Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (10): 2388-2395.DOI: 10.6048/j.issn.1001-4330.2024.10.006
• Crop Genetics and Breeding · Germplasm Resources · Molecular Genetics · Cultivation Physiology · Physiology and Biochemistry • Previous Articles Next Articles
SHAO Jiang1(), ZHAO Yun2, HU Xiangwei2, LIU Jie1, Nasirula Keremu3, SHI Shubing1(
), FENG Guojun1(
)
Received:
2024-04-16
Online:
2024-10-20
Published:
2024-11-07
Correspondence author:
SHI Shubing, FENG Guojun
Supported by:
邵疆1(), 赵云2, 胡相伟2, 刘杰1, 纳斯如拉·克热木3, 石书兵1(
), 冯国郡1(
)
通讯作者:
石书兵,冯国郡
作者简介:
邵疆(2000-),男,新疆伊犁人,硕士研究生,研究方向为作物学,(E-mail)1548713605@qq.com
基金资助:
CLC Number:
SHAO Jiang, ZHAO Yun, HU Xiangwei, LIU Jie, Nasirula Keremu, SHI Shubing, FENG Guojun. Effects of drought stress on foxtail millet yield and dry matter accumulation in different periods[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2388-2395.
邵疆, 赵云, 胡相伟, 刘杰, 纳斯如拉·克热木, 石书兵, 冯国郡. 不同时期干旱胁迫对谷子产量及干物质积累的影响[J]. 新疆农业科学, 2024, 61(10): 2388-2395.
年份 Year | 品种 Varieties | 处理 Treatments | 农艺性状Agronomic traits | ||||
---|---|---|---|---|---|---|---|
株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 茎基粗 The stem base is thick | 主茎节数 Number of nodes in the main stem | |||
2022 | 济07607 | CK | 169.70a | 25.80a | 30.26b | 8.26b | 14.50a |
Q1 | 137.60c | 26.50a | 27.59b | 11.07a | 11.90b | ||
Q2 | 152.40b | 27.35a | 33.76a | 10.09a | 11.80b | ||
嫩选10号 | CK | 160.10a | 23.30a | 24.95a | 6.74a | 12.30a | |
Q1 | 147.50b | 23.50a | 22.63a | 7.91a | 9.00b | ||
Q2 | 158.70a | 24.85a | 25.12a | 8.16a | 9.90b | ||
保谷22 | CK | 145.00a | 24.50a | 26.02a | 7.902b | 14.00a | |
Q1 | 122.90b | 25.00a | 27.67a | 9.35a | 9.40c | ||
Q2 | 121.40b | 24.65a | 26.48a | 8.88ab | 11.80b | ||
2023 | 济07607 | CK | 146.44a | 21.76a | 24.54b | 8.49a | 12.50a |
Q1 | 145.70a | 24.48a | 24.29b | 8.94a | 13.80a | ||
Q2 | 145.00a | 23.08a | 33.63a | 7.83a | 12.60a | ||
嫩选10号 | CK | 149.71a | 23.90a | 18.93b | 5.37b | 9.90b | |
Q1 | 141.20b | 22.65ab | 19.24b | 6.73a | 11.00a | ||
Q2 | 133.40b | 20.07b | 22.72a | 5.46b | 9.40b | ||
保谷22 | CK | 131.80ab | 22.41a | 23.66a | 9.20a | 12.00b | |
Q1 | 135.30a | 21.95a | 22.71a | 8.01ab | 13.60a | ||
Q2 | 121.40b | 17.31b | 24.59a | 7.86b | 12.30b |
Tab.1 Changes of drought stress on agronomic traits of millet at different periods
年份 Year | 品种 Varieties | 处理 Treatments | 农艺性状Agronomic traits | ||||
---|---|---|---|---|---|---|---|
