Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (3): 591-598.DOI: 10.6048/j.issn.1001-4330.2024.03.008
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Physiology and Biochemistry • Previous Articles Next Articles
KANG Mintai1(), DU Xiaojing2, ZHANG Yanhong3, CHEN Yuhuan4, WEN Xiaorong1, TANG Fusen1, ZHAO Zhiqiang3, YUAN Jie3, WANG Fengbin1,2(
)
Received:
2023-07-23
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
WANG Fengbin(1968-),male,from Lianhua Jiangxi,master,researcher,research in rice genetic breeding and cultivation technology,(E-mail)Supported by:
康民泰1(), 杜孝敬2, 张燕红3, 陈玉环4, 文孝荣1, 唐福森1, 赵志强3, 袁杰3, 王奉斌1,2(
)
通讯作者:
王奉斌(1968-),男,江西莲花人,研究员,硕士,研究方向为水稻遗传育种及栽培,(E-mail)作者简介:
康民泰(1989-),男,甘肃天祝人,农艺师,研究方向为水稻栽培,(E-mail)1415973310@qq.com
基金资助:
CLC Number:
KANG Mintai, DU Xiaojing, ZHANG Yanhong, CHEN Yuhuan, WEN Xiaorong, TANG Fusen, ZHAO Zhiqiang, YUAN Jie, WANG Fengbin. Salt tolerance screening and fertility performance of rice varieties in saline areas of Xinjiang[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 591-598.
康民泰, 杜孝敬, 张燕红, 陈玉环, 文孝荣, 唐福森, 赵志强, 袁杰, 王奉斌. 新疆盐渍区水稻品种生育表现与耐盐性筛选[J]. 新疆农业科学, 2024, 61(3): 591-598.
2021年 | 2022年 | ||
---|---|---|---|
编号 No. | 品种 Varieties | 编号 No. | 品种 Varieties |
1 | 秋田小町 | 1 | 秋田小町 |
2 | 新稻11号 | 2 | 新稻11号 |
3 | 新粳香8号 | 3 | 新粳香8号 |
4 | 新粳6号 | 4 | 新粳6号 |
5 | 新粳10号 | 5 | 新粳10号 |
6 | 新粳11号 | 6 | 新粳11号 |
7 | 新粳13号 | 7 | 新粳13号 |
8 | 9HR156 | 8 | 9HR156 |
9 | 14GY44-5-1-7 | 9 | 14GY44-5-1-7 |
10 | 15GY65-3-2-1 | 10 | 15GY65-3-2-1 |
11 | 15GY114-2-5-3-10 | 11 | 15GY114-2-5-3-10 |
12 | 03GY28-1-10-2-2-1 | 12 | 新粳盐02 |
13 | 12GY11-5-4-3-1-1 | 13 | 新粳香3号 |
14 | 15GY114-2-5-3 | 14 | 新粳12号 |
15 | 16GY54-2-3-1 | 15 | 新粳14号 |
16 | 新粳香2号 | 16 | 新粳18号 |
17 | 新粳香5号 | 17 | 新稻36号 |
18 | 新粳4号 | 18 | 盐丰47 |
19 | 新粳9号 | ||
20 | 越光 |
Tab.1 Name and number of test material
2021年 | 2022年 | ||
---|---|---|---|
编号 No. | 品种 Varieties | 编号 No. | 品种 Varieties |
1 | 秋田小町 | 1 | 秋田小町 |
2 | 新稻11号 | 2 | 新稻11号 |
3 | 新粳香8号 | 3 | 新粳香8号 |
4 | 新粳6号 | 4 | 新粳6号 |
5 | 新粳10号 | 5 | 新粳10号 |
6 | 新粳11号 | 6 | 新粳11号 |
7 | 新粳13号 | 7 | 新粳13号 |
8 | 9HR156 | 8 | 9HR156 |
9 | 14GY44-5-1-7 | 9 | 14GY44-5-1-7 |
10 | 15GY65-3-2-1 | 10 | 15GY65-3-2-1 |
11 | 15GY114-2-5-3-10 | 11 | 15GY114-2-5-3-10 |
12 | 03GY28-1-10-2-2-1 | 12 | 新粳盐02 |
13 | 12GY11-5-4-3-1-1 | 13 | 新粳香3号 |
14 | 15GY114-2-5-3 | 14 | 新粳12号 |
15 | 16GY54-2-3-1 | 15 | 新粳14号 |
16 | 新粳香2号 | 16 | 新粳18号 |
17 | 新粳香5号 | 17 | 新稻36号 |
18 | 新粳4号 | 18 | 盐丰47 |
19 | 新粳9号 | ||
20 | 越光 |
盐害指数 Salt damage index(%) | 耐盐级别 Grade | 耐盐性 Salt resistance |
---|---|---|
≤10 | 1 | 极强 |
10.1~20 | 2 | 强 |
20.1~30 | 3 | 较强 |
30.1~50 | 4 | 中等 |
50.1~70 | 5 | 较弱 |
70.1~90 | 6 | 弱 |
>90 | 7 | 极弱 |
Tab.2 Classification of salt damage index,salt tolerance level and salt tolerance
