

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 791-799.DOI: 10.6048/j.issn.1001-4330.2025.04.002
• Crop Genetics and Breeding · Cultivation Physiology · Physilolgy and Biochemistry • Previous Articles Next Articles
LI Ke1(
), YIN Caixia1, CHEN Maoguang1, CUI Hanyu2, WANG Ke1, LIU Liyang1, TANG Qiuxiang1(
)
Received:2024-09-15
Online:2025-04-20
Published:2025-06-20
Supported by:
李珂1(
), 印彩霞1, 陈茂光1, 崔涵予2, 王科1, 刘立杨1, 汤秋香1(
)
通讯作者:
汤秋香(1981-),女,河南开封人,教授,博士,硕士生/博士生导师,研究方向为农田生态环境与耕作制度,(E-mail)790058828@qq.com
作者简介:李珂(2002-),女,河南新乡人,本科生,研究方向为农学,(E-mail)2041633697@qq.com
基金资助:CLC Number:
LI Ke, YIN Caixia, CHEN Maoguang, CUI Hanyu, WANG Ke, LIU Liyang, TANG Qiuxiang. Research on cotton SPAD estimation based on UAV multispectral images combined with machine learning[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 791-799.
李珂, 印彩霞, 陈茂光, 崔涵予, 王科, 刘立杨, 汤秋香. 基于无人机多光谱影像结合机器学习的棉花SPAD值估算[J]. 新疆农业科学, 2025, 62(4): 791-799.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.04.002
| 植被指数 Vegetation indexes | 公式 Formula | 文献 Reference |
|---|---|---|
| 冠层叶绿素含量指数(CCCI) | [ | |
| 红边叶绿素指数(CIrededge) | [ | |
| 叶片叶绿素指数(LCI) | [ | |
| 修正型红边变换植被指数(MRETVI) | [ | |
| 修正型增强植被指数(MEVI) | [ | |
| 绿色归一化植被指数(GNDVI) | [ | |
| 修正型简单比值指数(MSR) | [ | |
| 双差分指数(DD) | [ | |
| 陆地叶绿素指数(MTCI) | [ |
Tab.1 Calculation formula of Vegetation index
| 植被指数 Vegetation indexes | 公式 Formula | 文献 Reference |
|---|---|---|
| 冠层叶绿素含量指数(CCCI) | [ | |
| 红边叶绿素指数(CIrededge) | [ | |
| 叶片叶绿素指数(LCI) | [ | |
| 修正型红边变换植被指数(MRETVI) | [ | |
| 修正型增强植被指数(MEVI) | [ | |
| 绿色归一化植被指数(GNDVI) | [ | |
| 修正型简单比值指数(MSR) | [ | |
| 双差分指数(DD) | [ | |
| 陆地叶绿素指数(MTCI) | [ |
| 生育时期 Fertility period | 样本数 Number of samples | 最小值 Minimum value | 最大值 Maximum value | 平均数 Average | 标准差 Standard deviation | 变异系数 Cvariation coefficient(%) |
|---|---|---|---|---|---|---|
| 现蕾期 Budding stage | 96 | 43.3 | 62.3 | 55.1 | 3.349 2 | 6.08% |
| 开花期 Flowering period | 96 | 51.5 | 64.6 | 57.8 | 2.744 6 | 4.75% |
| 盛铃期 Full boll period | 96 | 56.8 | 72.4 | 65.2 | 3.107 4 | 4.77% |
| 吐絮期 Opening-boll stage | 96 | 53.1 | 85.7 | 66.1 | 7.245 7 | 10.96% |
Tab.2 Statistical characteristics of SPAD value in cotton at different growth stages
| 生育时期 Fertility period | 样本数 Number of samples | 最小值 Minimum value | 最大值 Maximum value | 平均数 Average | 标准差 Standard deviation | 变异系数 Cvariation coefficient(%) |
|---|---|---|---|---|---|---|
| 现蕾期 Budding stage | 96 | 43.3 | 62.3 | 55.1 | 3.349 2 | 6.08% |
| 开花期 Flowering period | 96 | 51.5 | 64.6 | 57.8 | 2.744 6 | 4.75% |
| 盛铃期 Full boll period | 96 | 56.8 | 72.4 | 65.2 | 3.107 4 | 4.77% |
| 吐絮期 Opening-boll stage | 96 | 53.1 | 85.7 | 66.1 | 7.245 7 | 10.96% |
