新疆农业科学 ›› 2025, Vol. 62 ›› Issue (1): 161-173.DOI: 10.6048/j.issn.1001-4330.2025.01.019
• 耕作栽培·生理生化·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
杜亚隆1,2(), 付秋萍1,2, 艾鹏睿1,2, 马英杰1,2(
), 祁通3, 潘洋1,2
收稿日期:
2024-07-28
出版日期:
2025-01-20
发布日期:
2025-03-11
通信作者:
马英杰(1969-),男,新疆乌鲁木齐人,教授,博士,硕士生/博士生导师,研究方向为灌溉排水,(E-mail) xj-myj@163.com作者简介:
杜亚隆(1999-),男,河南新乡人,硕士研究生,研究方向为节水灌溉,(E-mail)duyalong017@163.com
基金资助:
DU Yalong1,2(), FU Qiuping1,2, AI Pengrui1,2, MA Yingjie1,2(
), QI Tong3, PAN Yang1,2
Received:
2024-07-28
Published:
2025-01-20
Online:
2025-03-11
Supported by:
摘要:
【目的】 探究新疆南疆机采长绒棉不同土壤水分上下限对其生长及产量的影响,为长绒棉田间用水管理提供理论依据。【方法】 以长绒棉为研究对象,设置2年大田试验,2021年3个灌水下限分别为50%、60%和70%田间持水量(FC),3个灌水上限80%、90%和100% FC及其不同组合的8个处理(Wa-1~Wa-8);2022年设置灌水上限为90% FC,在蕾期设置3个灌水下限分别为55%、65%和75% FC,花铃期设置3个灌水下限为60%、70%和80% FC完全组合的9个处理(Wb-1~Wb-9)。基于不同灌溉方案下生长指标、产量构成及水分利用效率等的差异,采用AHP-EWM-RSR综合评价法选取较优的试验处理。【结果】 增大蕾期灌水下限长绒棉株高和茎粗显著提升;花铃期70% FC的灌水下限有利于提高长绒棉产量和水分利用效率,而收获密度差异不显著,其中Wb-5处理(蕾期灌水上下限65%FC~90%FC,花铃期灌水上下限70%FC~90%FC)籽棉产量为6.33 t/hm2,较CK-2提高10.86%,其水分利用效率提高73.17%。【结论】 蕾期灌水上下限为65%~90% FC,花铃期灌水上下限为70%~90% FC,可促进生长并提高长绒棉籽棉产量和水分利用效率。
中图分类号:
杜亚隆, 付秋萍, 艾鹏睿, 马英杰, 祁通, 潘洋. 综合评价不同灌溉处理对长绒棉生长及产量的影响[J]. 新疆农业科学, 2025, 62(1): 161-173.
DU Yalong, FU Qiuping, AI Pengrui, MA Yingjie, QI Tong, PAN Yang. Comprehensive evaluation of irrigation treatment based on the growth and yield of drip-irrigated Gossypium barbadense[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 161-173.
土层深度 Soil depth (cm) | 土壤容重 Volume weight of soil (g/cm3) | 播前初始含水率 Initial moisture content before sowing (cm3/cm3) | 田间持水量 Field capacity (cm3/cm3) |
---|---|---|---|
0~10 | 1.45 | 23.25 | 29.51 |
10~20 | 1.46 | 15.55 | 29.68 |
20~30 | 1.47 | 15.03 | 29.91 |
30~40 | 1.49 | 14.19 | 30.40 |
40~60 | 1.48 | 15.60 | 30.26 |
60~80 | 1.41 | 15.46 | 24.37 |
80~100 | 1.39 | 11.03 | 16.31 |
表1 播前土壤理化性质
Tab.1 Soil physical and chemical properties before sowing
土层深度 Soil depth (cm) | 土壤容重 Volume weight of soil (g/cm3) | 播前初始含水率 Initial moisture content before sowing (cm3/cm3) | 田间持水量 Field capacity (cm3/cm3) |
---|---|---|---|
0~10 | 1.45 | 23.25 | 29.51 |
10~20 | 1.46 | 15.55 | 29.68 |
20~30 | 1.47 | 15.03 | 29.91 |
30~40 | 1.49 | 14.19 | 30.40 |
40~60 | 1.48 | 15.60 | 30.26 |
60~80 | 1.41 | 15.46 | 24.37 |
80~100 | 1.39 | 11.03 | 16.31 |
图1 研究区长绒棉生长季平均气温、降雨量及参考作物蒸发蒸腾量(ET0)
Fig.1 Average temperature, precipitation and reference crop evapotranspiration (ET0) during the Gossypium barbadense growing season at the experiment site.
