Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 791-799.DOI: 10.6048/j.issn.1001-4330.2025.04.002

• Crop Genetics and Breeding · Cultivation Physiology · Physilolgy and Biochemistry • Previous Articles     Next Articles

Research on cotton SPAD estimation based on UAV multispectral images combined with machine learning

LI Ke1(), YIN Caixia1, CHEN Maoguang1, CUI Hanyu2, WANG Ke1, LIU Liyang1, TANG Qiuxiang1()   

  1. 1. Cotton Engineering Research Centerof Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
    2. College of Resources and Environment, Xinjiang Agricultural University,Urumqi 830052,China
  • Received:2024-09-15 Online:2025-04-20 Published:2025-06-20
  • Supported by:
    Sub project "Dynamic Prediction and Intelligent Decision making of Field Crop Growth and Development" of the Major Science and Technology Special Project "Key Technologies Research on Digitalization and Intelligence of Farms" in Xinjiang Uygur Autonomous Region(2022A02011-2-1);"Xinjiang Modern Agricultural Industry Technology System - Cotton Industry Technology System"(XIARS-03);Key Research and Development Project of Xinjiang Uygur Autonomous Region "Key Technologies for Green Agriculture Production in Xinjiang"(2022B02033-1);Innovation Project for College Students of Xinjiang Agricultural University(S202210758030)

基于无人机多光谱影像结合机器学习的棉花SPAD值估算

李珂1(), 印彩霞1, 陈茂光1, 崔涵予2, 王科1, 刘立杨1, 汤秋香1()   

  1. 1.新疆农业大学农学院/棉花教育部工程研究中心,乌鲁木齐 830052
    2.新疆农业大学资源与环境学院,乌鲁木齐 830052
  • 通讯作者: 汤秋香(1981-),女,河南开封人,教授,博士,硕士生/博士生导师,研究方向为农田生态环境与耕作制度,(E-mail)790058828@qq.com
  • 作者简介:李珂(2002-),女,河南新乡人,本科生,研究方向为农学,(E-mail)2041633697@qq.com
  • 基金资助:
    新疆维吾尔自治区重大科技专项“农场数字化及智能化关键技术研究”子课题“大田作物生长发育动态预测与智能决策”(2022A02011-2-1);“新疆现代农业产业技术体系-棉花产业技术体系”(XIARS-03);新疆维吾尔自治区重点研发专项“新疆绿色农业生产关键技术研究”课题“农田耕地质量提升与病虫害绿色防控技术研究”(2022B02033-1);新疆农业大学大学生创新项目(S202210758030)

Abstract:

【Objective】 Rapid and non-destructive monitoring of SPAD value has important guiding significance for field management measures. 【Methods】 In this study, the DJI M350 RTK drone equipped with multispectral sensors was used to obtain multi-temporal canopy remote sensing images, calculate the multispectral vegetation index, screen the features significantly related to SPAD value, and four machine learning algorithms including limit learning machine, random forest regression, support vector regression and multiple stepwise regression were combined to construct a SPAD value estimation model for cotton at each growth stage. 【Results】 The results showed that there was a significant positive correlation between vegetation index and cotton SPAD value at each growth stage, and there was a high correlation between CCCI (canopy chlorophyll content index) and CIrededge (red edge chlorophyll index) and SPAD value, with the highest correlation coefficients of 0.81 and 0.78, respectively. Comparing the accuracy of the model at different growth stages, it was found that the model at flowering stage had the highest accuracy, with the best estimation model being ELM, R2 being 0.741, RMSE being 1.447, rRMSE being 0.023, ELM being the best estimation model at budding stage and flocculation stage (R2 being 0.656 and 0.587, respectively), and RFR (R2 being 0.577) at full boll stage. 【Conclusion】 This study shows that the optimal growth period for SPAD value estimation of cotton leaves is atthe flowering stage, the optimal model is ELM, and the model accuracy R2 is the highest 0.741.

Key words: UAV; multispectral remote sensing; cotton; SPAD value; machine learning algorithm

摘要:

【目的】基于SPAD值估算进行快速无损监测棉花田间管理,为棉田精准施肥提供技术支撑。【方法】采用大疆创新M350 RTK无人机搭载多光谱传感器获取多时相冠层遥感影像,并计算多光谱植被指数,筛选与SPAD值显著相关的特征,结合极限学习机、随机森林回归、支持向量回归、多元逐步回归四种机器学习算法构建棉花各生育时期SPAD值估算模型。【结果】各植被指数与棉花SPAD值在各生育时期均呈极显著正相关,其中CCCI(冠层叶绿素含量指数)和CIrededge(红边叶绿素指数)与SPAD值间具有较高的相关性,相关系数分别高达0.81、0.78。对比不同生育时期模型精度,开花期模型精度最高,最佳估测模型为ELM,R2为0.741,RMSE为1.448,rRMSE为0.025,现蕾期和吐絮期的最优估算模型为ELM,R2分别为0.656、0.587,盛铃期最优估测模型为RFR,R2为0.577。【结论】棉花叶片SPAD值估算的最佳生育时期处于开花期,最优模型表现为ELM,模型精度R2最高达0.741。

关键词: 无人机, 多光谱遥感, 棉花, 叶绿素相对含量, 机器学习算法

CLC Number: