Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (4): 847-854.DOI: 10.6048/j.issn.1001-4330.2022.04.008
• Crop Genetics and Breeding·Molecular Genetics·Cultivation Physiology·Germplasm Resources • Previous Articles Next Articles
NIE Shihui(), WANG Xian, PENG Lin, JI Liang(
)
Received:
2021-07-13
Online:
2022-04-20
Published:
2022-04-24
Correspondence author:
JI Liang
Supported by:
通讯作者:
季良
作者简介:
聂石辉(1987-),男,河南人,助理研究员,研究方向为作物遗传育种,(E-mail) 250303063@qq.com
基金资助:
CLC Number:
NIE Shihui, WANG Xian, PENG Lin, JI Liang. Preliminary Construction of Chickpea Drought Resistance Core Germplasm Based on Agronomic Traits[J]. Xinjiang Agricultural Sciences, 2022, 59(4): 847-854.
聂石辉, 王仙, 彭琳, 季良. 基于农艺性状鹰嘴豆抗旱核心种质库构建[J]. 新疆农业科学, 2022, 59(4): 847-854.
编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI |
---|---|---|---|---|---|---|---|---|---|
YZ-1 | 1.132 | YZ-21 | 1.263 | YZ-41 | 1.330 | YZ-61 | 1.419 | YZ-81 | 1.520 |
YZ-2 | 1.135 | YZ-22 | 1.267 | YZ-42 | 1.334 | YZ-62 | 1.420 | YZ-82 | 1.524 |
YZ-3 | 1.160 | YZ-23 | 1.267 | YZ-43 | 1.334 | YZ-63 | 1.425 | YZ-83 | 1.525 |
YZ-4 | 1.182 | YZ-24 | 1.268 | YZ-44 | 1.348 | YZ-64 | 1.425 | YZ-84 | 1.537 |
YZ-5 | 1.189 | YZ-25 | 1.271 | YZ-45 | 1.351 | YZ-65 | 1.428 | YZ-85 | 1.550 |
YZ-6 | 1.193 | YZ-26 | 1.272 | YZ-46 | 1.354 | YZ-66 | 1.429 | YZ-86 | 1.556 |
YZ-7 | 1.195 | YZ-27 | 1.276 | YZ-47 | 1.356 | YZ-67 | 1.442 | YZ-87 | 1.569 |
YZ-8 | 1.204 | YZ-28 | 1.283 | YZ-48 | 1.360 | YZ-68 | 1.443 | YZ-88 | 1.571 |
YZ-9 | 1.206 | YZ-29 | 1.284 | YZ-49 | 1.360 | YZ-69 | 1.457 | YZ-89 | 1.574 |
YZ-10 | 1.208 | YZ-30 | 1.289 | YZ-50 | 1.362 | YZ-70 | 1.461 | YZ-90 | 1.577 |
YZ-11 | 1.212 | YZ-31 | 1.294 | YZ-51 | 1.362 | YZ-71 | 1.485 | YZ-91 | 1.592 |
YZ-12 | 1.216 | YZ-32 | 1.299 | YZ-52 | 1.363 | YZ-72 | 1.488 | YZ-92 | 1.592 |
YZ-13 | 1.235 | YZ-33 | 1.307 | YZ-53 | 1.365 | YZ-73 | 1.493 | YZ-93 | 1.607 |
YZ-14 | 1.238 | YZ-34 | 1.309 | YZ-54 | 1.379 | YZ-74 | 1.494 | YZ-94 | 1.610 |
YZ-15 | 1.240 | YZ-35 | 1.311 | YZ-55 | 1.379 | YZ-75 | 1.496 | YZ-95 | 1.626 |
YZ-16 | 1.247 | YZ-36 | 1.313 | YZ-56 | 1.380 | YZ-76 | 1.500 | YZ-96 | 1.640 |
YZ-17 | 1.251 | YZ-37 | 1.322 | YZ-57 | 1.381 | YZ-77 | 1.507 | YZ-97 | 1.644 |
YZ-18 | 1.258 | YZ-38 | 1.324 | YZ-58 | 1.413 | YZ-78 | 1.512 | YZ-98 | 1.646 |
YZ-19 | 1.259 | YZ-39 | 1.324 | YZ-59 | 1.413 | YZ-79 | 1.513 | YZ-99 | 1.654 |
YZ-20 | 1.260 | YZ-40 | 1.326 | YZ-60 | 1.415 | YZ-80 | 1.515 | YZ-100 | 1.659 |
Table 1 Participating material number and drought resistance index