Fig.2 Thermogram of correlation coefficient between vegetation index and cotton SPAD value at different growth stages Notes:A: Budding stage; B: Flowering period; C: Full boll period; D: Opening-boll stage
| 生育时期 Fertility period | 估算模型 Estimation model | 验证集Verification set | ||
|---|---|---|---|---|
| R2 | RMSE | rRMSE | ||
| 现蕾期 Budding stage | 随机森林回归RFR | 0.534 | 2.686 | 0.049 |
| 极限学习机ELM | 0.656 | 2.306 | 0.042 | |
| 多元逐步回归MSR | 0.629 | 2.395 | 0.043 | |
| 支持向量回归SVR | 0.512 | 2.747 | 0.050 | |
| 开花期 Flowering period | 随机森林回归RFR | 0.695 | 1.571 | 0.027 |
| 极限学习机ELM | 0.741 | 1.448 | 0.025 | |
| 多元逐步回归MSR | 0.719 | 1.509 | 0.026 | |
| 支持向量回归SVR | 0.737 | 1.458 | 0.025 | |
| 盛铃期 Full boll period | 随机森林回归RFR | 0.577 | 1.980 | 0.031 |
| 极限学习机ELM | 0.549 | 2.044 | 0.032 | |
| 多元逐步回归MSR | 0.520 | 2.109 | 0.033 | |
| 支持向量回归SVR | 0.569 | 2.000 | 0.031 | |
| 吐絮期 Opening-boll stage | 随机森林回归RFR | 0.573 | 5.364 | 0.080 |
| 极限学习机ELM | 0.587 | 5.274 | 0.079 | |
| 多元逐步回归MSR | 0.536 | 5.594 | 0.084 | |
| 支持向量回归SVR | 0.511 | 5.742 | 0.086 | |
Tab.3 Estimation accuracy of cotton SPAD value model at different growth stages
| 生育时期 Fertility period | 估算模型 Estimation model | 验证集Verification set | ||
|---|---|---|---|---|
| R2 | RMSE | rRMSE | ||
| 现蕾期 Budding stage | 随机森林回归RFR | 0.534 | 2.686 | 0.049 |
| 极限学习机ELM | 0.656 | 2.306 | 0.042 | |
| 多元逐步回归MSR | 0.629 | 2.395 | 0.043 | |
| 支持向量回归SVR | 0.512 | 2.747 | 0.050 | |
| 开花期 Flowering period | 随机森林回归RFR | 0.695 | 1.571 | 0.027 |
| 极限学习机ELM | 0.741 | 1.448 | 0.025 | |
| 多元逐步回归MSR | 0.719 | 1.509 | 0.026 | |
| 支持向量回归SVR | 0.737 | 1.458 | 0.025 | |
| 盛铃期 Full boll period | 随机森林回归RFR | 0.577 | 1.980 | 0.031 |
| 极限学习机ELM | 0.549 | 2.044 | 0.032 | |
| 多元逐步回归MSR | 0.520 | 2.109 | 0.033 | |
| 支持向量回归SVR | 0.569 | 2.000 | 0.031 | |
| 吐絮期 Opening-boll stage | 随机森林回归RFR | 0.573 | 5.364 | 0.080 |
| 极限学习机ELM | 0.587 | 5.274 | 0.079 | |
| 多元逐步回归MSR | 0.536 | 5.594 | 0.084 | |
| 支持向量回归SVR | 0.511 | 5.742 | 0.086 | |
Fig.3 Scatter plot of measured and predicted values of ELM model in cotton SPAD value at different growth stages Notes:A: Budding stage; B: Flowering period; C: Full boll period; D: Opening-boll stage
| [1] | 秦占飞, 常庆瑞, 申健, 等. 引黄灌区水稻红边特征及SPAD高光谱预测模型[J]. 武汉大学学报(信息科学版), 2016, 41(9): 1168-1175. |
| QIN Zhanfei, CHANG Qingrui, SHEN Jian, et al. Red edge characteristics and SPAD estimation model using hyperspectral data for rice in Ningxia irrigation zone[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1168-1175. | |
| [2] | 苏伟, 赵晓凤, 孙中平, 等. 基于Sentinel-2A影像的玉米冠层叶绿素含量估算[J]. 光谱学与光谱分析, 2019, 39(5): 1535-1542. |
|
SU Wei, ZHAO Xiaofeng, SUN Zhongping, et al. Estimating the corn canopy chlorophyll content using the sentinel-2A image[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1535-1542.
