Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (8): 2004-2013.DOI: 10.6048/j.issn.1001-4330.2024.08.021
• Horticultural Special Local Products · Agricultural Product Processing Engineering · Forestry • Previous Articles Next Articles
YAO Shiyu1(), WANG Jie1, HUANG Wenjuan1,2(
), JIAO Peipei1,2, PENG Chengzhi1, XIONG Dan1, CHEN Yue1, WANG Xin1
Received:
2023-12-07
Online:
2024-08-20
Published:
2024-09-19
Correspondence author:
HUANG Wenjuan
Supported by:
姚诗雨1(), 王杰1, 黄文娟1,2(
), 焦培培1,2, 彭承志1, 熊丹1, 陈月1, 王鑫1
通讯作者:
黄文娟
作者简介:
姚诗雨(1998-),女,江西上饶人,硕士研究生,研究方向为荒漠区植物保育,(E-mail)1091275698@qq.com
基金资助:
CLC Number:
YAO Shiyu, WANG Jie, HUANG Wenjuan, JIAO Peipei, PENG Chengzhi, XIONG Dan, CHEN Yue, WANG Xin. Effects of different saline environments on anatomical structure and ion content of Populus euphratica leaves[J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2004-2013.
姚诗雨, 王杰, 黄文娟, 焦培培, 彭承志, 熊丹, 陈月, 王鑫. 不同盐渍环境对胡杨叶解剖结构及离子含量的影响[J]. 新疆农业科学, 2024, 61(8): 2004-2013.
样地编号 Sample site number | 地点 Location | 纬度 N (°) | 经度 E (°) | 海拔 Altitude (m) | 胡杨胸径 P.euphratica breast diameter (cm) | 距塔里木河距离 Distance from Tarim River (m) |
---|---|---|---|---|---|---|
A1 | 沙雅县 | 40.963 11 | 83.340 06 | 881.2 | 20.5 | 南岸:4 305.32 |
A2 | 沙雅县-克尔克乔勒 | 41.007 75 | 83.321 71 | 891.5 | 21 | 北岸:2 408.88 |
A3 | 沙雅县-县道×329线 | 41.073 32 | 83.159 26 | 891.8 | 19.833 | 北岸:147 901.4 |
Tab.1 Basic information of each sampling site
样地编号 Sample site number | 地点 Location | 纬度 N (°) | 经度 E (°) | 海拔 Altitude (m) | 胡杨胸径 P.euphratica breast diameter (cm) | 距塔里木河距离 Distance from Tarim River (m) |
---|---|---|---|---|---|---|
A1 | 沙雅县 | 40.963 11 | 83.340 06 | 881.2 | 20.5 | 南岸:4 305.32 |
A2 | 沙雅县-克尔克乔勒 | 41.007 75 | 83.321 71 | 891.5 | 21 | 北岸:2 408.88 |
A3 | 沙雅县-县道×329线 | 41.073 32 | 83.159 26 | 891.8 | 19.833 | 北岸:147 901.4 |
样地 编号 Sample site number | pH值 pH value | 全盐 Total salt (g/kg) | 电导率 Conductivity (μS/cm) | 含水量 Water content (%) | 生境类型 Habitat type |
---|---|---|---|---|---|
A1 | 7.80 | 5.43 | 6.84 | 15.89 | 高盐生境 |
A2 | 8.03 | 2.42 | 3.37 | 22.45 | 中盐生境 |
A3 | 8.09 | 1.17 | 1.52 | 11.73 | 低盐生境 |
Tab.2 Analysis and division of soil environmental salinity at different points
样地 编号 Sample site number | pH值 pH value | 全盐 Total salt (g/kg) | 电导率 Conductivity (μS/cm) | 含水量 Water content (%) | 生境类型 Habitat type |
---|---|---|---|---|---|
A1 | 7.80 | 5.43 | 6.84 | 15.89 | 高盐生境 |
A2 | 8.03 | 2.42 | 3.37 | 22.45 | 中盐生境 |
A3 | 8.09 | 1.17 | 1.52 | 11.73 | 低盐生境 |
指标 Indexes | 高盐生境 High-salt habitats | 中盐生境 Medium-salt habitats | 低盐生境 Low-salt habitats |
---|---|---|---|
叶厚度 Leaf thickness(μm) | 152.878±7.432a | 144.562±8.731a | 165.097±11.056a |
上表皮厚度 Upper epidermal thickness(μm) | 8.363±0.435a | 8.459±0.281a | 8.02±0.144a |
下表皮厚度 Lower epidermal thicknes(μm) | 8.427±0.3a | 8.225±0.305a | 7.672±0.285a |