编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI | 编号 No. | 抗旱指数 DI |
---|---|---|---|---|---|---|---|---|---|
YZ-1 | 1.132 | YZ-21 | 1.263 | YZ-41 | 1.330 | YZ-61 | 1.419 | YZ-81 | 1.520 |
YZ-2 | 1.135 | YZ-22 | 1.267 | YZ-42 | 1.334 | YZ-62 | 1.420 | YZ-82 | 1.524 |
YZ-3 | 1.160 | YZ-23 | 1.267 | YZ-43 | 1.334 | YZ-63 | 1.425 | YZ-83 | 1.525 |
YZ-4 | 1.182 | YZ-24 | 1.268 | YZ-44 | 1.348 | YZ-64 | 1.425 | YZ-84 | 1.537 |
YZ-5 | 1.189 | YZ-25 | 1.271 | YZ-45 | 1.351 | YZ-65 | 1.428 | YZ-85 | 1.550 |
YZ-6 | 1.193 | YZ-26 | 1.272 | YZ-46 | 1.354 | YZ-66 | 1.429 | YZ-86 | 1.556 |
YZ-7 | 1.195 | YZ-27 | 1.276 | YZ-47 | 1.356 | YZ-67 | 1.442 | YZ-87 | 1.569 |
YZ-8 | 1.204 | YZ-28 | 1.283 | YZ-48 | 1.360 | YZ-68 | 1.443 | YZ-88 | 1.571 |
YZ-9 | 1.206 | YZ-29 | 1.284 | YZ-49 | 1.360 | YZ-69 | 1.457 | YZ-89 | 1.574 |
YZ-10 | 1.208 | YZ-30 | 1.289 | YZ-50 | 1.362 | YZ-70 | 1.461 | YZ-90 | 1.577 |
YZ-11 | 1.212 | YZ-31 | 1.294 | YZ-51 | 1.362 | YZ-71 | 1.485 | YZ-91 | 1.592 |
YZ-12 | 1.216 | YZ-32 | 1.299 | YZ-52 | 1.363 | YZ-72 | 1.488 | YZ-92 | 1.592 |
YZ-13 | 1.235 | YZ-33 | 1.307 | YZ-53 | 1.365 | YZ-73 | 1.493 | YZ-93 | 1.607 |
YZ-14 | 1.238 | YZ-34 | 1.309 | YZ-54 | 1.379 | YZ-74 | 1.494 | YZ-94 | 1.610 |
YZ-15 | 1.240 | YZ-35 | 1.311 | YZ-55 | 1.379 | YZ-75 | 1.496 | YZ-95 | 1.626 |
YZ-16 | 1.247 | YZ-36 | 1.313 | YZ-56 | 1.380 | YZ-76 | 1.500 | YZ-96 | 1.640 |
YZ-17 | 1.251 | YZ-37 | 1.322 | YZ-57 | 1.381 | YZ-77 | 1.507 | YZ-97 | 1.644 |
YZ-18 | 1.258 | YZ-38 | 1.324 | YZ-58 | 1.413 | YZ-78 | 1.512 | YZ-98 | 1.646 |
YZ-19 | 1.259 | YZ-39 | 1.324 | YZ-59 | 1.413 | YZ-79 | 1.513 | YZ-99 | 1.654 |
YZ-20 | 1.260 | YZ-40 | 1.326 | YZ-60 | 1.415 | YZ-80 | 1.515 | YZ-100 | 1.659 |
性状 Trait | 遗传多样性指数 H' | 频率分布Ratio of distribution | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
株型 Plant type | 0.920 5 | 8 | 22 | 33 | 23 | 14 | - | - |
复叶叶型 Compound leaf type | 0.608 5 | 79 | 11 | 10 | - | - | - | - |
花色 Flower color | 0.972 7 | 28 | 13 | 11 | 20 | 25 | 2 | 1 |
粒型 Seed shape | 0.671 7 | 17 | 69 | 14 | - | - | - | - |
粒色 Seed coat color | 0.937 2 | 9 | 45 | 12 | 8 | 15 | 11 | - |
种子表面 Seed surface shape | 0.735 4 | 21 | 25 | 54 | - | - | - | - |
Table 2 Genetic diversity analysis of six quality traits of chickpea germplasm resources
性状 Trait | 遗传多样性指数 H' | 频率分布Ratio of distribution | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
株型 Plant type | 0.920 5 | 8 | 22 | 33 | 23 | 14 | - | - |
复叶叶型 Compound leaf type | 0.608 5 | 79 | 11 | 10 | - | - | - | - |
