Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (10): 2419-2425.DOI: 10.6048/j.issn.1001-4330.2023.10.010
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics • Previous Articles Next Articles
CHEN Li1(), MA Jing1, ZHU Zhiming2, LIU Wei1, SUN Jianchang1(
)
Received:
2023-02-09
Online:
2023-10-20
Published:
2023-11-01
Correspondence author:
SUN Jancahng (1975-), male, native place: Yanchi, Ningxia. Professor, research field: Rice genetics and breeding research,(E-mail)Supported by:
通讯作者:
孙建昌(1975-),男,宁夏盐池人,研究员,博士,研究方向为水稻遗传育种,(E-mail)作者简介:
陈丽(1985-),女,陕西商洛人,助理研究员,硕士研究生,研究方向为水稻遗传育种,(E-mail)chen1985li@163.com
基金资助:
CLC Number:
CHEN Li, MA Jing, ZHU Zhiming, LIU Wei, SUN Jianchang. QTL mapping of processing quality traits on RIL population in rice[J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2419-2425.
陈丽, 马静, 朱志明, 刘炜, 孙建昌. 基于水稻RIL群体的加工品质性状QTL分析[J]. 新疆农业科学, 2023, 60(10): 2419-2425.
性状 Trait | 亲本Parent | 重组自交系群体RIL population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
13HJZ -44 | 13HJZ -19 | 差值 Difference | 均值 Mean | 标准差 SD | 最大值 Max | 最小值 Min | 变异系数 Coefficient of variation(%) | 峰度 Kurtosis | 偏度 Skewness | |
出糙率 Brown rice rate (%) | 83.68 | 84.15 | 0.47 | 84.07 | 1.72 | 90.00 | 70.00 | 48.91 | 48.96 | -6.122 |
精米率 Milled rice rate (%) | 70.25 | 73.25 | 2.99 | 72.57 | 2.81 | 86.00 | 57.00 | 25.83 | 8.239 | -1.275 |
整精米率 Head rice rate (%) | 41.27 | 61.02 | 19.75 | 54.10 | 5.86 | 66.00 | 37.00 | 9.23 | -0.389 | -0.48 |
Tab.1 Variation of processing quality traits in parents and RILs
性状 Trait | 亲本Parent | 重组自交系群体RIL population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
13HJZ -44 | 13HJZ -19 | 差值 Difference | 均值 Mean | 标准差 SD | 最大值 Max | 最小值 Min | 变异系数 Coefficient of variation(%) | 峰度 Kurtosis | 偏度 Skewness | |
出糙率 Brown rice rate (%) | 83.68 | 84.15 | 0.47 | 84.07 | 1.72 | 90.00 | 70.00 | 48.91 | 48.96 | -6.122 |
精米率 Milled rice rate (%) | 70.25 | 73.25 | 2.99 | 72.57 | 2.81 | 86.00 | 57.00 | 25.83 | 8.239 | -1.275 |
整精米率 Head rice rate (%) | 41.27 | 61.02 | 19.75 | 54.10 | 5.86 | 66.00 | 37.00 | 9.23 | -0.389 | -0.48 |
Fig.1 Line distribution of processing quality traits in RILs Note:A.stands for roughness distribution of families;B.stands for milled rice rate;C.stands for head rice rate of families
Fig.2 Genetic linkage map of 13HJZ-44/13HJZ-19RIL RIL population Note:The abscissa represents the chromosome, the ordinate represents the genetic map distance, and the horizontal line represents the molecular markers on the map
性状 Trait | QTL | 标记区间 Marker interval | 区间距离 Interval distance/cM | LOD值 | 贡献率PVE(%) | 加性效应Add(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||||