上表皮角质层厚度 Upper stratum corneum thickness(μm) | 1.351±0.168ab | 1.795±0.36a | 1.012±0.094b |
栅栏组织厚度 Palisade tissue thickness(μm) | 24.502±1.131a | 26.441±1.836a | 25.606±1.123a |
海绵组织厚度 Sponge tissue thickness(μm) | 14.493±0.925ab | 12.608±0.615b | 16.514±1.412a |
栅栏组织/海绵组织 Palisade tissue/sponge tissue | 1.832±0.186ab | 2.13±0.128a | 1.664±0.118b |
叶片紧密度 Ratio of palisade/leaf thinkness | 0.166±0.011a | 0.189±0.015a | 0.163±0.011a |
叶片疏松度 Ratio of spongy/leaf looseness. | 0.097±0.007a | 0.092±0.007a | 0.103±0.008a |
粘液细胞面积 Mucus cell area(μm2) | 286.455±14.925b | 414.284±64.407a | 362.685±17.078ab |
中脉维管束面积 Midrib vascular bundle area(μm2) | 82 555.936±12 130.119a | 82 821.66±11 027.582a | 119 162.488±18 986.066a |
Tab.3 Comparisons of basic characteristics of leaf anatomy of P. euphratica in different environments
指标 Indexes | 高盐生境 High-salt habitats | 中盐生境 Medium-salt habitats | 低盐生境 Low-salt habitats |
---|---|---|---|
叶厚度 Leaf thickness(μm) | 152.878±7.432a | 144.562±8.731a | 165.097±11.056a |
上表皮厚度 Upper epidermal thickness(μm) | 8.363±0.435a | 8.459±0.281a | 8.02±0.144a |
下表皮厚度 Lower epidermal thicknes(μm) | 8.427±0.3a | 8.225±0.305a | 7.672±0.285a |
上表皮角质层厚度 Upper stratum corneum thickness(μm) | 1.351±0.168ab | 1.795±0.36a | 1.012±0.094b |
栅栏组织厚度 Palisade tissue thickness(μm) | 24.502±1.131a | 26.441±1.836a | 25.606±1.123a |
海绵组织厚度 Sponge tissue thickness(μm) | 14.493±0.925ab | 12.608±0.615b | 16.514±1.412a |
栅栏组织/海绵组织 Palisade tissue/sponge tissue | 1.832±0.186ab | 2.13±0.128a | 1.664±0.118b |
叶片紧密度 Ratio of palisade/leaf thinkness | 0.166±0.011a | 0.189±0.015a | 0.163±0.011a |
叶片疏松度 Ratio of spongy/leaf looseness. | 0.097±0.007a | 0.092±0.007a | 0.103±0.008a |
粘液细胞面积 Mucus cell area(μm2) | 286.455±14.925b | 414.284±64.407a | 362.685±17.078ab |
中脉维管束面积 Midrib vascular bundle area(μm2) | 82 555.936±12 130.119a | 82 821.66±11 027.582a | 119 162.488±18 986.066a |
Fig.1 Leaf anatomy of P. euphratica in different habitats Note: A. Upper epidermis; B. Lower epidermis; C. Cuticle of upper epidermis; D. Fence organization; E. Spongy tissue; F. Midvein vascular bundle; G. Mucus cells
Fig.2 Comparisons of the content of ions in P. euphratica leaves in different environments Note: The inclusion of different lowercase letters indicates that the difference between different sites under various soil index factors is significant (P<0.05),the same as below
Fig.4 Correlations between leaf anatomy and ion content of P. euphratica in different environments Note: ** At level 0.01 (double-tailed), the correlation is significant. * At level 0.05 (double-tailed), the correlation is significant(the same as below); LT: leaf thickness; UET: upper epidermal thickness; LET: lower epidermal thickness; USCT upper stratum corneum thickness ; PTT:palisade tissue thickness ST: sponge tissue; MCA: mucus cell area; MVBA: midrib vascular bundle area; P/S:ratio of palisade tissue/sponge tissue; CTR:ratio of palisade/leaf thinkness; SR: ratio of spongy/leaf looseness