年份 Years | 处理 Treatments | 灌水上下限(占FC百分比) Upper and lower limits of irrigation(Percentage of FC) | 灌水定额 Irrigation quota(mm) | ||||
---|---|---|---|---|---|---|---|
蕾期 Bud period (%) | 花铃期 Blooming period (%) | 苗期 Seedling stage | 蕾期 Bud period | 花铃期 Blooming period | 吐絮期 Flocculation period | ||
2021 | Wa-1 | 50~80 | 50~80 | 15 | 25 | 39 | 0 |
Wa-2 | 50~90 | 50~90 | 15 | 34 | 52 | 0 | |
Wa-3 | 50~100 | 50~100 | 15 | 42 | 66 | 0 | |
Wa-4 | 60~80 | 60~80 | 15 | 17 | 26 | 0 | |
Wa-5 | 60~90 | 60~90 | 15 | 25 | 39 | 0 | |
Wa-6 | 60~100 | 60~100 | 15 | 34 | 52 | 0 | |
Wa-7 | 70~90 | 70~90 | 15 | 17 | 26 | 0 | |
Wa-8 | 70~100 | 70~100 | 15 | 25 | 39 | 0 | |
CK-1 | 当地灌溉水平 | - | - | - | 0 | ||
2022 | Wb-1 | 55~90 | 60~90 | 15 | 29 | 39 | 0 |
Wb-2 | 55~90 | 70~90 | 15 | 29 | 26 | 0 | |
Wb-3 | 55~90 | 80~90 | 15 | 29 | 13 | 0 | |
Wb-4 | 65~90 | 60~90 | 15 | 21 | 39 | 0 | |
Wb-5 | 65~90 | 70~90 | 15 | 21 | 26 | 0 | |
Wb-6 | 65~90 | 80~90 | 15 | 21 | 13 | 0 | |
Wb-7 | 75~90 | 60~90 | 15 | 13 | 39 | 0 | |
Wb-8 | 75~90 | 70~90 | 15 | 13 | 26 | 0 | |
Wb-9 | 75~90 | 80~90 | 15 | 13 | 13 | 0 | |
CK-2 | 当地灌溉水平 | - | - | - | 0 |
表2 2021和2022年滴灌试验方案
Tab.2 Drip irrigation test schemes for 2021 and 2022
年份 Years | 处理 Treatments | 灌水上下限(占FC百分比) Upper and lower limits of irrigation(Percentage of FC) | 灌水定额 Irrigation quota(mm) | ||||
---|---|---|---|---|---|---|---|
蕾期 Bud period (%) | 花铃期 Blooming period (%) | 苗期 Seedling stage | 蕾期 Bud period | 花铃期 Blooming period | 吐絮期 Flocculation period | ||
2021 | Wa-1 | 50~80 | 50~80 | 15 | 25 | 39 | 0 |
Wa-2 | 50~90 | 50~90 | 15 | 34 | 52 | 0 | |
Wa-3 | 50~100 | 50~100 | 15 | 42 | 66 | 0 | |
Wa-4 | 60~80 | 60~80 | 15 | 17 | 26 | 0 | |
Wa-5 | 60~90 | 60~90 | 15 | 25 | 39 | 0 | |
Wa-6 | 60~100 | 60~100 | 15 | 34 | 52 | 0 | |
Wa-7 | 70~90 | 70~90 | 15 | 17 | 26 | 0 | |
Wa-8 | 70~100 | 70~100 | 15 | 25 | 39 | 0 | |
CK-1 | 当地灌溉水平 | - | - | - | 0 | ||
2022 | Wb-1 | 55~90 | 60~90 | 15 | 29 | 39 | 0 |
Wb-2 | 55~90 | 70~90 | 15 | 29 | 26 | 0 | |
Wb-3 | 55~90 | 80~90 | 15 | 29 | 13 | 0 | |
Wb-4 | 65~90 | 60~90 | 15 | 21 | 39 | 0 | |
Wb-5 | 65~90 | 70~90 | 15 | 21 | 26 | 0 | |
Wb-6 | 65~90 | 80~90 | 15 | 21 | 13 | 0 | |
Wb-7 | 75~90 | 60~90 | 15 | 13 | 39 | 0 | |
Wb-8 | 75~90 | 70~90 | 15 | 13 | 26 | 0 | |
Wb-9 | 75~90 | 80~90 | 15 | 13 | 13 | 0 | |
CK-2 | 当地灌溉水平 | - | - | - | 0 |
图4 土壤水分调控下长绒棉株高随时间动态的变化 注:图中不同小写字母表示不同生育期、不同水分处理间差异显著(P<0.05),下同
Fig.4 Changes of dynamic plant height of Gossypium barbadense with time under soil moisture regulation Notes: Different lowercase letters in the figure indicate significant differences between different growth stages and different water treatments (P < 0.05),the same as below
年份 Year | 处理 Treatments | 单株有效铃数 The bell numberper plant(个) | 单铃质量 Boll weight (g) | 收获密度 Harvesting density (104/hm2) | 衣分 Fibre optic tube yield (%) | 籽棉产量 Seed yield (t/hm2) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|
2021 | Wa-1 | 9.18b | 3.04d | 17.78a | 31.90a | 5.78e | 1.37b |
Wa-2 | 10.29ab | 3.28c | 19.13a | 31.83a | 6.18b | 1.43a | |
Wa-3 | 9.07b | 3.32bc | 18.38a | 31.73ab | 6.04c | 1.36b | |
Wa-4 | 10.43ab | 3.40abc | 18.83a | 31.86a | 6.18b | 1.28e | |
Wa-5 | 11.46a | 3.58a | 18.68a | 31.86a | 6.31a | 1.31c | |
Wa-6 | 11.11a | 3.36bc | 19.13a | 30.79d | 6.30a | 1.23d | |
Wa-7 | 10.80ab | 3.50ab | 18.98a | 31.23c | 6.30a | 1.30g | |
Wa-8 | 10.89ab | 3.43abc | 18.83a | 31.01cd | 6.21b | 1.16h | |
CK-1 | 9.90ab | 3.06d | 18.45a | 31.57b | 5.84d | 0.81i | |
2022 | Wb-1 | 10.45ab | 3.10c | 17.93a | 32.07a | 5.81f | 1.33d |
Wb-2 | 11.51ab | 3.31bc | 18.98a | 31.58bc | 6.21cd | 1.38b | |
Wb-3 | 10.51ab | 3.47ab | 18.68a | 31.09e | 6.18d | 1.35c | |
Wb-4 | 10.61ab | 3.16c | 18.83a | 31.74b | 6.05e | 1.43a | |
Wb-5 | 11.78a | 3.60a | 18.83a | 31.74b | 6.33a | 1.42a | |
Wb-6 | 10.61ab | 3.53ab | 19.13a | 30.96e | 6.30ab | 1.36c | |
Wb-7 | 10.29b | 3.52ab | 18.98a | 31.43c | 6.24c | 1.33d | |
Wb-8 | 11.00ab | 3.58ab | 18.83a | 31.47cd | 6.26bc | 1.32e | |
Wb-9 | 10.65ab | 3.54ab | 18.98a | 31.16bcd | 6.25bc | 1.29f | |
CK-2 | 10.16b | 3.30bc | 18.68a | 31.19de | 5.71g | 0.82g |
表3 土壤水分调控下长绒棉产量构成及水分利用效率的变化
Tab.3 Changes of soil moisture regulation on yield components and water use efficiency of Gossypium barbadense
年份 Year | 处理 Treatments | 单株有效铃数 The bell numberper plant(个) | 单铃质量 Boll weight (g) | 收获密度 Harvesting density (104/hm2) | 衣分 Fibre optic tube yield (%) | 籽棉产量 Seed yield (t/hm2) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|
2021 | Wa-1 | 9.18b | 3.04d | 17.78a | 31.90a | 5.78e | 1.37b |
Wa-2 | 10.29ab | 3.28c | 19.13a | 31.83a | 6.18b | 1.43a | |
Wa-3 | 9.07b | 3.32bc | 18.38a | 31.73ab | 6.04c | 1.36b | |
Wa-4 | 10.43ab | 3.40abc | 18.83a | 31.86a | 6.18b | 1.28e | |
Wa-5 | 11.46a | 3.58a | 18.68a | 31.86a | 6.31a | 1.31c | |
Wa-6 | 11.11a | 3.36bc | 19.13a | 30.79d | 6.30a | 1.23d | |
Wa-7 | 10.80ab | 3.50ab | 18.98a | 31.23c | 6.30a | 1.30g | |
Wa-8 | 10.89ab | 3.43abc | 18.83a | 31.01cd | 6.21b | 1.16h | |
CK-1 | 9.90ab | 3.06d | 18.45a | 31.57b | 5.84d | 0.81i | |
2022 | Wb-1 | 10.45ab | 3.10c | 17.93a | 32.07a | 5.81f | 1.33d |
Wb-2 | 11.51ab | 3.31bc | 18.98a | 31.58bc | 6.21cd | 1.38b | |
Wb-3 | 10.51ab | 3.47ab | 18.68a | 31.09e | 6.18d | 1.35c | |
Wb-4 | 10.61ab | 3.16c | 18.83a | 31.74b | 6.05e | 1.43a | |
Wb-5 | 11.78a | 3.60a | 18.83a | 31.74b | 6.33a | 1.42a | |
Wb-6 | 10.61ab | 3.53ab | 19.13a | 30.96e | 6.30ab | 1.36c | |
Wb-7 | 10.29b | 3.52ab | 18.98a | 31.43c | 6.24c | 1.33d | |
Wb-8 | 11.00ab | 3.58ab | 18.83a | 31.47cd | 6.26bc | 1.32e | |
Wb-9 | 10.65ab | 3.54ab | 18.98a | 31.16bcd | 6.25bc | 1.29f | |
CK-2 | 10.16b | 3.30bc | 18.68a | 31.19de | 5.71g | 0.82g |
图6 长绒棉生长季总灌水量相对于籽棉产量和水分利用效率(WUE)的回归分析
Fig.6 Regression analysis of total irrigation amount relative to seed cotton yield and water use efficiency (WUE) during the growth period of Gossypium barbadense
年份 Years | 2021 | 2022 | ||||
---|---|---|---|---|---|---|
指标 Indicators | 主观权重 Subjective weights(waj) | 客观权重 Objective weights(wbj) | 综合权重 Comprehensive weight(Wj) | 主观权重 Subjective weights(waj) | 客观权重 Objective weights(wbj) | 综合权重 Comprehensive weight(Wj) |
X1 | 4.98 | 19.13 | 8.87 | 4.98 | 12.97 | 5.72 |
X2 | 4.58 | 18.35 | 7.84 | 4.58 | 14.89 | 6.05 |
X3 | 31.11 | 8.26 | 23.95 | 31.11 | 7.22 | 19.91 |
X4 | 10.02 | 8.76 | 8.18 | 10.02 | 11.57 | 10.28 |
X5 | 6.43 | 12.07 | 7.23 | 6.43 | 14.21 | 8.10 |
X6 | 8.85 | 14.38 | 11.85 | 8.85 | 20.11 | 15.77 |
X7 | 6.41 | 8.57 | 5.11 | 6.41 | 6.61 | 3.76 |
X8 | 27.63 | 10.48 | 26.97 | 27.63 | 12.42 | 30.42 |
表4 各评价指标权重
Tab.4 The weight of each evaluation index in 2021 and 2022
年份 Years | 2021 | 2022 | ||||
---|---|---|---|---|---|---|
指标 Indicators | 主观权重 Subjective weights(waj) | 客观权重 Objective weights(wbj) | 综合权重 Comprehensive weight(Wj) | 主观权重 Subjective weights(waj) | 客观权重 Objective weights(wbj) | 综合权重 Comprehensive weight(Wj) |
X1 | 4.98 | 19.13 | 8.87 | 4.98 | 12.97 | 5.72 |
X2 | 4.58 | 18.35 | 7.84 | 4.58 | 14.89 | 6.05 |
X3 | 31.11 | 8.26 | 23.95 | 31.11 | 7.22 | 19.91 |
X4 | 10.02 | 8.76 | 8.18 | 10.02 | 11.57 | 10.28 |
X5 | 6.43 | 12.07 | 7.23 | 6.43 | 14.21 | 8.10 |
X6 | 8.85 | 14.38 | 11.85 | 8.85 | 20.11 | 15.77 |
X7 | 6.41 | 8.57 | 5.11 | 6.41 | 6.61 | 3.76 |
X8 | 27.63 | 10.48 | 26.97 | 27.63 | 12.42 | 30.42 |
图7 基于长绒棉生长指标、产量及效率指标的灌溉方案综合评价示意
Fig.7 Comprehensive evaluation diagram of irrigation scheme based on growth index, yield and efficiency index of Gossypium barbadense
年份 Years | 处理 Treatments | Probit | RSR拟合值 RSR fitting value | 分档等级 Grade classification | Px | RSR排名 RSR ranking |
---|---|---|---|---|---|---|
2021 | Wa-5 | 6.86 | 0.91 | 优 | P84.134 | 1 |
Wa-7 | 6.15 | 0.80 | 2 | |||
Wa-2 | 5.67 | 0.73 | 良 | P15.866 | 3 | |
Wa-3 | 4.33 | 0.52 | 7 | |||
Wa-4 | 5.32 | 0.67 | 4 | |||
Wa-6 | 5.00 | 0.63 | 5 | |||
Wa-8 | 4.68 | 0.58 | 6 | |||
Wa-1 | 3.85 | 0.45 | 差 | <P15.866 | 8 | |
2022 | Wb-2 | 6.22 | 0.76 | 优 | P84.134 | 2 |
Wb-5 | 6.91 | 0.88 | 1 | |||
Wb-3 | 4.86 | 0.52 | 良 | P15.866 | 6 | |
Wb-4 | 5.43 | 0.62 | 4 | |||
Wb-6 | 5.14 | 0.57 | 5 | |||
Wb-7 | 4.57 | 0.47 | 7 | |||
Wb-8 | 5.76 | 0.68 | 3 | |||
Wb-9 | 4.24 | 0.41 | 8 | |||
Wb-1 | 3.78 | 0.33 | 差 | <P15.866 | 9 |
表5 不同灌水上下限各处理生长、产量及效率指标综合评价结果
Tab.5 The comprehensive evaluation ranking results of each treatment under soil moisture regulation
年份 Years | 处理 Treatments | Probit | RSR拟合值 RSR fitting value | 分档等级 Grade classification | Px | RSR排名 RSR ranking |
---|---|---|---|---|---|---|
2021 | Wa-5 | 6.86 | 0.91 | 优 | P84.134 | 1 |
Wa-7 | 6.15 | 0.80 | 2 | |||
Wa-2 | 5.67 | 0.73 | 良 | P15.866 | 3 | |
Wa-3 | 4.33 | 0.52 | 7 | |||
Wa-4 | 5.32 | 0.67 | 4 | |||
Wa-6 | 5.00 | 0.63 | 5 | |||
Wa-8 | 4.68 | 0.58 | 6 | |||
Wa-1 | 3.85 | 0.45 | 差 | <P15.866 | 8 | |
2022 | Wb-2 | 6.22 | 0.76 | 优 | P84.134 | 2 |
Wb-5 | 6.91 | 0.88 | 1 | |||
Wb-3 | 4.86 | 0.52 | 良 | P15.866 | 6 | |
Wb-4 | 5.43 | 0.62 | 4 | |||
Wb-6 | 5.14 | 0.57 | 5 | |||
Wb-7 | 4.57 | 0.47 | 7 | |||
Wb-8 | 5.76 | 0.68 | 3 | |||
Wb-9 | 4.24 | 0.41 | 8 | |||
Wb-1 | 3.78 | 0.33 | 差 | <P15.866 | 9 |
[1] | 杨广, 李万精, 任富天, 等. 不同矿化度咸水膜下滴灌棉花土壤盐分累积规律及其数值模拟[J]. 农业工程学报, 2021, 37(19): 73-83. |
YANG Guang, LI Wanjing, REN Futian, et al. Soil salinity accumulation and model simulation of cotton under mulch drip irrigation with different salinity level water[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 73-83. | |
[2] | 闫曼曼, 郑剑超, 张巨松, 等. 调亏灌溉对海岛棉光合物质生产与分配的影响[J]. 干旱区研究, 2016, 33(6): 1351-1357. |
YAN Manman, ZHENG Jianchao, ZHANG Jusong, et al. Effects of regulated deficit irrigation on production and distribution of photosynthetic matter in Gossypium barbadense L.[J]. Arid Zone Research, 2016, 33(6): 1351-1357. | |
[3] | 王心. 种植模式与灌溉定额对机采长绒棉产量形成与采摘品质的影响[D]. 乌鲁木齐: 新疆农业大学, 2022. |