BR | qBR-11 | Marker1690523-Marker1651369 | 0.623 | 6.06 | 75.32 | -1.21 | |||||||
qBR-4 | Marker2308870-Marker2433873 | 0.21 | 2.53 | 18.68 | 0.47 | ||||||||
MR | qMR-5 | Marker49932-Marker141199 | 0.415 | 10.62 | 16.21 | 2.24 | |||||||
qMR-1 | Marker405598-Marker617137 | 0.415 | 3.7 | 4.35 | 0.35 | ||||||||
qMR-2 | Marker2776334-Marker2942331 | 0 | 2.6 | 0.75 | -0.5 | ||||||||
HR | qHR-5 | Marker160033-Marker137238 | 0.419 | 6.95 | 10.76 | 2.7 | |||||||
qHR-6-1 | Marker3365801-Marker3142370 | 0.42 | 4.07 | 5.86 | 1.25 | ||||||||
qHR-6-2 | Marker3340147-Marker3099891 | 0.208 | 3.41 | 5.42 | -2.47 | ||||||||
qHR-8 | Marker2591821-Marker2551026 | 0 | 3.32 | 3.66 | 2.03 |
Tab.2 QTL mapping for processing quality related traits in rice
性状 Trait | QTL | 标记区间 Marker interval | 区间距离 Interval distance/cM | LOD值 | 贡献率PVE(%) | 加性效应Add(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||||
BR | qBR-11 | Marker1690523-Marker1651369 | 0.623 | 6.06 | 75.32 | -1.21 | |||||||
qBR-4 | Marker2308870-Marker2433873 | 0.21 | 2.53 | 18.68 | 0.47 | ||||||||
MR | qMR-5 | Marker49932-Marker141199 | 0.415 | 10.62 | 16.21 | 2.24 | |||||||
qMR-1 | Marker405598-Marker617137 | 0.415 | 3.7 | 4.35 | 0.35 | ||||||||
qMR-2 | Marker2776334-Marker2942331 | 0 | 2.6 | 0.75 | -0.5 | ||||||||
HR | qHR-5 | Marker160033-Marker137238 | 0.419 | 6.95 | 10.76 | 2.7 | |||||||
qHR-6-1 | Marker3365801-Marker3142370 | 0.42 | 4.07 | 5.86 | 1.25 | ||||||||
qHR-6-2 | Marker3340147-Marker3099891 | 0.208 | 3.41 | 5.42 | -2.47 | ||||||||
qHR-8 | Marker2591821-Marker2551026 | 0 | 3.32 | 3.66 | 2.03 |
[1] | 王惠贞, 吴瑞芬, 李丹. 稻米品质形成和调控机理概述[J]. 中国稻米, 2016, 22(1):10-13. |
WANG Huizhen, WU Ruifen, LI Dan. Review on Rice Quality Formation and its Regulation Mechanism[J]. China Rice, 2016, 22(1):10-13.
DOI |
|
[2] | 胡培松, 翟虎渠, 唐绍清, 等. 利用RVA 快速鉴定稻米蒸煮及食味品质的研究[J]. 作物学报, 2004, 30(6):519-524. |
HU Peisong, ZHAI Huqu, TANG Shaoqing, et al. Rapid Evaluation identification of Rice Cooking and Palatability Quality by RVA profile[J]. Acta Agronomica Sinica, 2004, 30(6):519-524. | |
[3] | 莫惠栋. 我国稻米品质的改良[J]. 中国农业科学, 1993, 26(4): 8-14. |
MO Huidong. Improvement of rice quality in China[J]. Scientia Agricultura Sinica, 1993, 26(4): 8-14. | |
[4] | 王炎钦. mRNA 水平水稻品质相关基因的大规模鉴定及应用初探[D]. 杭州: 浙江大学, 2006. |
WANG Yanqin. Primary Investigation in Rice Quality-related Genes Identification and Their Application in mRNA Level[D]. Hangzhou: Zhejiang University, 2006. | |
[5] | YAN Wengui, BAO Jinsong. Rice-Germplasm, Genetics and Improvement[M]. InTech Open Access Publisher. 2014: 239-278. |
[6] |
Tan Y F, Xing Y Z, Li J X, et al. Genetic Bases of Appearance Quality of Rice Grains in Shanyou63, an Elite rice Hybrid[J]. Theoretical and Applied Genetics, 2000, 101:823-829.