DOI |
|
| [3] | 夏天, 吴文斌, 周清波, 等. 不同地域冬小麦叶片SPAD高光谱估算研究[J]. 中国农业资源与区划, 2014, 35(4): 49-57. |
| XIA Tian, WU Wenbin, ZHOU Qingbo, et al. Hyperspectral- based estimation of winter wheat SPAD in two different regions[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(4): 49-57. | |
| [4] | Marenco R A, Antezana-Vera S A, Nascimento H C S. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2): 184-190. |
| [5] |
Uddling J, Gelang-Alfredsson J, Piikki K, et al. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings[J]. Photosynthesis Research, 2007, 91(1): 37-46.
DOI PMID |
| [6] | Pagola M, Ortiz R, Irigoyen I, et al. New method to assess barley nitrogen nutrition status based on image colour analysis[J]. Computers and Electronics in Agriculture, 2009, 65(2): 213-218. |
| [7] | Mulla D J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps[J]. Biosystems Engineering, 2013, 114(4): 358-371. |
| [8] | 周敏姑, 邵国敏, 张立元, 等. 基于无人机遥感的冬小麦叶绿素含量多光谱反演[J]. 节水灌溉, 2019,(9): 40-45. |
| ZHOU Mingu, SHAO Guomin, ZHANG Liyuan, et al. Multi-spectral inversion of SPAD value of winter wheat based on unmanned aerial vehicle remote sensing[J]. Water Saving Irrigation, 2019,(9): 40-45. | |
| [9] | 王烁, 常庆瑞, 刘梦云, 等. 基于高光谱遥感的棉花叶片叶绿素含量估算[J]. 中国农业大学学报, 2017, 22(4): 16-27. |
| WANG Shuo, CHANG Qingrui, LIU Mengyun, et al. Estimation on chlorophyll content of cotton based on optimized spectral index[J]. Journal of China Agricultural University, 2017, 22(4): 16-27. | |
| [10] | 毛智慧, 邓磊, 孙杰, 等. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J]. 光谱学与光谱分析, 2018, 38(9): 2923. |
| MAO Zhihui, DENG Lei, SUN Jie, et al. Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2923. | |
| [11] | 刘江凡, 赵泽艺, 李朝阳, 等. 基于无人机多光谱遥感的苹果树冠层SPAD反演[J/OL]. 排灌机械工程学报,1-7[2024-01-18]. |
| LIU Jiangfan, ZHAO Zeyi, LI Zhaoyang, et al. Estimation of apple tree canopy SPAD based on UAV multispectral remote sensing[J/OL]. Journal of Drainage and Irrigation Machinery Engineering(JDIME),1-7[2024-01-18]. | |
| [12] | Wang J J, Zhou Q, Shang J L, et al. UAV- and machine learning-based retrieval of wheat SPAD values at the overwintering stage for variety screening[J]. Remote Sensing, 2021, 13(24): 5166. |
| [13] | Sudu B, Rong G, Guga S, et al. Retrieving SPAD Values of Summer Maize Using UAV Hyperspectral Data Based on Multiple Machine Learning Algorithm. Remote Sens. 2022, 14, 5407. |
| [14] | Guo Y H, Chen S Z, Li X X, et al. Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images[J]. Remote Sensing, 2022, 14(6): 1337. |
| [15] | 王丹, 赵朋, 孙家波, 等. 基于无人机多光谱的夏玉米叶绿素含量反演研究[J]. 山东农业科学, 2021, 53(6): 121-126, 132. |
| WANG Dan, ZHAO Peng, SUN Jiabo, et al. Inversion of chlorophyll content in summer maize based on UAV multi-spectrum[J]. Shandong Agricultural Sciences, 2021, 53(6): 121-126, 132. | |
| [16] | 罗亚, 徐建华, 岳文泽. 基于遥感影像的植被指数研究方法述评[J]. 生态科学, 2005, 24(1): 75-79. |
| LUO Ya, XU Jianhua, YUE Wenze. Research on vegetation indices based on the remote sensing images[J]. Ecologic Science, 2005, 24(1): 75-79. | |
| [17] | 周琦, 王建军, 霍中洋, 等. 不同生育期小麦冠层SPAD值无人机多光谱遥感估算[J]. 光谱学与光谱分析, 2023, 43(6): 1912-1920. |
| ZHOU Qi, WANG Jianjun, HUO Zhongyang, et al. UAV multi-spectral remote sensing estimation of wheat canopy SPAD value in different growth periods[J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 1912-1920. | |
| [18] | Wang Y., Tan S., Jia X., et al. Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral-Textural Analysis. Agronomy 2023, 13, 1541. |
| [19] | Cao Q, Miao Y X, Shen J N, et al. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor[J]. Precision Agriculture, 2016, 17(2): 136-154. |
| [20] | Bannari A, Khurshid K S, Staenz K, et al. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3063-3074. |
| [21] | 冯浩, 杨祯婷, 陈浩, 等. 基于无人机多光谱影像的夏玉米SPAD估算模型研究[J]. 农业机械学报, 2022, 53(10): 211-219. |
| FENG Hao, YANG Zhenting, CHEN Hao, et al. Estimation of summer maize SPAD based on UAV multispectral images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 211-219. | |
| [22] | 王桥, 叶敏, 魏孟, 等. 基于ELM和MCSCKF的锂离子电池SOC估计[J]. 工程科学学报, 2023, 45(6): 995-1002. |
| WANG Qiao, YE Min, WEI Meng, et al. ELM- and MCSCKF-based state of charge estimation for lithium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(6): 995-1002. | |
| [23] | Gholizadeh M, Jamei M, Ahmadianfar I, et al. Prediction of nanofluids viscosity using random forest (RF) approach[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 201: 104010. |
| [24] | 陈兆中, 段少坤, 岳云开, 等. 基于无人机航拍图像的水稻叶片SPAD值反演[J/OL]. 杂交水稻,1-9[2024-01-15]. |
| CHEN Zhaozhong, DUAN Shaokun, YUE Yunkai, et al. Inversion of SPAD Values of Rice Canopy Based on Aerial Images Taken by Unmanned Aerial Vehicle[J/OL]. Hybrid Rice, 1-9[2024-01-15]. | |
| [25] |
张琳, 汪廷华, 周慧颖. 基于群智能算法的SVR参数优化研究进展[J]. 计算机工程与应用, 2021, 57(16): 50-64.
DOI |
|
ZHANG Lin, WANG Tinghua, ZHOU Huiying. Research progress on parameter optimization of SVR based on swarm intelligence algorithm[J]. Computer Engineering and Applications, 2021, 57(16): 50-64.
DOI |
|
| [26] | Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 1983, 4(2): 273-288. |
| [27] | 黄春燕. 基于高光谱数据的北疆棉花遥感监测研究[D]. 石河子: 石河子大学, 2005. |
| HUANG Chunyan. Study on remote sensing monitoring of cotton in northern Xinjiang based on hyperspectral data[D]. Shihezi: Shihezi University, 2005. | |
| [28] | 刘成成. 基于无人机多光谱影像的棉花叶片SPAD值和LAI反演研究[D]. 塔里木大学, 2023. |
| LIU C. Research on SPAD value and LAI inversion of cotton leaves based on drone multispectral images[D]. Tarim University, 2023. | |
| [29] |
纪伟帅, 陈红艳, 王淑婷, 等. 基于无人机多光谱的华北平原花铃期棉花叶片SPAD建模方法研究[J]. 中国农学通报, 2021, 37(22): 143-150.
DOI |
|
JI Weishuai, CHEN Hongyan, WANG Shuting, et al. Modeling method of cotton leavesSPAD at flowering and boll stage in North China Plain based on UAV multi-spectrum[J]. Chinese Agricultural Science Bulletin, 2021, 37(22): 143-150.
DOI |
|
| [30] | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293. |
| TIAN Minglu, BAN Songtao, CHANG Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. | |
| [31] |
依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 等. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1):81-90.
DOI |
|
Yierxiati AbulaitiuBaidengsha, Maimaitiaili Shawuti, Baidengsha Maimaitiaili, et al. Estimation of leaf chlorophyll content in cotton based on the random forest approach[J]. Acta Agronomica Sinica, 2019, 45(1):81.
DOI |
| [1] | BAO Yanli, WANG Xiaowei, LI Qiongshi, ZHANG Lizhao, CHEN Yulan. Analysis of the high Quality development level and differences of cotton in major cotton regions of Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 1032-1040. |
| [2] | ZHAO Yuhang, YAN An, MA Mengqian, XIAO Shuting, SUN Zhe, LI Jingyan. Estimation of cotton LAI and SPAD under water-nitrogen coupling based on multi-spectral imaging of unmanned aerial vehicle [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 781-790. |
| [3] | LI Huqing, SHAO Dongnan, ZHANG Yi, LIU Feng, ZHANG Xinyu, LI Yanjun, SUN Jie, YANG Yonglin, XUE Fei. Bioinformatics analysis and functional verification of GHSHA1 gene in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 800-806. |
| [4] | QIAO Di, LIN Tao, CUI Jianping, ZHANG Pengzhong, ZHANG Hao, BAO Longlong, TANG Qiuxiang. Effects of RZWQM2-based nitrogen fertilizer transport mode on cotton growth and yield [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 807-819. |
| [5] | XUE Qinyuan, ZHANG Jianliang, LI Pengfei, FENG Hongzu, WU Gang, WANG Lan. Effects of different combinations of drone flight defense agents and additives on their droplet deposition parameters and field spraying control of cotton aphids [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 929-935. |
| [6] | ZHANG Lingjian, ZHANG Kai, ZHANG Hui, GUO Xiaomeng, CHEN Guoyue, WANG Yiding, JIA Qingyu. Study on the relationship between plant water content and morphological characteristics of top stem and leaf during the whole growth period of cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 531-538. |
| [7] | ZHANG Lian, CHEN Xiangyao, WANG Tangang, MA Xiaomei, CHENG Bin, WANG Gang, DUAN Zhenyu. Effects of high-strength mulch on soil temperature, humidity and cotton growth [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 539-545. |
| [8] | XU Shouzhen, MA Qi, NING Xinzhu, LI Jilian, SU Junji, HAN Huanyong, WANG Fangyong, LIN Hai. Effects of different row spacing and defoliant on cotton defoliation [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 546-555. |
| [9] | ZHAO Yupeng, CHEN Bolang, WANG Zhiguo, FU Yanbo, BIAN Qingyong. Effects of different carbon source inputs on the characteristics of compacted clay and the growth of cotton seedlings [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 556-571. |
| [10] | WANG Yongpan, MA Jun, LI Chenyu, YAO Mengyao, WANG Zixuan, HUANG Lingzhi, ZHU Haiyan, LIU Wanrong, LI Bo, YANG Yang, GAO Wenwei. Salt tolerance in germination period of cotton seeds based on convolutional neural network and synthetic dataset [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 261-269. |
| [11] | HU Shasha, SHAO Liping, CHEN Lihua, SONG Weiping, ZHAO Hai, ZHANG Xinyu, SUN Jie. Effect of defoliant on boll development and fiber quality of machine-picked cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 270-277. |
| [12] | LU Mingkun, LI Junhong, Nilupaier Yusufujiang, PAN Xipeng, LIU Xiaocheng, ZHANG Zhenggui, PAN Zhanlei, ZHAI Menghua, ZHANG Yaopeng, ZHAO Wenqi, WANG Lihong, WANG Zhanbiao. Effect of silic on fertiliser application on the growth and development of cotton and its yield and quality [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 286-293. |
| [13] | WANG Yiding, ZHANG Kai, ZHANG Lingjian, ZHANG Hui, GUO Xiaomeng, CHEN Guoyue. Effects of drip irrigation on the growth and development, yield formation, and water use efficiency of cotton in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 294-301. |
| [14] | WANG Xiaoyan, BAI Yungang, CHAI Zhongping, LU Zhenlin, LIU Hongbo, XIAO Jun, Amannisa . Effect of "dry sowing and wet emergence" on cotton growth and yield under the control of winter drip irrigation in off-cropping period [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 302-313. |
| [15] | SUN Caiqin, WU Jia, HUANG Hai, GUO Jiaxin, MIN Wei, GUO Huijuan. Effects of different saline and alkaline stress on the proteome of cotton root system [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 146-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||