指标 Indexes | pH值 pH value | 全盐 Total salt | 含水量 Water content | 电导率 Cond- uctivity |
---|---|---|---|---|
0.254 | -0.254 | 0.085 | -0.296* | |
Cl-(g/kg) | 0.263 | 0.017 | -0.185 | -0.002 |
Ca2+(g/kg) | -0.044 | -0.13 | -0.02 | -0.181 |
Mg2+(g/kg) | 0.173 | -0.224 | -0.143 | -0.222 |
-0.164 | 0.323* | 0.008 | 0.375* | |
Na+(g/kg) | 0.391** | -0.238 | -0.098 | -0.248 |
K+(g/kg) | -0.498** | 0.508** | -0.274 | 0.603** |
叶厚度(LT) | -0.212 | -0.026 | 0.274 | -0.059 |
上表皮厚度(UET) | -0.105 | 0.418** | 0.032 | 0.303* |
下表皮厚度(LET) | -0.182 | 0.347* | 0.275 | 0.256 |
上表皮角质层厚度 (USCT) | -0.031 | 0.016 | 0.101 | 0.074 |
栅栏组织厚度(PTT) | 0.088 | -0.104 | 0.414** | -0.128 |
海绵组织(ST) | -0.377* | -0.088 | 0.029 | -0.043 |
粘液细胞面积(MCA) | -0.017 | -0.183 | 0.473** | -0.098 |
中脉维管束面积 (MVBA) | -0.225 | -0.188 | 0.114 | -0.165 |
栅/海比(P/S) | 0.382** | -0.032 | 0.334* | -0.055 |
叶片紧密度(CTR) | 0.208 | -0.07 | 0.078 | -0.056 |
叶片疏松度(SR) | -0.166 | -0.088 | -0.249 | -0.004 |
Tab.4 Analysis of leaf anatomical structure, ion and soil correlation
指标 Indexes | pH值 pH value | 全盐 Total salt | 含水量 Water content | 电导率 Cond- uctivity |
---|---|---|---|---|
0.254 | -0.254 | 0.085 | -0.296* | |
Cl-(g/kg) | 0.263 | 0.017 | -0.185 | -0.002 |
Ca2+(g/kg) | -0.044 | -0.13 | -0.02 | -0.181 |
Mg2+(g/kg) | 0.173 | -0.224 | -0.143 | -0.222 |
-0.164 | 0.323* | 0.008 | 0.375* | |
Na+(g/kg) | 0.391** | -0.238 | -0.098 | -0.248 |
K+(g/kg) | -0.498** | 0.508** | -0.274 | 0.603** |
叶厚度(LT) | -0.212 | -0.026 | 0.274 | -0.059 |
上表皮厚度(UET) | -0.105 | 0.418** | 0.032 | 0.303* |
下表皮厚度(LET) | -0.182 | 0.347* | 0.275 | 0.256 |
上表皮角质层厚度 (USCT) | -0.031 | 0.016 | 0.101 | 0.074 |
栅栏组织厚度(PTT) | 0.088 | -0.104 | 0.414** | -0.128 |
海绵组织(ST) | -0.377* | -0.088 | 0.029 | -0.043 |
粘液细胞面积(MCA) | -0.017 | -0.183 | 0.473** | -0.098 |
中脉维管束面积 (MVBA) | -0.225 | -0.188 | 0.114 | -0.165 |
栅/海比(P/S) | 0.382** | -0.032 | 0.334* | -0.055 |
叶片紧密度(CTR) | 0.208 | -0.07 | 0.078 | -0.056 |
叶片疏松度(SR) | -0.166 | -0.088 | -0.249 | -0.004 |
[1] | 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993. |
WANG Zunqin. Saline soil in China[M]. Beijing: Science Press, 1993. | |
[2] | Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany, 2003, 49(1): 69-76. |
[3] | 乔旭, 黄爱军, 褚贵新. 植物对盐分胁迫的响应及其耐盐机理研究进展[J]. 新疆农业科学, 2011, 48(11): 2089-2094. |
QIAO Xu, HUANG Aijun, CHU Guixin. Research progress in the effects of salt stress on plant and the mechanism of plant resistance[J]. Xinjiang Agricultural Sciences, 2011, 48(11): 2089-2094. | |
[4] | 赵春彦, 秦洁, 贺晓慧, 等. 荒漠河岸林胡杨对盐胁迫的适应机制[J]. 干旱区资源与环境, 2022, 36(7): 166-172. |