株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 茎基粗 The stem base is thick | 主茎节数 Number of nodes in the main stem | |||
2022 | 济07607 | CK | 169.70a | 25.80a | 30.26b | 8.26b | 14.50a |
Q1 | 137.60c | 26.50a | 27.59b | 11.07a | 11.90b | ||
Q2 | 152.40b | 27.35a | 33.76a | 10.09a | 11.80b | ||
嫩选10号 | CK | 160.10a | 23.30a | 24.95a | 6.74a | 12.30a | |
Q1 | 147.50b | 23.50a | 22.63a | 7.91a | 9.00b | ||
Q2 | 158.70a | 24.85a | 25.12a | 8.16a | 9.90b | ||
保谷22 | CK | 145.00a | 24.50a | 26.02a | 7.902b | 14.00a | |
Q1 | 122.90b | 25.00a | 27.67a | 9.35a | 9.40c | ||
Q2 | 121.40b | 24.65a | 26.48a | 8.88ab | 11.80b | ||
2023 | 济07607 | CK | 146.44a | 21.76a | 24.54b | 8.49a | 12.50a |
Q1 | 145.70a | 24.48a | 24.29b | 8.94a | 13.80a | ||
Q2 | 145.00a | 23.08a | 33.63a | 7.83a | 12.60a | ||
嫩选10号 | CK | 149.71a | 23.90a | 18.93b | 5.37b | 9.90b | |
Q1 | 141.20b | 22.65ab | 19.24b | 6.73a | 11.00a | ||
Q2 | 133.40b | 20.07b | 22.72a | 5.46b | 9.40b | ||
保谷22 | CK | 131.80ab | 22.41a | 23.66a | 9.20a | 12.00b | |
Q1 | 135.30a | 21.95a | 22.71a | 8.01ab | 13.60a | ||
Q2 | 121.40b | 17.31b | 24.59a | 7.86b | 12.30b |
年份 Year | 品种 Varieties | 处理 Treat- ments | 部位Place | ||
---|---|---|---|---|---|
叶 leaf | 茎 stem | 穗 spike | |||
2022 | 济07607 | CK | 54.05a | 59.25ab | 57.85b |
Q1 | 46.35b | 62.75a | 62.50a | ||
Q2 | 44.95b | 34.60b | 56.15b | ||
嫩选10号 | CK | 62.15a | 84.00a | 76.30a | |
Q1 | 52.9a0b | 86.45a | 71.40a | ||
Q2 | 49.45b | 66.00b | 60.00b | ||
保谷22 | CK | 61.60a | 70.00a | 118.55a | |
Q1 | 57.90a | 62.15ab | 106.75a | ||
Q2 | 43.25b | 46.70b | 75.05b | ||
2023 | 济07607 | CK | 54.80a | 70.20a | 109.70a |
Q1 | 44.45b | 51.75b | 51.75b | ||
Q2 | 55.85a | 53.85b | 43.1b | ||
嫩选10号 | CK | 28.35a | 35.25a | 43.85b | |
Q1 | 32.25a | 38.75a | 61.45a | ||
Q2 | 29.759a | 34.4a | 42.45b | ||
保谷22 | CK | 42.75ab | 65.9b | 84.45a | |
Q1 | 48.9a | 78.8a | 74.6b | ||
Q2 | 38.55b | 47.85c | 73.9b |
Tab.2 Changes of drought stress on dry matter accumulation in millet at different periods
年份 Year | 品种 Varieties | 处理 Treat- ments | 部位Place | ||
---|---|---|---|---|---|
叶 leaf | 茎 stem | 穗 spike | |||
2022 | 济07607 | CK | 54.05a | 59.25ab | 57.85b |
Q1 | 46.35b | 62.75a | 62.50a | ||
Q2 | 44.95b | 34.60b | 56.15b | ||
嫩选10号 | CK | 62.15a | 84.00a | 76.30a | |
Q1 | 52.9a0b | 86.45a | 71.40a | ||
Q2 | 49.45b | 66.00b | 60.00b | ||
保谷22 | CK | 61.60a | 70.00a | 118.55a | |