WANG Xin. Effects of planting patterns and irrigation quotas on yield formation and picking quality of machine-picked long-staple cotton[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[4] |
胡启瑞, 吉春容, 李迎春, 等. 膜下滴灌棉花蕾期干旱胁迫对光合特性及产量的影响[J]. 生态环境学报, 2023, 32(6): 1045-1052.
DOI |
HU Qirui, JI Chunrong, LI Yingchun, et al. Effects of drought stress on photosynthetic characteristics and yield of cotton at bud stage under mulched drip irrigation[J]. Ecology and Environmental Sciences, 2023, 32(6): 1045-1052. | |
[5] |
王天友, 冯春晖, 王有武, 等. 海岛棉不同果枝类型杂交F2代产量品质性状分布规律[J]. 新疆农业科学, 2020, 57(2): 209-218.
DOI |
WANG Tianyou, FENG Chunhui, WANG Youwu, et al. Study on the distribution of yield and quality traits and their correlations in F2 generation island cottons with different fruit branches[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 209-218.
DOI |
|
[6] |
姚贺盛, 张亚黎, 易小平, 等. 海岛棉和陆地棉叶片光合特性、冠层结构及物质生产的差异[J]. 中国农业科学, 2015, 48(2): 251-261.
DOI |
YAO Hesheng, ZHANG Yali, YI Xiaoping, et al. Study on differences in comparative canopy structure characteristics and photosynthetic carbon assimilation of field-grown Pima Cotton(Gossypium barbadense) and upland Cotton(G. hirsutum)[J]. Scientia Agricultura Sinica, 2015, 48(2): 251-261.
DOI |
|
[7] | 张妮, 左强, 石建初, 等. ANSWER模型评估新疆咸水灌溉棉花产量与效益[J]. 农业工程学报, 2023, 39(2): 78-89. |
ZHANG Ni, ZUO Qiang, SHI Jianchu, et al. Estimating the yields and profits of saline water irrigated cotton in Xinjiang based on ANSWER model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 78-89. | |
[8] | 宋喜山, 曹红霞, 何子建, 等. Aquacrop模型在北疆棉花生育期灌溉洗盐制度优化中的适用性[J]. 农业工程学报, 2023, 39(20): 111-122. |
SONG Xishan, CAO Hongxia, HE Zijian, et al. Applicability of the Aquacrop model in optimization of irrigation and salt leaching schedule during the reproductive period of cotton in Northern Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 111-122. | |
[9] | 高福奎, 王璐, 李小刚, 等. 不同灌溉制度对南疆棉田水盐分布及作物生长的影响[J]. 灌溉排水学报, 2023, 42(1): 54-63. |
GAO Fukui, WANG Lu, LI Xiaogang, et al. Effects of spring irrigation on water and salt distribution in soil and cotton growth in southern Xinjiang[J]. Journal of Irrigation and Drainage, 2023, 42(1): 54-63. | |
[10] | 黄真真, 刘广明, 李金彪, 等. 滴灌带布置方式与灌水定额对土壤性状及棉花产量影响[J]. 土壤通报, 2020, 51(2): 325-331. |
HUANG Zhenzhen, LIU Guangming, LI Jinbiao, et al. Effect of layout of drip irrigation belt and irrigation quota on soil properties and cotton yield[J]. Chinese Journal of Soil Science, 2020, 51(2): 325-331. | |
[11] | 廖欢, 甘浩天, 刘凯, 等. 机采棉氮素吸收及产量的最佳水氮组合[J]. 植物营养与肥料学报, 2021, 27(12): 2229-2242. |
LIAO Huan, GAN Haotian, LIU Kai, et al. Optimal water scheme and N rate for high N uptake and yield of machine-harvested cotton[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2229-2242. | |
[12] | Wang H D, Wu L F, Wang X K, et al. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation[J]. Agricultural Water Management, 2021, 245: 106662. |
[13] | Li M, Xiao J, Bai Y G, et al. Response mechanism of cotton growth to water and nutrients under drip irrigation with plastic mulch in southern Xinjiang[J]. Journal of Sensors, 2020: 1-16. |
[14] | Hong M, Zhang Z Y, Fu Q P, et al. Water requirement of solar greenhouse tomatoes with drip irrigation under mulch in the southwest of the Taklimakan Desert[J]. Water, 2022, 14(19): 3050. |
[15] | 赵波, 王振华, 李文昊. 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响[J]. 农业工程学报, 2016, 32(6): 139-148. |
ZHAO Bo, WANG Zhenhua, LI Wenhao. Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 139-148. | |
[16] | 雷媛, 刘战东, 张伟强, 等. 不同灌溉控制指标对冬小麦生长及耗水特性的影响[J]. 灌溉排水学报, 2021, 40(4): 8-15. |
LEI Yuan, LIU Zhandong, ZHANG Weiqiang, et al. The effects of criteria used in irrigation control on growth and water consumption of winter wheat[J]. Journal of Irrigation and Drainage, 2021, 40(4): 8-15. | |
[17] | 焦炳忠, 孙兆军, El-SAWY S M, 等. 基于土壤水分下限的灵武长枣微孔渗灌灌溉制度研究[J]. 农业机械学报, 2020, 51(5): 305-314. |
JIAO Bingzhong, SUN Zhaojun, ELSAWY S M, et al. Irrigation schedule of microporous infiltration irrigation for Lingwu jujube based on lower limit of soil moisture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 305-314. | |
[18] | He P R, Yu S E, Zhang F C, et al. Effects of soil water regulation on the cotton yield, fiber quality and soil salt accumulation under mulched drip irrigation in southern Xinjiang, China[J]. Agronomy, 2022, 12(5): 1246. |
[19] | 汪昌树, 杨鹏年, 姬亚琴, 等. 不同灌水下限对膜下滴灌棉花土壤水盐运移和产量的影响[J]. 干旱地区农业研究, 2016, 34(2): 232-238. |
WANG Changshu, YANG Pengnian, JI Yaqin, et al. Effects of different irrigation lower limits on soil water-salt transport and yield of cotton under mulched drip-irrigation[J]. Agricultural Research in the Arid Areas, 2016, 34(2): 232-238. | |
[20] | 申孝军, 孙景生, 张寄阳, 等. 滴灌条件下土壤平均含水率计算方法研究[J]. 水土保持学报, 2011, 25(3): 241-244, 253. |
SHEN Xiaojun, SUN Jingsheng, ZHANG Jiyang, et al. Study on calculation method of soil moisture content under drip irrigation[J]. Journal of Soil and Water Conservation, 2011, 25(3): 241-244, 253. | |
[21] | 潘俊杰, 付秋萍, 阿布都卡依木·阿布力米提, 等. 蕾期和花铃期不同灌水下限对滴灌棉花产量的影响[J]. 干旱地区农业研究, 2019, 37(5): 27-32. |
PAN Junjie, FU Qiuping, Abudukayimu Abulimiti, et al. Effects of irrigation limits at bud stage and flowering stage on yield of drip irrigation cotton[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 27-32. | |
[22] | 王东旺, 王振华, 张金珠, 等. 滴灌带布置模式对北疆机采棉生长及土壤水热盐分布特征的影响[J]. 农业工程学报, 2022, 38(S1): 76-86. |
WANG Dongwang, WANG Zhenhua, ZHANG Jinzhu, et al. Effects of drip tape modes on machine-harvest cotton growth and soil water, heat and salt distribution in Northern Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(S1): 76-86. | |
[23] | 张迎春, 张富仓, 范军亮, 等. 滴灌技术参数对南疆棉花生长和土壤水盐的影响[J]. 农业工程学报, 2020, 36(24): 107-117. |
ZHANG Yingchun, ZHANG Fucang, FAN Junliang, et al. Effects of drip irrigation technical parameters on cotton growth, soil moisture and salinity in Southern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 107-117. | |
[24] | 刘海光. 亏缺灌溉下施氮量对棉花GhNRT基因表达和氮素利用效率的影响[D]. 济南: 山东师范大学, 2021. |
LIU Haiguang. Effects of nitrogen rate on GhNRT genes expression and nitrogen use efficiency of cotton under deficit irrigation[D]. Jinan: Shandong Normal University, 2021. | |
[25] |
张慧, 张凯, 陈冰, 等. 不同灌溉量对新疆棉花生长发育及产量形成的影响[J]. 干旱区研究, 2022, 39(6): 1976-1985.
DOI |
ZHANG Hui, ZHANG Kai, CHEN Bing, et al. Effects of different irrigation rates on cotton growth and yield formation in Xinjiang[J]. Arid Zone Research, 2022, 39(6): 1976-1985.
DOI |
|
[26] |
杨北方, 杨国正, 冯璐, 等. 亏缺灌溉对棉花生长和水分利用效率的影响研究进展[J]. 应用生态学报, 2021, 32(3): 1112-1118.