ZHAO Chunyan, QIN Jie, HE Xiaohui, et al. Mechanisms underlying adaption of Populus Euphratica to salt stress in desert riparian forests[J]. Journal of Arid Land Resources and Environment, 2022, 36(7): 166-172. | |
[5] | Albaladejo I, Meco V, Plasencia F, et al. Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: From leaf anatomical adaptations to molecular responses[J]. Environmental and Experimental Botany, 2017, (135): 1-12. |
[6] | 岑湘涛, 沈伟, 牛俊乐, 等. 基于植物叶片解剖结构的抗逆性评价研究进展[J]. 北方园艺, 2021,(18): 140-147. |
CEN Xiangtao, SHEN Wei, NIU Junle, et al. Research progress of stress resistance evaluation based on the anatomy of plant leaves[J]. Northern Horticulture, 2021,(18): 140-147. | |
[7] | 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 40(S1): 118-127. |
LI Fanglan, BAO Weikai. Response and adaptation of plant leaf morphological and anatomical structure to environmental changes[J]. Chinese Bulletin of Botany, 2005, 40(S1): 118-127. | |
[8] | 章英才, 闫天珍. 花花柴叶片解剖结构与生态环境关系的研究[J]. 宁夏农学院学报, 2003, 24(1): 31-33. |
ZHANG Yingcai, YAN Tianzhen. Study on relationship between anatomical structure of leaves of karelinia capsia (pall) less and ecological environment[J]. Journal of Ningxia Agricultural College, 2003, 24(1): 31-33. | |
[9] | Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J]. Trees, 2004, 18(2): 167-174. |
[10] | 顾骁, 杨文丽, 吴远燕, 等. 植物对盐胁迫的适应机制及其提高耐盐能力的主要途径[J]. 农技服务, 2021, 38(7): 92-96. |
GU Xiao, YANG Wenli, WU Yuanyan, et al. The adaptive mechanism of plants to salt stress and the main ways to improve salt tolerance[J]. Agricultural Technology Service, 2021, 38(7): 92-96. | |
[11] | 皇甫文君, 李继武. 塔里木河流域胡杨林退化情况及生态保护建议[J]. 新疆林业, 2021,(2): 4-6. |
HUANGFU Wenjun, LI Jiwu. Degradation of Populus euphratica forest in Tarim River Basin and suggestions on ecological protection[J]. Forestry of Xinjiang, 2021,(2): 4-6. | |
[12] | 鲁艳, 雷加强, 曾凡江, 等. NaCl处理对胡杨生长及生理生态特征的影响[J]. 干旱区研究, 2015, 32(2): 279-285. |
LU Yan, LEI Jiaqiang, ZENG Fanjiang, et al. Effects of NaCl treatments on growth and ecophysiological characteristics of Populus euphratica[J]. Arid Zone Research, 2015, 32(2): 279-285. | |
[13] | 李菊艳, 赵成义, 闫映宇, 等. 盐分对胡杨(Populus euphratica)幼苗生长和离子平衡的影响[J]. 干旱区地理, 2016, 39(3): 613-620. |
LI Juyan, ZHAO Chengyi, YAN Yingyu, et al. Effect of salinity on growth, ionic homeostasis in organs of Populus euphratica seedlings[J]. Arid Land Geography, 2016, 39(3): 613-620. | |
[14] | 张霞, 曾幼玲, 李金耀, 等. 胡杨(Populus euphratica oliv)的耐盐性[J]. 植物生理学通讯, 2006,(6):1190-1194. |
ZHANG Xia, ZENG Youling, LI Jinyao, et al. Salt tolerance in Populus euphratica oliv[J]. Plant Physiology Communications, 2006,(6):1190-1194. | |
[15] |
张肖, 王旭, 焦培培, 等. 胡杨(Populus euphratica)种子萌发及胚生长对盐旱胁迫的响应[J]. 中国沙漠, 2016, 36(6): 1597-1605.