Q1 | 57.90a | 62.15ab | 106.75a | ||
Q2 | 43.25b | 46.70b | 75.05b | ||
2023 | 济07607 | CK | 54.80a | 70.20a | 109.70a |
Q1 | 44.45b | 51.75b | 51.75b | ||
Q2 | 55.85a | 53.85b | 43.1b | ||
嫩选10号 | CK | 28.35a | 35.25a | 43.85b | |
Q1 | 32.25a | 38.75a | 61.45a | ||
Q2 | 29.759a | 34.4a | 42.45b | ||
保谷22 | CK | 42.75ab | 65.9b | 84.45a | |
Q1 | 48.9a | 78.8a | 74.6b | ||
Q2 | 38.55b | 47.85c | 73.9b |
Fig.1 Changes of drought stress on SPAD value of millet at different stages Note:Different lowercase letters in the figure indicate significant differences at the P<0.05 level between different treatments,the same as below
年份 Year | 品种 Varieties | 处理 Treatments | 单穗粒重 Grain weight per spike(kg) | 单穗重 Single spike weight(kg) | 千粒重 1000-grain weight(g) | 出谷率 Valley rate (%) |
---|---|---|---|---|---|---|
2022 | 济07607 | CK | 0.18a | 0.22ab | 3.05a | 77.05a |
Q1 | 0.16ab | 0.19b | 2.98a | 76.65a | ||
Q2 | 0.14b | 0.24a | 2.46b | 79.47a | ||
嫩选10号 | CK | 0.11a | 0.13a | 2.81a | 83.35a | |
Q1 | 0.10a | 0.11a | 2.97a | 77.98a | ||
Q2 | 0.08a | 0.12a | 2.89a | 79.08a | ||
保谷22 | CK | 0.15a | 0.19a | 2.94a | 78.00b | |
Q1 | 0.13a | 0.14b | 2.62b | 78.52b | ||
Q2 | 0.12a | 0.14b | 2.77ab | 81.10a | ||
2023 | 济07607 | CK | 0.20a | 0.43a | 3.11a | 78.11a |
Q1 | 0.15a | 0.18c | 3.29a | 75.47a | ||
Q2 | 0.14a | 0.27b | 3.12a | 81.82a | ||
嫩选10号 | CK | 0.11a | 0.13a | 3.72a | 78.7a | |
Q1 | 0.10a | 0.11a | 3.52ab | 75.01a | ||
Q2 | 0.09a | 0.10a | 3.35b | 77.03a | ||
保谷22 | CK | 0.13a | 0.17a | 2.10c | 72.85a | |
Q1 | 0.10a | 0.09a | 2.78a | 80.04a | ||
Q2 | 0.09a | 0.13a | 2.47b | 73.67a |
Tab.3 Changes of drought stress on millet yield formation at different stages
年份 Year | 品种 Varieties | 处理 Treatments | 单穗粒重 Grain weight per spike(kg) | 单穗重 Single spike weight(kg) | 千粒重 1000-grain weight(g) | 出谷率 Valley rate (%) |
---|---|---|---|---|---|---|
2022 | 济07607 | CK | 0.18a | 0.22ab | 3.05a | 77.05a |
Q1 | 0.16ab | 0.19b | 2.98a | 76.65a | ||
Q2 | 0.14b | 0.24a | 2.46b | 79.47a | ||
嫩选10号 | CK | 0.11a | 0.13a | 2.81a | 83.35a | |
Q1 | 0.10a | 0.11a | 2.97a | 77.98a | ||
Q2 | 0.08a | 0.12a | 2.89a | 79.08a | ||
保谷22 | CK | 0.15a | 0.19a | 2.94a | 78.00b | |
Q1 | 0.13a | 0.14b | 2.62b | 78.52b | ||
Q2 | 0.12a | 0.14b | 2.77ab | 81.10a | ||
2023 | 济07607 | CK | 0.20a | 0.43a | 3.11a | 78.11a |
Q1 | 0.15a | 0.18c | 3.29a | 75.47a | ||
Q2 | 0.14a | 0.27b | 3.12a | 81.82a | ||
嫩选10号 | CK | 0.11a | 0.13a | 3.72a | 78.7a | |
Q1 | 0.10a | 0.11a | 3.52ab | 75.01a | ||
Q2 | 0.09a | 0.10a | 3.35b | 77.03a | ||
保谷22 | CK | 0.13a | 0.17a | 2.10c | 72.85a | |
Q1 | 0.10a | 0.09a | 2.78a | 80.04a | ||
Q2 | 0.09a | 0.13a | 2.47b | 73.67a |
年份 Year | 项目 Items | 株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 干物质 Dry matter | SPAD值 SPAD value | 叶面积 Leaf area | 单穗粒重 Grain weight per spike | 单穗重 Single spike weight | 千粒重 1000- grain weight |
---|---|---|---|---|---|---|---|---|---|---|
2022 | 穗长 | 0.756** | 1 | |||||||
穗粗 | 0.570** | 0.495** | 1 | |||||||
干物质 | 0.345 | 0.362* | 0.338 | 1 | ||||||
SPAD值 | 0.565** | 0.501** | 0.192 | 0.117 | 1 | |||||
叶面积 | 0.291 | 0.184 | 0.167 | 0.184 | 0.227 | 1 | ||||
单穗粒重 | 0.334 | 0.338 | 0.424* | 0.426* | 0.129 | 0.309 | 1 | |||
单穗重 | 0.391* | 0.437* | 0.527** | 0.370* | 0.235 | 0.269 | 0.896** | 1 | ||
千粒重 | 0.482** | 0.735** | 0.119 | -0.032 | 0.521** | 0.183 | 0.143 | 0.207 | 1 | |
产量 | 0.21 | -0.057 | 0.236 | 0.103 | -0.302 | -0.014 | 0.118 | -0.011 | -0.292 | |
2023 | 穗长 | 0.505** | 1 | |||||||
穗粗 | -0.083 | 0.288** | 1 | |||||||
干物质 | -0.278 | -0.129 | 0.06 | 1 | ||||||
SPAD值 | 0.033 | 0.014 | -0.018 | -0.052 | 1 | |||||
叶面积 | 0.059 | -0.074 | 0.342** | 0.028 | 0.055 | 1 | ||||
单穗粒重 | -0.4 | -0.163 | 0.191 | 0.174 | -0.092 | -0.155 | 1 | |||
单穗重 | -0.252 | -0.116 | 0.185 | 0.113 | -0.058 | -0.039 | 0.952** | 1 | ||
千粒重 | 0.089 | 0.139 | 0.625** | 0.15 | 0.193 | 0.226 | 0.076 | 0.142 | 1 | |
产量 | 0.146 | -0.464 | 0.038 | 0.559* | -0.041 | 0.392 | -0.02 | -0.11 | 0.451 |
Tab.4 Changes of correlation analysis of three varieties of millet under drought stress at different periods
年份 Year | 项目 Items | 株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 干物质 Dry matter | SPAD值 SPAD value | 叶面积 Leaf area | 单穗粒重 Grain weight per spike | 单穗重 Single spike weight | 千粒重 1000- grain weight |
---|---|---|---|---|---|---|---|---|---|---|
2022 | 穗长 | 0.756** | 1 | |||||||
穗粗 | 0.570** | 0.495** | 1 | |||||||
干物质 | 0.345 | 0.362* | 0.338 | 1 | ||||||
SPAD值 | 0.565** | 0.501** | 0.192 | 0.117 | 1 | |||||
叶面积 | 0.291 | 0.184 | 0.167 | 0.184 | 0.227 | 1 | ||||
单穗粒重 | 0.334 | 0.338 | 0.424* | 0.426* | 0.129 | 0.309 | 1 | |||
单穗重 | 0.391* | 0.437* | 0.527** | 0.370* | 0.235 | 0.269 | 0.896** | 1 | ||
千粒重 | 0.482** | 0.735** | 0.119 | -0.032 | 0.521** | 0.183 | 0.143 | 0.207 | 1 | |
产量 | 0.21 | -0.057 | 0.236 | 0.103 | -0.302 | -0.014 | 0.118 | -0.011 | -0.292 | |