花色 Flower color | 0.972 7 | 28 | 13 | 11 | 20 | 25 | 2 | 1 |
粒型 Seed shape | 0.671 7 | 17 | 69 | 14 | - | - | - | - |
粒色 Seed coat color | 0.937 2 | 9 | 45 | 12 | 8 | 15 | 11 | - |
种子表面 Seed surface shape | 0.735 4 | 21 | 25 | 54 | - | - | - | - |
性状 Trait | 平均值 Average | 最小值 Min | 最大值 Max | 标准差 s | 极差 Range | 变异系数 CV/% |
---|---|---|---|---|---|---|
株高 Plant height ( cm ) | 45.61 | 28.73 | 76.13 | 14.558 | 47.40 | 16.32 |
单株一级分枝数 Number of prmary branches | 5.66 | 3.22 | 9.80 | 1.698 | 6.58 | 18.41 |
单株荚数 Pods per palnt | 138.64 | 22.26 | 296.45 | 76.911 | 274.19 | 48.80 |
每果节荚数 Pods per node | 0.55 | 0.22 | 1.04 | 0.265 | 0.82 | 27.98 |
荚长 Pod length ( cm ) | 1.44 | 1.20 | 2.11 | 0.281 | 0.91 | 8.98 |
单株粒数 Seeds per plant | 186.20 | 27.86 | 400.19 | 120.657 | 372.33 | 47.30 |
单株粒重 Seed yield per plant ( g ) | 36.89 | 8.43 | 76.38 | 21.763 | 67.95 | 40.50 |
百粒重 100-seed weight ( g ) | 19.74 | 6.67 | 38.71 | 10.290 | 32.04 | 23.21 |
产量 Yield per hectare ( kg/hm2 ) | 2 039.45 | 1 126.65 | 3 561.73 | 56.695 | 2 435.08 | 12.23 |
Table 3 Values of 9 quantitative traits related to drought resistance of chickpeas
性状 Trait | 平均值 Average | 最小值 Min | 最大值 Max | 标准差 s | 极差 Range | 变异系数 CV/% |
---|---|---|---|---|---|---|
株高 Plant height ( cm ) | 45.61 | 28.73 | 76.13 | 14.558 | 47.40 | 16.32 |
单株一级分枝数 Number of prmary branches | 5.66 | 3.22 | 9.80 | 1.698 | 6.58 | 18.41 |
单株荚数 Pods per palnt | 138.64 | 22.26 | 296.45 | 76.911 | 274.19 | 48.80 |
每果节荚数 Pods per node | 0.55 | 0.22 | 1.04 | 0.265 | 0.82 | 27.98 |
荚长 Pod length ( cm ) | 1.44 | 1.20 | 2.11 | 0.281 | 0.91 | 8.98 |
单株粒数 Seeds per plant | 186.20 | 27.86 | 400.19 | 120.657 | 372.33 | 47.30 |
单株粒重 Seed yield per plant ( g ) | 36.89 | 8.43 | 76.38 | 21.763 | 67.95 | 40.50 |
百粒重 100-seed weight ( g ) | 19.74 | 6.67 | 38.71 | 10.290 | 32.04 | 23.21 |
产量 Yield per hectare ( kg/hm2 ) | 2 039.45 | 1 126.65 | 3 561.73 | 56.695 | 2 435.08 | 12.23 |
因子 Factor | 特征值 Eigen value | 贡献率 Average (%) | 累计贡献率 Accumulating contribution rate(%) |
---|---|---|---|
1 | 4.232 | 40.590 | 40.590 |
2 | 2.733 | 24.214 | 64.804 |
3 | 1.194 | 12.467 | 77.271 |
4 | 1.040 | 10.221 | 87.492 |
Table 4 Principal component analysis of quantitative traits related to drought resistance of chickpea
因子 Factor | 特征值 Eigen value | 贡献率 Average (%) | 累计贡献率 Accumulating contribution rate(%) |
---|---|---|---|
1 | 4.232 | 40.590 | 40.590 |
2 | 2.733 | 24.214 | 64.804 |
3 | 1.194 | 12.467 | 77.271 |
4 | 1.040 | 10.221 | 87.492 |