DOI |
ZHANG Xiao, WANG Xu, JIAO Peipei, et al. Response of seed germination and embryo growth to salt stress and drought stress of Populus euphratica[J]. Journal of Desert Research, 2016, 36(6): 1597-1605. | |
[16] | 孙兆军. 银川平原盐碱荒地改良模式研究[D]. 北京: 北京林业大学, 2011. |
SUN Zhaojun. Amelioration Models for Saline-alkali Wasterland in Yinchuan Plain[D]. Beijing: Beijing Forestry University, 2011. | |
[17] | 王虹, 齐政, 张富春. 不同浓度盐胁迫下盐穗木叶片结构的比较观察[J]. 新疆农业科学, 2016, 53(11): 2098-2105. |
WANG Hong, QI Zheng, ZHANG Fuchun. Leaf anatomical structure of Halostachys caspica under different concentrations of salt stress[J]. Xinjiang Agricultural Sciences, 2016, 53(11): 2098-2105. | |
[18] | 肖磊, 陈宁美, 陈悦, 等. 内蒙古与北京地区胡杨异形叶表皮蜡质及气孔形态显微结构差异[J]. 中央民族大学学报(自然科学版), 2016, 25(3): 85-91. |
XIAO Lei, CHEN Ningmei, CHEN Yue, et al. The difference of cuticle wax crystallization and Stoma morphology of lanceolate and broad-ovate leaves of Populus euphratica olive between Ejina Area in Inner Mongolia and Beijing Area[J]. Journal of Minzu University of China (Natural Sciences Edition), 2016, 25(3): 85-91. | |
[19] | 洪文君, 申长青, 庄雪影, 等. 盐胁迫对竹柳幼苗生理响应及结构解剖的研究[J]. 热带亚热带植物学报, 2017, 25(5): 489-496. |
HONG Wenjun, SHEN Changqing, ZHUANG Xueying, et al. Effect of NaCl stress on physiological responses and anatomical structure of Salix spp. seedlings[J]. Journal of Tropical and Subtropical Botany, 2017, 25(5): 489-496. | |
[20] | 贾文飞, 魏晓琼, 聂小兰, 等. 盐碱胁迫对越橘生理特性及叶片解剖结构的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(5): 115-126. |
JIA Wenfei, WEI Xiaoqiong, NIE Xiaolan, et al. Effects of saline-alkali stress on physiological characteristics and anatomic structure of blueberry leave[J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(5): 115-126. | |
[21] | 章英才. 几种不同盐生植物叶的比较解剖研究[J]. 宁夏大学学报(自然科学版), 2006, 27(1): 68-71. |
ZHANG Yingcai. Studies of comparative anatomy structure of several different saline plants leaves[J]. Journal of Ningxia University (Natural Science Edition), 2006, 27(1): 68-71. | |
[22] | 燕玲, 李红, 贺晓, 等. 阿拉善地区9种珍稀濒危植物营养器官生态解剖观察[J]. 内蒙古农业大学学报(自然科学版), 2000, 21(3): 65-71. |
YAN Ling, LI Hong, HE Xiao, et al. Ecological anatomy of nine priority species in a la San arwa[J]. Journal of Inner Mongola Institute of Agriculture and Animal Husbandry, 2000, 21(3): 65-71. | |
[23] | 王斌, 巨波, 赵慧娟, 等. 不同盐梯度处理下沼泽小叶桦的生理特征及叶片结构[J]. 林业科学, 2011, 47(10): 29-36. |
WANG Bin, JU Bo, ZHAO Huijuan, et al. Photosynthetic performance and variation in leaf anatomic structure of Betula microphylla var. paludosa under different saline conditions[J]. Scientia Silvae Sinicae, 2011, 47(10): 29-36. | |
[24] | 李志军, 吕春霞, 段黄金. 胡杨和灰叶胡杨营养器官的解剖学研究[J]. 塔里木农垦大学学报, 1996, 8(2): 21-25, 33. |
LI Zhijun, LYU Chunxia, DUAN Huangjin. Anatomical studies on the vegetative organs of Populus euphtatica oliv. and Populus pruinosa schrenk[J]. Journal of Tarim University of Agricultural Reclamation, 1996, 8(2): 21-25, 33. | |
[25] | 戴凌燕, 张立军, 阮燕晔, 等. 苏打盐碱胁迫对甜高粱叶片结构及抗性指标的影响[J]. 农业环境科学学报, 2012, 31(3): 468-475. |
DAI Lingyan, ZHANG Lijun, RUAN Yanye, et al. Effects of saline-sodic stress on the blade structure and resistant indexes in sweet Sorghum(Sorghum bicolor L.Moench)[J]. Journal of Agro-Environment Science, 2012, 31(3): 468-475. | |
[26] |
陈旭, 刘洪凯, 赵春周, 等. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应[J]. 植物生态学报, 2019, 43(8): 697-708.