DOI URL |
[7] |
Tan Y F, Sun M, Xing Y Z, et al. Mapping Quantitative Trait Loci for Milling Quality, Protein content and Color Characteristics of Rice using a Recombinant Inbred Line Population Derived from an Elite Rice Hybrid[J]. Theoretical and Applied Genetics, 2001, 103:1037-1045.
DOI URL |
[8] |
Kepiro J L, McClung A M, Chen M H, et al. Mapping QTLs for Milling Yield and Grain Characteristics in a Tropical Japonica Long Grain Cross[J]. Cereal Science, 2008, 48(2): 477-485.
DOI URL |
[9] | 穆平, 郭咏梅, 刘家富, 等. 稻米外观和碾磨品质 QTL 定位及其与土壤水分环境互作分析[J]. 农业生物技术学报, 2007, 15(4): 654-660. |
MU Ping, GUO Yongmei, LIU Jiafu, et al. QTL Mapping and QTL×Environments Interactions of Grain Milling and Appearance Quality Traits in Rice under Upland and Lowland Environments[J]. Journal of Agricultural Biotechnology, 2007, 15(4): 654-660. | |
[10] |
Dong Y J, Tsuzuki E, Lin D Z, et al. Molecular Genetic Mapping of Quantitative Trait Loci for Milling Quality in Rice (Oryza sativa L.)[J]. Cereal Science, 2004, 40(2): 109-114.
DOI URL |
[11] | 翁建峰, 万向元, 郭涛, 等. 利用CSSL 群体研究稻米加工品质相关 QTL 表达的稳定性[J]. 中国农业科学, 2007, 40(10): 2128-2135. |
WONG Jianfeng, WANG Xiangyuan, GUO Tao, et al. Stability Analysis of QTLs for Milling Quality of Rice using CSSL population[J]. Scientia Agricultura Sinica, 2007, 40(10): 2128-2135. | |
[12] |
Wan X Y, Wan J M, Weng J F, et al. Stability of QTLs for Rice Grain Dimension and Endosperm Chalkiness Characteristics Across Eight Environments[J]. Theor Appl Genet, 2005, 110(7):1334-1346.
DOI PMID |
[13] |
Jiang G H, Hong X Y, Xu C G, et al. Identification of Quantitative Trait Loci for Grain Appearance and Milling Quality using a Doubled-haploid Rice Population[J]. Integr Plant Biol, 2005, 47(11): 1391-1403.
DOI URL |
[14] |
Li Z F, Wan J M, Xia J F, et al. Identification of Quantitative Trait Loci underlying Milling Quality of Rice (Oryza sativa L.) grains[J]. Plant Breed, 2004, 123(3): 229-234.
DOI URL |
[15] | Li Z F, Wan J M, Xia J F, et al. Mapping Quantitative Traits Loci underlying Appearance Quality of Rice Grains (Oryza sativa L.)[J]. Acta Genet Sin, 2003, 30(3): 251-259. |
[16] |
Lou J, Chen L, Y ue G H, et al. QTL Mapping of Grain Quality Traits in Rice[J]. Cereal Science, 2009, 50(2): 145-151.
DOI URL |
[17] |
Zheng T Q, Xu J L, Li Z K, et al. Genomic Regions Associated with Milling Quality and Grain Shape Identified in a Set of Random Introgression Lines of Rice (Oryza sativa L.)[J]. Plant Breed, 2007, 126(2): 158-163.