DOI |
YANG Beifang, YANG Guozheng, FENG Lu, et al. Effects of deficit irrigation on cotton growth and water use efficiency: a review[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1112-1118.
DOI |
|
[27] | 张泽宇, 曹红霞, 何子建, 等. 基于AHP-EWM-TOPSIS的温室辣椒最佳调亏灌溉方案优化研究[J]. 干旱地区农业研究, 2023, 41(1): 111-120. |
ZHANG Zeyu, CAO Hongxia, HE Zijian, et al. Study on greenhouse pepper optimal regulated deficitirrigation scheme based on AHP-EWM-TOPSIS[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 111-120. | |
[28] | 倪肖卫, 郭建斌, 殷庆霏, 等. 园林废弃物堆肥用作绿化基质对佛甲草生长的影响[J]. 干旱区资源与环境, 2019, 33(4): 103-108. |
NI Xiaowei, GUO Jianbin, YIN Qingfei, et al. Effects of green waste compost used as roof greening substrate on the growth of Sedum lineare[J]. Journal of Arid Land Resources and Environment, 2019, 33(4): 103-108. | |
[29] | 田凤调. 秩和比法及其应用[J]. 中国医师杂志, 2002, 4(2): 115-119. |
TIAN Fengdiao. Rank sum radio and its application[J]. Journal of Chinese Physician, 2002, 4(2): 115-119. | |
[30] | Wellens J, Raes D, Fereres E, et al. Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz)[J]. Agricultural Water Management, 2022, 263: 107491. |
[31] |
王心, 林涛, 崔建平, 等. 种植模式与灌溉定额对机采长绒棉产量及纤维品质形成的影响[J]. 新疆农业科学, 2023, 60(8): 1821-1829.
DOI |
WANG Xin, LIN Tao, CUI Jianping, et al. Effects of planting mode and irrigation quota on yield and fiber quality of machine-picked long-staple cotton[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1821-1829.
DOI |
|
[32] | 白志刚. 不同棉花品种基于冠层PAR空间分布的株型特征与生长发育的研究[D]. 北京: 中国农业科学院, 2016. |
BAI Zhigang. Study on the plant architecture and development of different cotton cultivars based on PAR spatial distribution in canopies[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[33] |
张祥, 胡大鹏, 李亚兵, 等. 长江流域大麦后直播棉集中成铃与高产协同表达群体株型特征[J]. 棉花学报, 2017, 29(6): 513-524.
DOI |
ZHANG Xiang, HU Dapeng, LI Yabing, et al. The plant architecture of direct-sowing cotton planted after barley harvested with high yield and centralized boll-setting[J]. Cotton Science, 2017, 29(6): 513-524. | |
[34] | 何平如. 土壤水分调控对南疆滴灌棉花生长及土壤水盐肥运移的影响[D]. 杨凌: 西北农林科技大学, 2020. |
HE Pingru. Effects of soil water regulation on cotton growth and soil water salt fertilizer transportation under drip irrigation in Southern Xinjian[D]. Yangling: Northwest A & F University, 2020. | |
[35] | 李志鹏. 灌溉制度对南疆无膜滴灌棉花生长及土壤水热时空变化的影响[D]. 阿拉尔: 塔里木大学, 2022. |
LI Zhipeng. Effects of irrigation regimes on the growth of filmless drip irrigation cotton and spatio-temporal variations of soil water and heat in Southern Xinjiang[D]. Aral: Tarim University, 2022. | |
[36] | Wang J T, Du G F, Tian J S, et al. Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity[J]. Agricultural Water Management, 2021, 255: 106992. |
[37] | 王珂, 杨娜, 席吉龙, 等. 三种数学模型模拟不同播期小麦籽粒灌浆过程的比较分析[J]. 麦类作物学报, 2022, 42(11): 1398-1407. |
WANG Ke, YANG Na, XI Jilong, et al. Comparison of three mathematical equation for simulating the wheat grain filling process with different sowing dates[J]. Journal of Triticeae Crops, 2022, 42(11): 1398-1407. | |
[38] |
刘素华, 彭延, 彭小峰, 等. 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响[J]. 棉花学报, 2016, 28(2): 184-188.