2023 | 穗长 | 0.505** | 1 | |||||||
穗粗 | -0.083 | 0.288** | 1 | |||||||
干物质 | -0.278 | -0.129 | 0.06 | 1 | ||||||
SPAD值 | 0.033 | 0.014 | -0.018 | -0.052 | 1 | |||||
叶面积 | 0.059 | -0.074 | 0.342** | 0.028 | 0.055 | 1 | ||||
单穗粒重 | -0.4 | -0.163 | 0.191 | 0.174 | -0.092 | -0.155 | 1 | |||
单穗重 | -0.252 | -0.116 | 0.185 | 0.113 | -0.058 | -0.039 | 0.952** | 1 | ||
千粒重 | 0.089 | 0.139 | 0.625** | 0.15 | 0.193 | 0.226 | 0.076 | 0.142 | 1 | |
产量 | 0.146 | -0.464 | 0.038 | 0.559* | -0.041 | 0.392 | -0.02 | -0.11 | 0.451 |
[12] | 王振华, 刘鑫, 余爱丽, 等. 谷子苗期干旱胁迫对各器官干物质积累及产量的影响[J]. 贵州农业科学, 2019, 47(2): 8-12. |
WANG Zhenhua, LIU Xin, YU Aili, et al. Effects of drought stress on dry matter accumulation in various organs and yield of millet at seedling stage[J]. Guizhou Agricultural Sciences, 2019, 47(2): 8-12. | |
[13] | 董钻, 沈秀瑛. 作物栽培学总论[M]. 北京: 中国农业出版社, 2000. |
DONG Zuan, SHEN Xiuying. Introduction to crop production[M]. Beijing: China Agriculture Press, 2000. | |
[14] | 许海霞, 李伟, 程西永, 等. 干旱胁迫对小麦农艺性状的影响[J]. 中国农学通报, 2008, 24(3): 125-129. |
XU Haixia, LI Wei, CHENG Xiyong, et al. Drought stress effect on agronomic traits of wheat[J]. Chinese Agricultural Science Bulletin, 2008, 24(3): 125-129. | |
[15] | 张文英, 智慧, 柳斌辉, 等. 干旱胁迫对谷子孕穗期光合特性的影响[J]. 河北农业科学, 2011, 15(6): 7-11. |
ZHANG Wenying, ZHI Hui, LIU Binhui, et al. Effects of drought stress on millet photosynthetic characteristics in booting stage[J]. Journal of Hebei Agricultural Sciences, 2011, 15(6): 7-11. | |
[16] | 屈洋, 宋慧, 刘洋, 等. 谷子新品种(系)主要农艺性状及茎杆特性的遗传多样性分析[J]. 干旱地区农业研究, 2018, 36(3): 51-58. |
QU Yang, SONG Hui, LIU Yang, et al. Genetic diversity of agronomic traits and node characters in foxtail millet(Setaria italic Beauv.)[J]. Agricultural Research in the Arid Areas, 2018, 36(3): 51-58. | |
[17] | 朱明哲, 杨蕊, 段红. 小麦新品种产量性状及主要品质性状的因子分析与聚类分析[J]. 河南科技学院学报(自然科学版), 2012, 40(1): 1-6. |
ZHU Mingzhe, YANG Rui, DUAN Hong. Yield characters of new wheat varieties and factor and cluster analysis of their main characters[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2012, 40(1): 1-6. | |
[18] | 钱建南, 丁颖, 李玉杨, 等. 14个水稻品种产量与农艺性状的灰色关联度分析[J]. 大麦与谷类科学, 2022, 39(5): 37-41. |
QIAN Jiannan, DING Ying, LI Yuyang, et al. Grey correlation analysis of the yield and agronomic characters of 14 rice varieties[J]. Barley and Cereal Sciences, 2022, 39(5):37-41. | |
[19] |
贾小平, 董普辉, 张红晓, 等. 谷子抗倒伏性和株高、穗部性状的相关性研究[J]. 植物遗传资源学报, 2015, 16(6): 1188-1193.