DOI URL |
[18] | 梅捍卫, 罗利军, 郭龙彪, 等. 水稻加工品质数量性状基因座(QTLs)分子定位研究[J]. 遗传学报, 2002, 29(9): 791-797. |
MEI Hanwei, LUO Lijun, GUO Longbiao, et al. Molecular Mapping of QTLs for Rice Milling Yield Traits[J]. Journal of Genetics, 2002, 29(9): 791-797. | |
[19] | 胡霞, 石瑜敏, 贾倩, 等. 影响水稻穗部性状及籽粒碾磨品质的QTL 及其环境互作分析[J]. 作物学报, 2011, 37(7): 1175-1185. |
HU Xia, SHI Yumin, JIA Qian, et al. Analysis of QTLs for Rice Panicle and Milling Quality Traits and Their Interaction with Environment[J]. Acta Agronomica Sinica, 2011, 37(7): 1175-1185. | |
[20] |
Aluko G, Martinez C, Tohme J, et al. QTL Mapping of Grain Quality Traits from the In-terspecific Cross Oryza sativa × O. glaberrima[J]. Theor Appl Genet, 2004, 109(3): 630-639.
DOI PMID |
[21] |
Li J M, Xiao J H, Grandillo S, et al. QTL Detection for Rice Grain Quality Traits using an Inter Specific Backcross Population Derived from Cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice[J]. Genome, 2004, 47(4): 697-704.
DOI URL |
[22] | Septiningsih E M, Trijatmiko K R, Moeljopawiro S, et al. Identification of Quantitative Trait Loci for Grain Quality in an Advanced Backcross Population Derived from the Oryza Sativa Variety IR64 and the Wild Relative O. Rufipogon[J]. Tag Theoretical & Applied Genetics, 2003, 107(8): 1433-1441. |
[23] | 刘家富, 奎丽梅, 朱作峰, 等. 普通野生稻稻米加工品质和外观品质性状 QTL 定位[J]. 农业生物技术学报, 2007, 15(1): 90-96. |
LIU Jiafu, KUI Limei, ZHU Zuofeng, et al. Identification of QTLs Associated with Processing Quality and Appearance Quality of Common Wild Rice (Oryza rufipogon Griff.)[J]. Journal of Agricultural Biotechnology, 2007, 15(1): 90-96. | |
[24] | 代明笠, 邵丽明, 胡慧, 等. 水稻加工品质及其遗传基础研究进展[J]. 长江大学学报, 2015, 12(9):5-8. |
DAI Mingli, SHAO Liming, HU Hui, et al. Research progress of rice processing quality and its genetic basis[J]. Journal of Changjiang University, 2015, 12(9):5-8. | |
[25] |
Li Y B, Fan C C, Xing Y Z, et al. Chalk5 Encodes a Vacuolar H+ Translocating Pyrosphatase Influencing Grain Chalkiness in Rice[J]. Nat Genet, 2014, 46:398-404.
DOI |
[26] | MaCouch S R, Cho Y G, Yang M, et al. Report on QTL Nomenclature[J]. Rice Gene Newslett, 1997, 14:11-13. |
[27] |
SUN Xiaowen, LIU Dongyuan, ZHANG Xiaofeng, et al. SLAF-seq:an Efficient Method of Large-scale Denovo SNP Discovery and Genotyping using High-throughput Sequencing[J]. Plos One, 2013, 8(3):e58700.
DOI URL |
[28] |
Liu D, Ma C, Hong W, et al. Construction and Analysis of High-density Linkage Map using High-throughput Sequencing Data[J]. Plos One, 2014, 9(6):e98855.