取样策略 Sampling method | 种质资源库 Germplasm resources bank | 取样比例 Sampling ratio(%) | 均值差异 MD(%) | 方差差异 VD(%) | 变异系数变化 CR(%) | 极差符合率 VR(%) |
---|---|---|---|---|---|---|
随机取样 Random sampling strategy | R1 | 15 | 1 | 14 | 71 | 89 |
R2 | 20 | 1 | 18 | 61 | 86 | |
R3 | 25 | 1 | 15 | 57 | 80 | |
R4 | 30 | 1 | 13 | 52 | 103 | |
R5 | 35 | 0 | 24 | 89 | 109 | |
R6 | 40 | 0 | 17 | 88 | 100 | |
位点优先 取样 Allele preferred sampling strategy | S1 | 15 | 1 | 62 | 82 | 37 |
S2 | 20 | 1 | 71 | 87 | 51 | |
S3 | 25 | 0 | 76 | 81 | 69 | |
S4 | 30 | 0 | 82 | 81 | 72 | |
S5 | 35 | 0 | 77 | 81 | 85 | |
S6 | 40 | 0 | 101 | 98 | 110 | |
偏离度取样 Deviation sampling | D1 | 15 | 1 | 15 | 54 | 88 |
D2 | 20 | 1 | 18 | 61 | 87 | |
D3 | 25 | 0 | 18 | 90 | 105 | |
D4 | 30 | 1 | 13 | 77 | 100 | |
D5 | 35 | 1 | 12 | 85 | 92 | |
D6 | 40 | 0 | 17 | 89 | 103 |
Table 5 Differences in traits between germplasm resources and original germplasm sampled by different strategies
取样策略 Sampling method | 种质资源库 Germplasm resources bank | 取样比例 Sampling ratio(%) | 均值差异 MD(%) | 方差差异 VD(%) | 变异系数变化 CR(%) | 极差符合率 VR(%) |
---|---|---|---|---|---|---|
随机取样 Random sampling strategy | R1 | 15 | 1 | 14 | 71 | 89 |
R2 | 20 | 1 | 18 | 61 | 86 | |
R3 | 25 | 1 | 15 | 57 | 80 | |
R4 | 30 | 1 | 13 | 52 | 103 | |
R5 | 35 | 0 | 24 | 89 | 109 | |
R6 | 40 | 0 | 17 | 88 | 100 | |
位点优先 取样 Allele preferred sampling strategy | S1 | 15 | 1 | 62 | 82 | 37 |
S2 | 20 | 1 | 71 | 87 | 51 | |
S3 | 25 | 0 | 76 | 81 | 69 | |
S4 | 30 | 0 | 82 | 81 | 72 | |
S5 | 35 | 0 | 77 | 81 | 85 | |
S6 | 40 | 0 | 101 | 98 | 110 | |
偏离度取样 Deviation sampling | D1 | 15 | 1 | 15 | 54 | 88 |
D2 | 20 | 1 | 18 | 61 | 87 | |
D3 | 25 | 0 | 18 | 90 | 105 | |
D4 | 30 | 1 | 13 | 77 | 100 | |
D5 | 35 | 1 | 12 | 85 | 92 | |
D6 | 40 | 0 | 17 | 89 | 103 |
性状 Traits | 均值 Mean | 变异系数 Coefficient of variation | t值 t-value | ||||
---|---|---|---|---|---|---|---|
原种质 Primary germplasm | 核心种质 Core collection | 符合率 Coincidence Rate(%) | 原种质 Primary germplasm | 核心种质 Core collection | 符合率 Coincidence rate | ||
株高 Plant height (cm) | 45.61 | 46.12 | 101.12 | 15.04 | 14.93 | 99.27 | -1.21 |
单株一级分枝数 Number of prmary branches | 5.66 | 5.57 | 98.41 | 16.95 | 16.80 | 99.12 | 1.05 |
单株荚数 Pods per palnt | 138.64 | 133.55 | 96.33 | 44.95 | 44.87 | 99.82 | 0.96 |
每果节荚数 Pods per node | 0.55 | 0.57 | 103.64 | 25.77 | 26.01 | 100.93 | 0.55 |
荚长 Pod length (cm) | 1.44 | 1.47 | 102.08 | 8.27 | 8.31 | 100.48 | -0.34 |
单株粒数 Seeds per plant | 186.20 | 185.05 | 99.38 | 51.74 | 51.32 | 99.19 | 1.11 |