DOI |
JIA Xiaoping, DONG Puhui, ZHANG Hongxiao, et al. Correlation study of lodging resistance and plant height, panicle traits in foxtail millet[J]. Journal of Plant Genetic Resources, 2015, 16(6): 1188-1193. | |
[20] | 白玉婷, 李强, 高志军, 等. 春播夏谷子品系农艺性状的相关性和聚类分析[J]. 分子植物育种, 2020, 18(7): 2338-2351. |
BAI Yuting, LI Qiang, GAO Zhijun, et al. Correlation and cluster analysis of agronomic characters in summer foxtail millet lines cultivated in spring[J]. Molecular Plant Breeding, 2020, 18(7): 2338-2351. | |
[21] | 孟庆立, 关周博, 冯佰利, 等. 谷子抗旱相关性状的主成分与模糊聚类分析[J]. 中国农业科学, 2009, 42(8): 2667-2675. |
MENG Qingli, GUAN Zhoubo, FENG Baili, et al. Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet(Setaria italica)[J]. Scientia Agricultura Sinica, 2009, 42(8): 2667-2675. | |
[22] | 解云, 郭世华. 谷子品种农艺性状的灰色关联度分析及综合评价[J]. 分子植物育种, 2021, 19(6): 2064-2072. |
XIE Yun, GUO Shihua. Grey correlation degree analysis and comprehensive evaluation of agronomic characters in foxtail millet cultivars[J]. Molecular Plant Breeding, 2021, 19(6): 2064-2072. | |
[23] | 赵禹凯, 王显瑞, 陈高勋, 等. 谷子主要农艺性状的相关和通径分析[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(2): 35-38. |
ZHAO Yukai, WANG Xianrui, CHEN Gaoxun, et al. Correlation analysis and path analysis on major agronomic traits of millet[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2014, 35(2): 35-38. | |
[24] | 王丹丹, 希日格乐, 孙宇燕, 等. 谷子农艺性状相关性与食味品质分析[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(4): 29-37. |
WANG Dandan, XI Rigele, SUN Yuyan, et al. Analysis on correlation of agronomic traits and eating quality in foxtail millet[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2015, 36(4): 29-37. | |
[25] | 杨慧卿, 王军, 袁峰, 等. 西北春谷区中晚熟组谷子主要农艺性状的相关和通径分析[J]. 河北农业科学, 2010, 14(11): 105-106, 111. |
YANG Huiqing, WANG Jun, YUAN Feng, et al. Correlation analysis and path analysis on major agronomic traits of middle and late mature group of regional test in spring millet area of Northwest China[J]. Journal of Hebei Agricultural Sciences, 2010, 14(11): 105-106, 111. | |
[1] |
Yang X Y, Wan Z W, Perry L, et al. Early millet use in Northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3726-3730.