DOI URL |
[29] | 梅德勇, 朱玉君, 樊叶杨. 籼稻稻米碾磨与外观品质性状的 QTL 定位[J]. 遗传, 2012, 34(12):1591-1598. |
MEI Deiyong, ZHU Yujun, FAN Yeyang. QTL Mapping for milling and appearance quality traits in Indica Rice[J]. Heredity, 2012, 34(12):1591-1598. | |
[30] | Wang X, Pang Y, Wang C, et al. New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-wide and Gene-based Association Analyses[J]. Frontiers in Plant Science, 2017, 7:1998. |
[1] | TIAN Haiyan, ZHANG Zhanqin, XIE Jianhui, WANG Jianjiang, YANG Xiangkun. Study on the relationship between Lycopene and main quality characters of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2197-2202. |
[2] | ZHANG Tingjun, LI Zihui, CUI Yujiang, SUN Xiaogui, CHEN Fang. Effects of microbial agents on cotton growth and soil physico-chemical properties [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2269-2276. |
[3] | CHEN Yong, ZHOU Lei, SUI Chun, LIN Caixia. The characteristics of 32 cultivated germplasms of Isatis tinctoria Linnaeus in Xinjiang production area [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2307-2314. |
[4] | MIAO Yu, CHEN Cuixia, MA Yanming, XING Guofang, DONG Yusheng, CHEN Zhijun, WANG Xian, XIANG Li. Genetic diversity analysis of phenotypic traits of 276 Central Asian barley germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1888-1895. |
[5] | ZHAO Minhua, SONG Bingxi, ZHANG Yupeng, GAO Zhihong, ZHU Yongyong, CHEN Xiaoyuan. Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial factor productivity under dry farming conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1907-1915. |
[6] | GAO Jun, HOU Xianfei, MIAO Haocui, JIA Donghai, GU Yuanguo, WANGH Tianling, HNU Yi, CHENG Xiaolu, LI Qiang. Effect of cotton-peanut crop rotation pattern on the distribution of dry matter accumulation and yield of peanut [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1648-1656. |
[7] | YE Pingyi, LONG Yilei, TANG Yanping, DU Xiao, AN Mengjie, TAO Zhixin, LIANG Farui, AI Xiantao, HU Shoulin. Identification and evaluation of fruit branch angle and machine-picked agronomic traits in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1318-1327. |
[8] | LIU Yue, JIA Yonghong, ZHANG Jinshan, YU Yuehua, WANG Runqi, LI Dandan, SHI Shubing. Comparison of peanut varieties with different high oleic acid under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1361-1367. |
[9] | Abudukadier Kurban, PAN Jinghai, CHEN Youqiang, LIU Huajun, DONG Xinjiu, BAI Xiaoshan, LI Sizhong, GAO Weishi, LI Xiaohui. Comprehensive evaluation of adaptability of late sowing sugar-beet varieties based on yield correlation [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1368-1377. |
[10] | GAO Mutian, XIAO Yanmei, LIAO Zhijie, HUANG Cheng. Comprehensive evaluation of kernel and quality traits in maize-teosinte introgression line population [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 885-891. |
[11] | KANG Mintai, DU Xiaojing, ZHANG Yanhong, CHEN Yuhuan, WEN Xiaorong, TANG Fusen, ZHAO Zhiqiang, YUAN Jie, WANG Fengbin. Salt tolerance screening and fertility performance of rice varieties in saline areas of Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 591-598. |
[12] | YANG Cunming, ZHANG Xiaoxue, ZHANG Menghua, ZHAO Zhiwen, LI Fengjie, HUANG Xixia, LI Jie, Aizimaiti Awuti, HE Junmin, LI Xue, LI Tingting, TANG Li, ZHANG Wenjing, TIAN Yuezhen, TIAN Kechuan. Analysis of correlation and difference of target traits in fine wool sheep breeding [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 514-520. |
[13] | YANG Xiangbo, CHEN Liangyu, YANG Songnan, CHEN Xifeng, XING Weiming, LI Xueying, CONG Weixuan, ZANG Zhenyuan, ZANG Yuanbo, ZHANG Jun. Phenotype analysis and comprehensive evaluation of spring soybean germplasm resources from northeast China [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2921-2933. |
[14] | WANG Jianin, MAO Hongyan, YUE Li, Zulipiya Maimaiti, LYU Yuping, YU Ming. Principal component analysis and comparison of starch functional properties of rice cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2943-2953. |
[15] | WANG Fan, LI Yushan, WANG Wei, DENG Chaohong, ZHAO Lianjia, MA Yue, XIAO Jing, ZHUANG Hongmei, Xu Hongjun. Genetic diversity analysis of major nutritional growth traits in 74 turnip germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2601-2613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||