单株粒重 Seed yield per plant (g) | 36.89 | 36.03 | 97.67 | 44.30 | 43.08 | 97.25 | 1.32 |
百粒重 100-seed weight (g) | 19.74 | 19.77 | 100.15 | 25.39 | 24.99 | 98.42 | 0.75 |
产量 Yield per hectare (kg/hm2) | 2 039.45 | 2 015.14 | 98.81 | 13.38 | 14.11 | 105.46 | 0.83 |
Table 6 Comparison of original germplasm resources and core germplasm diversity
性状 Traits | 均值 Mean | 变异系数 Coefficient of variation | t值 t-value | ||||
---|---|---|---|---|---|---|---|
原种质 Primary germplasm | 核心种质 Core collection | 符合率 Coincidence Rate(%) | 原种质 Primary germplasm | 核心种质 Core collection | 符合率 Coincidence rate | ||
株高 Plant height (cm) | 45.61 | 46.12 | 101.12 | 15.04 | 14.93 | 99.27 | -1.21 |
单株一级分枝数 Number of prmary branches | 5.66 | 5.57 | 98.41 | 16.95 | 16.80 | 99.12 | 1.05 |
单株荚数 Pods per palnt | 138.64 | 133.55 | 96.33 | 44.95 | 44.87 | 99.82 | 0.96 |
每果节荚数 Pods per node | 0.55 | 0.57 | 103.64 | 25.77 | 26.01 | 100.93 | 0.55 |
荚长 Pod length (cm) | 1.44 | 1.47 | 102.08 | 8.27 | 8.31 | 100.48 | -0.34 |
单株粒数 Seeds per plant | 186.20 | 185.05 | 99.38 | 51.74 | 51.32 | 99.19 | 1.11 |
单株粒重 Seed yield per plant (g) | 36.89 | 36.03 | 97.67 | 44.30 | 43.08 | 97.25 | 1.32 |
百粒重 100-seed weight (g) | 19.74 | 19.77 | 100.15 | 25.39 | 24.99 | 98.42 | 0.75 |
产量 Yield per hectare (kg/hm2) | 2 039.45 | 2 015.14 | 98.81 | 13.38 | 14.11 | 105.46 | 0.83 |
因子 Factor | 特征值 Characteristic value | 贡献率 Contribution rate(%) | 累计贡献率 Accumulating contribution rate(%) | |||
---|---|---|---|---|---|---|
原种质 | 核心种质 | 原种质 | 核心种质 | 原种质 | 核心种质 | |
1 | 4.232 | 4.187 | 40.590 | 39.298 | 40.590 | 39.298 |
2 | 2.733 | 2.559 | 24.214 | 23.991 | 64.804 | 63.289 |
3 | 1.194 | 1.214 | 12.467 | 12.537 | 77.271 | 75.826 |
4 | 1.040 | 1.003 | 10.221 | 9.931 | 87.492 | 85.757 |
Table 7 Principal component analysis and comparison of chickpea original germplasm and constructed core germplasm
因子 Factor | 特征值 Characteristic value | 贡献率 Contribution rate(%) | 累计贡献率 Accumulating contribution rate(%) | |||
---|---|---|---|---|---|---|
原种质 | 核心种质 | 原种质 | 核心种质 | 原种质 | 核心种质 | |
1 | 4.232 | 4.187 | 40.590 | 39.298 | 40.590 | 39.298 |
2 | 2.733 | 2.559 | 24.214 | 23.991 | 64.804 | 63.289 |
3 | 1.194 | 1.214 | 12.467 | 12.537 | 77.271 | 75.826 |
4 | 1.040 | 1.003 | 10.221 | 9.931 | 87.492 | 85.757 |
[1] | Frankel O H. Genetic Perspectives of Germplasm Conservation[M]. UK: Cambridge University Press, 1984: 161-170. |
[2] |
Abadie T, Cordeiro C, Fonseca J R, et al. Constructing a rice core collection for Brazil[J]. Pesquisa Agropecuaria Brasileira, 2005, 40(2):129-136.