DOI |
CHEN Xu, LIU Hongkai, ZHAO Chunzhou, et al. Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China[J]. Chinese Journal of Plant Ecology, 2019, 43(8): 697-708.
DOI |
|
[27] |
Ruiz-Lozano J M, Porcel R, Azcón C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies[J]. Journal of Experimental Botany, 2012, 63(11): 4033-4044.
DOI PMID |
[28] | 左照江, 张汝民, 高岩. 盐胁迫下植物细胞离子流变化的研究进展[J]. 浙江农林大学学报, 2014, 31(5): 805-811. |
ZUO Zhaojiang, ZHANG Rumin, GAO Yan. Advances in plant cell ion flux with salt stress: a review[J]. Journal of Zhejiang A & F University, 2014, 31(5): 805-811. | |
[29] | 张瑾. 胡杨吸盐能力的研究[D]. 呼和浩特: 内蒙古大学, 2013. |
ZHANG Jin. The Research on the Abiliti of Absorbing Salt of Populus Euphratica[D]. Hohhot: Inner Mongolia University, 2013. | |
[30] | 新疆维吾尔自治区农业厅、 新疆维吾尔自治区土壤普查办公室. 新疆土壤[M]. 北京: 科学出版社, 1996. |
Department of Agriculture of Xinjiang Uygur Autonomous Region, Soil Census Office of Xinjiang Uygur Autonomous Region. Xinjiang Soil[M]. Beijing: Science Press, 1996. | |
[31] | Schmidt A. Metabolic background of H2S release from plants[J]. Landbauforschung Volkenrode, 2005, 283(S1):121-129. |
[32] | Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669. |
[33] | Sun J, Chen S L, Dai S X, et al. Ion flux profiles and plant ion homeostasis control under salt stress[J]. Plant Signaling & Behavior, 2009, 4(4): 261-264. |
[34] | 罗青红, 周斌, 李英仑, 等. 盐渍土壤大果沙枣树主要矿质阳离子的吸收和分配特征[J]. 西北植物学报, 2021, 41(8): 1371-1379. |
LUO Qinghong, ZHOU Bin, LI Yinglun, et al. Absorption and distribution of main mineral cations of Elaeagnus moorcroftii in salinized land[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1371-1379. | |
[35] |
Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C(3) Non-Halophytes[J]. Plant Physiology, 1991, 95(2): 628-635.
