FU Yanbo, Kaisaier Kuerban. Effects of different types of salt and alkali stress on cotton seed germination [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1831-1844. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||