DOI URL |
[3] |
Ebana K, Kojima Y, Fukuoka S, et al. Development of mini core collection of Japanese rice landrace[J]. Breeding Science, 2008, 58(3):281-291.
DOI URL |
[4] |
Hao C Y, Zhang X Y, Wang L F, et al. Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in china[J]. Molecular Breeding. 2006, 17(1):69-77.
DOI URL |
[5] |
ZeuliP L S, Qualset C O. Evaluation of 5 strategies for obtaining a core subset from a large genetic resource collection of durum wheat[J]. Theoretical and Applied Genetics, 1993, 87(3):295-304.
DOI PMID |
[6] |
Kuroda Y, Tomooka N, Kaga A, et al. Genetic diversity of wild soybean (glycine sojasieb. Etzucc.) And Japanese cultivatedsoybeans [g. Max (1.) Merr.] Based on microsatellite (ssr) analysis and the selection of a core collection[J]. Genetic Resources and Crop Evolution, 2009, 56(8):1045-1055
DOI URL |
[7] | 钱玉源, 刘祎, 崔淑芳, 等. 基于表型的棉花种质资源遗传多样性分析及核心种质的抽提[J]. 华北农学报, 2019, 34(增刊):29-35. |
QIAN Yuyuan, LIU Yi, CUI Shufang, et al. Analysis of genetic diversity of cotton germplasm resources and extraction of core germplasm based on phenotypic traits[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(Sup):29-35. | |
[8] | 代攀虹, 孙君灵, 贾银华, 等. 利用表型数据构建陆地棉核心种质[J]. 植物遗传资源学报, 2016, 17(6):961-968. |
DAI Panhong, SUN Junling, JIA Yinhua, et al. Construction of Core Collection of Upland Cotton based on Phenotypic Data[J]. Journal of Plant Genetic Resources, 2016, 17(6):961-968. | |
[9] |
Rodino A P, Santalla M, MAD Ron, et al. A core collection of common bean from the Iberian peninsula[J]. Euphytica, 2003, 131(2):165-175.
DOI URL |
[10] | 郝晓鹏, 王燕, 田翔, 等. 基于农艺性状的山西普通菜豆初级核心种质构建[J]. 植物遗传资源学报, 2016, 17(5):815-823. |
HAO Xiaopeng, WANG Yan, TIAN Xiang, et al. Construction of primary core collection of common bean (phaseolus vulgaris L.) based on agronomic traits in Shanxi Province[J]. Journal of Plant Genetic Resources, 2016, 17(5):815-823. | |
[11] |
Igartua E, Gracia M P, Lasa J M, et al. The spanish barley core collection a-8701-2011[J]. Genetic Resources and Crop Evolution, 1998, 45(5):475-481.