DOI PMID |
[36] | Tang R J, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network[J]. Current Opinion in Plant Biology, 2017, (39): 97-105. |
[37] | De Silva D L R, Hetherington A M, Mansfield T A. Where does all the calcium go? Evidence of an important regulatory role for trichomes in two calcicoles[J]. Plant, Cell & Environment, 1996, 19(7): 880-886. |
[38] | 朱义, 谭贵娥, 何池全, 等. 盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J]. 生态学报, 2007, 27(12): 5447-5454. |
ZHU Yi, TAN Guie, HE Chiquan, et al. Effect of salinization on growth and ion homeostasis in seedlings of Festuca arundinacea[J]. Acta Ecologica Sinica, 2007, 27(12): 5447-5454. | |
[39] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
QI Qi, MA Shurong, XU Weidong. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746. | |
[40] | Wakeel A, Farooq M, Qadir M, et al. Potassium substitution by sodium in plants[J]. Critical Reviews in Plant Sciences, 2011, 30(4): 401-413. |
[1] | GUO Wenchao, JIA Zunzun, DING Xinhua, Ye Xiaoqin, Fu Kaiyun, Tursun·Ahemati , WANG Xiaowu, QIAO Xiaoyan, SUN Jianbo. The review on the competitive substitution of Ostrinia. furnacalis and O. furnacalis in Xinjiang desert oasis ecological region [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 1-11. |
[2] | ZHANG Zheng, WEI Jia, GUO Wenli, XU Mingqiang, MA Yan, XU Bin, ZHAO Zhixia, YUAN Yuyao, MENG Xintao, WEI Nan, WU Bin. Development Status and Demand of Preservation and Processing Industry of Prunes in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 111-115. |
[3] | ZHU Xiaofeng, XU Bingqiang, Abudukeyoumu Kadeer, LI Haiqiang, SONG Bo, CHEN Haoyu, HAO Jingzhe. The occurrence and control status of fruit tree diseases and insect pests in Xinjiang: A case study of jujube [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 116-121. |
[4] | ZHOU Xin, LIU Xuanfeng, JIANG Yuhan, ZHANG Haichun, YANG Yuxin, Yeerbdati Tiemuer, JIANG Yongxin, ZHANG Li. Current situation and development proposal of mechanized recovery and resource utilization of used mulch film in cotton fields in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 131-141. |
[5] | LUO Wenjie, ZHANG Haichun, LIU Xuanfeng, ZHANG Li, ZHOU Xin. Research of combined operation machine for secondary throwing straw crushing and residual film recovery [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 142-146. |
[6] | SHEN Xiaohe, ZHU Zhanjiang, YANG Liling, LIU Jia, Abulizi Basiti. Current situation and development suggestions of wine grape mechanization in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 147-152. |
[7] | HOU Min, HUANG Xinxin, LIN Qing, YANG Fan, YAO Huaibing, YAN Yuanyuan, Maierhaba Aihemaiti, ZHAN Faqiang, CUI Weidong. Problems and countermeasures in the efficient use of straw for animal feed in Xinjiang - A case study of Kashi region [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 153-157. |
[8] | WU Yating, CHEN He, ZHENG Nan, MA Xianlan, ZHOU Lina, ZHAO Yankun. Current situation and development trend prospect of Xinjiang characteristic dairy industry [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 158-162. |
[9] | YANG Hongwei, CHEN Ru, YAO Guomin, HE Yating, TANG Yong, WANG Juanli, CHEN Yong. The Current Development Status of the Apocynum venetum industry in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 163-167. |
[10] | DENG Wenwen, YUE Rongqiang, ZHANG Qiong, WANG Fang, CHEN Yu, BAI Jing, LI Zhi, JIANG Guowei, ZHAO Xin, SU Wuzheng. Survey report on vegetable circulation and consumption market in Urumqi [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 168-174. |
[11] | YAN Manman, JIANG Tingting, ZHENG Feng. Practice and discussion on education and training of young managers in agricultural research institutes [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 181-185. |
[12] | XU Le, XIAO Hailong, ZHA Zhihao, YANG Haoran, LIU Tingting, CHEN Keke, DING Wanyue, WANG Penghao, Renaguli Yunusi. Analysis of the current situation of cooperation between research institutes and universities [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 186-190. |
[13] | GAO Min, SUN Zhaozhan, ZHAO Xiaomeng, HU Lingling, Jiayina , KONG Fanyang, LIU yuan, YANG Haoran, GUO Chunmiao, YAO Yanling. Practice and reflection on cultivating high level talents to enhance the technological innovation capability of agricultural research institutes [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 191-195. |
[14] | ZHU Wenbin, SUN Xu, CHENG Yulan. Research on the impact of digital inclusive finance on the contribution rate of agricultural science and technology progress in China-An empirical study based on 31 interprovincial panel data [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 206-216. |
[15] | MIAO Hongping, WANG Xiaowei, TIAN Conghua, LI Zhi, ZHANG Yuxin, DAI Junsheng. Evolution characteristics and driving factors of cotton production and distribution in Tarim River basin [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 217-226. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||