DOI |
LIU Suhua, PENG Yan, PENG Xiaofeng, et al. Effects of regulated deficit irrigation and plant density on plant growth and yield and fiber quality of cotton in dry land area[J]. Cotton Science, 2016, 28(2): 184-188. | |
[39] | 申孝军, 张寄阳, 孙景生, 等. 灌水模式及下限对滴灌棉花产量和品质的影响[J]. 排灌机械工程学报, 2014, 32(8): 711-718. |
SHEN Xiaojun, ZHANG Jiyang, SUN Jingsheng, et al. Effect of drip irrigation pattern and irrigation lower limit on yield and quality of cotton[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(8): 711-718. | |
[40] | 何平如, 张富仓, 侯翔皓, 等. 土壤水分调控对南疆滴灌棉花产量及土壤水盐分布的影响[J]. 水土保持研究, 2020, 27(2): 84-92. |
HE Pingru, ZHANG Fucang, HOU Xianghao, et al. Effects of soil water regulation on cotton yield and soil water-salt distribution under drip irrigation in southern Xinjiang[J]. Research of Soil and Water Conservation, 2020, 27(2): 84-92. | |
[41] | 陆红娜, 康绍忠, 杜太生, 等. 农业绿色高效节水研究现状与未来发展趋势[J]. 农学学报, 2018, 8(1): 155-162. |
LU Hongna, KANG Shaozhong, DU Taisheng, et al. Current status and future research trend on water-saving high-efficiency and eco-friendly agriculture[J]. Journal of Agriculture, 2018, 8(1): 155-162. | |
[42] | 宁松瑞, 颜安, 柳维扬. 盐胁迫膜下滴灌棉花生长及产量对氮磷钾追施配比的响应分析[J]. 水资源与水工程学报, 2022, 33(5): 208-215. |
NING Songrui, YAN An, LIU Weiyang. Response of salt-stressed cotton growth and yield under film mulched drip irrigation to topdressing ratio of nitrogen, phosphorus and potassium[J]. Journal of Water Resources and Water Engineering, 2022, 33(5): 208-215. | |
[43] | 侯翔皓. 南疆盐碱化农田膜下滴灌棉花水氮耦合效应与高效利用模式研究[D]. 杨凌: 西北农林科技大学, 2022. |
HOU Xianghao. Study on coupling effect of water and nitrogen and efficient utilization mode of cotton under mulched drip irrigation in salinized fields in South of Xinjiang[D]. Yangling: Northwest A & F University, 2022. | |
[44] | 姚辉, 尹尚先, 徐维, 等. 基于组合赋权的加权秩和比法的底板突水危险性评价[J]. 煤田地质与勘探, 2022, 50(6): 132-137. |
YAO Hui, YIN Shangxian, XU Wei, et al. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. Coal Geology & Exploration, 2022, 50(6): 132-137. | |
[45] | 潘伟亮, 吴齐叶, 龚文静, 等. 改进秩和比法在城镇污水处理工艺优选中的应用[J]. 应用化工, 2021, 50(4): 1155-1158. |
PAN Weiliang, WU Qiye, GONG Wenjing, et al. Application of improved rank sum ratio method in the process select of municipal sewage treatment[J]. Applied Chemical Industry, 2021, 50(4): 1155-1158. |
[1] | 孙娜, 马林, 邹辉, 张志辉, 张胜军, 黄倩楠, 杨蕙, 登斯拉木·吐尔逊拜, 李志彬, 曹俊梅, 雷钧杰. 氮磷钾配施对冬小麦产量和品质的影响及其肥效分析[J]. 新疆农业科学, 2025, 62(1): 1-12. |
[2] | 谢秀荣, 张永强, 海峰, 雷钧杰, 吕晓庆, 陈传信, 徐其江, 聂石辉, 王冀川. 匀播增密对适期晚播冬小麦群体结构及产量的影响[J]. 新疆农业科学, 2025, 62(1): 21-28. |
[3] | 胡梦婷, 刘胜尧, 贾宋楠, 范凤翠, 杜凤焕, 李劲松, 秦勇. 不同种植行距对菠菜产量和水分利用效率的影响[J]. 新疆农业科学, 2025, 62(1): 217-224. |
[4] | 张妍婷, 张永强, 雷钧杰, 陈慧, 陈传信, 徐其江, 聂石辉, 徐文修. 不同施磷方式对干播湿出冬小麦光合生理特性及产量的影响[J]. 新疆农业科学, 2025, 62(1): 29-36. |
[5] | 海峰, 张永强, 谢秀荣, 吕晓庆, 陈传信, 徐其江, 聂石辉, 王冀川, 雷钧杰. 限量灌溉下不同滴灌量对滴灌冬小麦光合特性及产量的影响[J]. 新疆农业科学, 2025, 62(1): 45-52. |
[6] | 李杰, 徐其江, 张永强, 徐文修, 吕晓庆, 陈传信, 聂石辉, 雷钧杰. 不同类型尿素及施用方式对滴灌冬小麦产量形成和氮肥利用效率的影响[J]. 新疆农业科学, 2025, 62(1): 53-59. |
[7] | 马林, 黄倩楠, 杨蕙, 登斯拉木·吐尔逊拜, 邹辉, 孙娜, 雷钧杰. 不同氮肥配施腐殖酸策略对冬小麦光合特性及产量的影响[J]. 新疆农业科学, 2025, 62(1): 60-67. |
[8] | 陈传信, 张永强, 聂石辉, 徐其江, 雷钧杰. 微生物菌剂与氮肥配施对冬小麦光合特性和产量的影响[J]. 新疆农业科学, 2025, 62(1): 68-74. |
[9] | 李娜, 吕彩霞, 信会男, 李永福, 赖宁, 耿庆龙, 陈署晃. 不同施氮量对滴灌小麦性状及根区土壤养分的影响[J]. 新疆农业科学, 2025, 62(1): 87-94. |
[10] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[11] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[12] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[13] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[14] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[15] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||