DOI URL |
[12] | 胥婷婷, 林峰, 华为, 等. Establishment of core collection on bred cultivars of Chinese barley[J]. 浙江农业学报, 2011, 023(3):483-488. |
XU Tingting, LIN Feng, HUA Wei, et al. Establishment of core collection on bred cultivars of Chinese barley[J]. Acta Agriculturae Zhejiangensis, 2011, 23(3):483-488. | |
[13] | 董玉琛. 我国作物种质资源研究的现状与展望[J]. 中国农业科技导报, 1999, (2):36-40. |
DONG Yuchen. Today and tomorrow of crop germplasm resources in China[J]. Review of China Agricultural Science and Technology, 1999(2):36-40. | |
[14] | 黄璐琦, 吕冬梅, 杨滨, 等. 药用植物种质资源研究的发展-核心种质的构建[J]. 中国中药杂志, 2005, 30(20):5-8. |
HUANG Luqi, LV Dongmei, YANG Bin, et al. Development of the study on germplasm resources of medicinal plants: construction of core collection[J]. China Journal of Chinese Materia Medica, 2005, 30(20):5-8. | |
[15] | 卜海东, 张冰冰. 果树核心种质研宄进展[J]. 北方园艺, 2010, (4):211-213. |
BU Haidong, ZHANG Bingbing. Advances in research on core collection of fruit tree germplasm resources[J]. Northern Horticulture, 2010, (4):211-213. | |
[16] | 王文强. 牧草遗传资源核心种质及其构建[J]. 热带农业科学, 2010, 30(1):10-14. |
WANG Wenqiang. Core collection of pasturage germplasm resources and its establishment[J]. Chinese Journal of Tropical Agriculture, 2010, 30(1):10-14. | |
[17] | 张艳欣, 张秀荣, 孙建. 油料作物种质资源核心收集品研宄进展[J]. 植物遗传资源学报, 2009, 10(1):152-157. |
ZHANG Yanxin, ZHANG Xiurong, SUN Jian. Advances in research on core collection of oil crop germplasm resources[J]. Journal of Plant Genetic Resources, 2009, 10(1):152-157. | |
[18] | 戴茂华, 刘丽英, 郑书宏, 等. 陆地棉主要农艺性状的相关性及聚类分析[J]. 中国农学通报, 2015, 31(12):139-144. |
DAI Maohua, LIU Liying, ZHENG Shuhong, et al. Correlation and cluster analysis for main agronomic characters of upland cotton[J]. Chinese Agricultural Science Bulletin, 2015, 31(12):139-144. | |
[19] | 刘金, 关建平, 徐东旭, 等. 小扁豆种质资源形态标记遗传多样性分析[J]. 植物遗传资源学报, 2008, 9(2):173-179. |
LIU Jin, GUAN Jianping, XU Dongxu, et al. Phenotypic diversity of Lentil (Lens culinarisMedik.) germplasm resources[J]. Journal of Plant Genetic Resources, 2008, 9(2):173-179. | |
[20] |
胡建斌, 马双武, 李建吾, 等. 国外甜瓜种质资源形态性状遗传多样性分析[J]. 植物学报, 2013, 48(1):42-51.
DOI |
HU Jianbin, MA Shuangwu, LI Jianwu, et al. Genetic diversity of foreign Melon (Cucumismelo) germplasm resources by morphological characters[J]. Chinese Bulletin of Botany, 2013, 48(1):42-51.
DOI URL |
|
[21] | 邱丽娟, 李英慧, 关荣霞, 等. 大豆核心种质和微核心种质的构建、验证与研究进展[J]. 作物学报, 2009, 35(4):571-579. |
QIU Lijuan, LI Yinghui, GUAN Rongxia, et al. Establishment, representative testing and research progress of soybean core collection and mini core collection[J]. Acta Agronomica Sinica, 2009, 35(4):571-579.