DOI PMID |
[2] | 刘敬科, 刁现民. 我国谷子产业现状与加工发展方向[J]. 农业工程技术(农产品加工业), 2013,(12): 15-17. |
LIU Jingke, DIAO Xianmin. Present situation and processing development direction of millet industry in China[J]. Agriculture Engineering Technology (Agricultural Product Processing Industry), 2013,(12): 15-17. | |
[3] | 张雪峰. 中国谷子产业发展问题研究[D]. 哈尔滨: 东北农业大学, 2013. |
ZHANG Xuefeng. Studies on the Issues of Millet Industry Development in China[D]. Harbin: Northeast Agricultural University, 2013. | |
[4] | Cao X N, Hu Y L, Song J, et al. Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet[J]. International Journal of Molecular Sciences, 2022, 23(18): 10792. |
[5] | 李顺国, 刘斐, 刘猛, 等. 我国谷子产业现状、发展趋势及对策建议[J]. 农业现代化研究, 2014, 35(5): 531-535. |
LI Shunguo, LIU Fei, LIU Meng, et al. Current Situation, Development Trend and Countermeasures of Millet Industry in China[J]. Research on Agricultural Modernization, 2014, 35(5): 531-535. | |
[6] | Diao X M. Production and genetic improvement of minor cereals in China[J]. The Crop Journal, 2017, 5(2): 103-114. |
[7] |
Wang Y Q, Li L, Tang S, et al. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet[J]. BMC Genetics, 2016, 17: 57.
DOI PMID |
[8] | Kour D, Rana K L, Yadav A N, et al. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes[J]. Environmental Sustainability, 2020, 3(1): 23-34. |
[9] |
刁现民, 程汝宏. 十五年区试数据分析展示谷子糜子育种现状[J]. 中国农业科学, 2017, 50(23): 4469-4474.
DOI |
DIAO Xianmin, CHENG Ruhong. Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data[J]. Scientia Agricultura Sinica, 2017, 50(23): 4469-4474. | |
[10] |
王永丽, 王珏, 杜金哲, 等. 不同时期干旱胁迫对谷子农艺性状的影响[J]. 华北农学报, 2012, 27(6): 125-129.
DOI |
WANG Yongli, WANG Jue, DU Jinzhe, et al. Effects of drought stress at different periods on agronomic traits of millet[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(6): 125-129. | |
[11] | 徐丽霞, 仪慧兰, 郭二虎, 等. 干旱胁迫对谷子抽穗期生理生化和产量的影响[J]. 山西大学学报(自然科学版), 2016, 39(4): 672-678. |
XU Lixia, YI Huilan, GUO Erhu, et al. Influence of drought stress on physiology characteristics and agronomic traits at heading stage of Setaria italica L[J]. Journal of Shanxi University (Natural Science Edition), 2016, 39(4): 672-678. |
[1] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[2] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[3] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[4] | HUANG Boxuan, LI Pengcheng, ZHENG Cangsong, SUN Miao, SHAO Jingjing, FENG Weina, PANG Chaoyou, XU Wenxiu, DONG Helin. Effects of different nitrogen inhibitors on growth, nitrogen utilization and yield of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2122-2131. |
[5] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[6] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[7] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[8] | CHEN Yong, ZHOU Lei, SUI Chun, LIN Caixia. The characteristics of 32 cultivated germplasms of Isatis tinctoria Linnaeus in Xinjiang production area [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2307-2314. |
[9] | ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L. [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830. |
[10] | HOU Lili, WANG Wei, CUI Xinju, ZHOU Dawei. Effects of organic and inorganic combined application on yield, soil nutrients and enzyme activities of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1845-1852. |
[11] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[12] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[13] | MIAO Yu, CHEN Cuixia, MA Yanming, XING Guofang, DONG Yusheng, CHEN Zhijun, WANG Xian, XIANG Li. Genetic diversity analysis of phenotypic traits of 276 Central Asian barley germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1888-1895. |
[14] | NIU Tingting, MA Mingsheng, ZHANG Jungao. Effects of straw returning and plastic film mulching on soil physical and chemical properties and spring maize yield in rain-fed upland farmland [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1896-1906. |
[15] | ZHAO Minhua, SONG Bingxi, ZHANG Yupeng, GAO Zhihong, ZHU Yongyong, CHEN Xiaoyuan. Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial factor productivity under dry farming conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1907-1915. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||