DOI URL |
|
[22] | 王海飞, 关建平, 孙雪莲, 等. 世界蚕豆种质资源遗传多样性和相似性的ISSR分析[J]. 中国农业科学, 2011, 44(5):1056-1062. |
WANG Haifei, GUAN Jianping, SUN Xuelian, et al. Genetic diversity and similarity of global Faba Bean (Vciafaba L.) germplasm revealed by ISSR markers[J]. Scientia Agricultura Sinica, 2011, 44(5):1056-1062. | |
[23] | 王丽侠, 程须珍, 王素华, 等. 中国绿豆应用型核心样本农艺性状的分析[J]. 植物遗传资源学报, 2009, 10(4):589-593. |
WANG Lixia, CHENG Xuzhen, WANG Suhua, et al. Genetic variability of agronomic traits in Mungbean applied core collection of China[J]. Journal of Plant Genetic Resources, 2009, 10(4):589-593. | |
[24] | Hodgkin T, Arora R K, Riley K W. Core collection and conservation of genetic resources[M]. New Delhi, India, 1994. |
[1] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[2] | CHEN Yong, ZHOU Lei, SUI Chun, LIN Caixia. The characteristics of 32 cultivated germplasms of Isatis tinctoria Linnaeus in Xinjiang production area [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2307-2314. |
[3] | LI Jinyao, XU Guiqing, WANG Lisheng, LU Ping, SHI Dongfang, ZHENG Weihua. Study on the effect of N fertilization on drought resistance of Calligonum caput-medusae seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2330-2340. |
[4] | MIAO Yu, CHEN Cuixia, MA Yanming, XING Guofang, DONG Yusheng, CHEN Zhijun, WANG Xian, XIANG Li. Genetic diversity analysis of phenotypic traits of 276 Central Asian barley germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1888-1895. |
[5] | YE Pingyi, LONG Yilei, TANG Yanping, DU Xiao, AN Mengjie, TAO Zhixin, LIANG Farui, AI Xiantao, HU Shoulin. Identification and evaluation of fruit branch angle and machine-picked agronomic traits in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1318-1327. |
[6] | WANG Yizhao, YANG Qizhi, LIU Yuxiu, Alayi Nurkamali, Vladimir Shvidchenko, ZHANG Zhengmao. Evaluation of drought resistance of different Kazakhstan spring wheat at seeding stage under PEG-6000 stress [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1352-1360. |
[7] | LIU Yue, JIA Yonghong, ZHANG Jinshan, YU Yuehua, WANG Runqi, LI Dandan, SHI Shubing. Comparison of peanut varieties with different high oleic acid under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1361-1367. |
[8] | ZHANG Guoru, TANG Yaping, SHI Linyuan, YUAN Lei, ZHANG Yong, YANG Shengbao. Genetic properties of interspecific crosses in pepper [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 632-641. |
[9] | YANG Xiangbo, CHEN Liangyu, YANG Songnan, CHEN Xifeng, XING Weiming, LI Xueying, CONG Weixuan, ZANG Zhenyuan, ZANG Yuanbo, ZHANG Jun. Phenotype analysis and comprehensive evaluation of spring soybean germplasm resources from northeast China [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2921-2933. |
[10] | LI Chunyu, TAN Zhanming, CHENG Yunxia, SHU Sheng, MA Quanhui, HE Miao, DUAN Yifan, WU Hui. Comparative analysis of agronomic traits of different processing tomato varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2676-2683. |
[11] | CUI Yujiang, GONG Zhaolong, WANG Junduo, ZHENG Juyun, SANG Zhiwei, YANG Ni, LIANG Yajun, LI Xueyuan, QU Yanying. Comprehensive evaluation of basic agronomic traits and yield components of 245 Gossypium hirsutum L. varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2358-2365. |
[12] | SHAO Jiang, ZHAO Yun, HU Xiangwei, LIU Jie, Nasirula Keremu, SHI Shubing, FENG Guojun. Effects of drought stress on foxtail millet yield and dry matter accumulation in different periods [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2388-2395. |
[13] | Wang Tianling, Hou Xianfei, Shi Junjie, Sun Quanxi, Jia Donghai, Gu Yuanguo, Shan Shihua, Miao Haocui, Li Qiang. Genetic diversity analysis of 67 creeping peanut germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 42-54. |
[14] | WANG Ting, ZHANG Li, ZHANG Fanfan, HUANG Rongzheng, LI Xiao, ZHANG Yulin, CHEN Yongcheng, ZHAO Jiantao, MA Chunhui. Poduction performance screening and nutritional value evaluation of corn varieties suitable for silage [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1596-1605. |
[15] | SHI Xiaolei, DING Sunlei, CONG Hua, ZHANG Jinbo, QU Kejia, WANG Xingzhou, HAN dai, YAN Yongliang. Gray correlation analysis of reast soybean yield correlation traits [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1641-1652. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||