盐害指数 Salt damage index(%) | 耐盐级别 Grade | 耐盐性 Salt resistance |
---|---|---|
≤10 | 1 | 极强 |
10.1~20 | 2 | 强 |
20.1~30 | 3 | 较强 |
30.1~50 | 4 | 中等 |
50.1~70 | 5 | 较弱 |
70.1~90 | 6 | 弱 |
>90 | 7 | 极弱 |
Fig.1 Effect of salt concentration on the survival rate and SPAD value of rice seedlings at different fertility periods Note:Different small letter indicate significant difference among treatments(P<0.05),the same as below
年份 Year | 处理 Treatment | 主穗长度 Main panicle length(cm) | 主穗结实率 Main panicle seed setting rate(%) | 千粒重 1000-kernel weight(g) | 单穴产量 Yield per plant(g/株) |
---|---|---|---|---|---|
2021年 | CK | 18.32±1.92a | 86.92±6.42a | 28.69±2.71a | 38.91±9.26a |
C50 | 18.02±1.78a | 83.36±7.92a | 26.84±2.77a | 38.22±8.53a | |
C100 | 15.40±1.70b | 66.06±7.38b | 22.37±3.80b | 9.70±5.38b | |
C150 | 14.17±1.48b | 63.38±11.20b | 21.46±2.77b | 7.10±2.44b | |
C200 | 10.65±2.33c | 52.50±3.11c | 16.67±1.07c | 3.13±0.26a | |
2022年 | CK | 16.83±1.50a | 90.21±2.73a | 23.97±2.87a | 37.53±10.84a |
C50 | 15.65±1.17b | 82.09±6.81a | 22.05±3.05ab | 25.03±6.22b | |
C80 | 15.12±1.20b | 70.58±16.07b | 20.67±3.00bc | 18.13±6.84c | |
C120 | 13.80±1.38c | 37.59±23.27c | 19.77±2.82c | 7.96±3.43d | |
C150 | 12.75±1.71d | 22.65±19.79d | 16.97±2.69d | 5.41±1.93d |
Tab.3 Effect of salt stress at different salt concentrations on yield-related traits in rice
年份 Year | 处理 Treatment | 主穗长度 Main panicle length(cm) | 主穗结实率 Main panicle seed setting rate(%) | 千粒重 1000-kernel weight(g) | 单穴产量 Yield per plant(g/株) |
---|---|---|---|---|---|
2021年 | CK | 18.32±1.92a | 86.92±6.42a | 28.69±2.71a | 38.91±9.26a |
C50 | 18.02±1.78a | 83.36±7.92a | 26.84±2.77a | 38.22±8.53a | |
C100 | 15.40±1.70b | 66.06±7.38b | 22.37±3.80b | 9.70±5.38b | |
C150 | 14.17±1.48b | 63.38±11.20b | 21.46±2.77b | 7.10±2.44b | |
C200 | 10.65±2.33c | 52.50±3.11c | 16.67±1.07c | 3.13±0.26a | |
2022年 | CK | 16.83±1.50a | 90.21±2.73a | 23.97±2.87a | 37.53±10.84a |
C50 | 15.65±1.17b | 82.09±6.81a | 22.05±3.05ab | 25.03±6.22b | |
C80 | 15.12±1.20b | 70.58±16.07b | 20.67±3.00bc | 18.13±6.84c | |
C120 | 13.80±1.38c | 37.59±23.27c | 19.77±2.82c | 7.96±3.43d | |
C150 | 12.75±1.71d | 22.65±19.79d | 16.97±2.69d | 5.41±1.93d |
品种(系) Varieties (Strain) | 2021年 | 品种(系) Varieties (Strain) | 2022年 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C50 | C100 | C150 | C200 | C50 | C80 | C120 | C150 | ||||||||||
盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | ||
秋田小町Qiutanxiaoding | 15 | 强 | 20 | 强 | 87 | 弱 | 100 | 极弱 | 秋田小町Qiutanxiaoding | 8 | 极强 | 16 | 强 | 29 | 较强 | 87 | 弱 |
新稻11号Xindao 11 | 24 | 较强 | 29 | 较强 | 84 | 弱 | 100 | 极弱 | 新稻11号Xindao 11 | 18 | 强 | 21 | 较强 | 27 | 较强 | 90 | 弱 |
新粳香8号Xingengxiang 8 | 7 | 极强 | 18 | 强 | 81 | 弱 | 100 | 极弱 | 新粳香8号Xingengxiang 8 | 8 | 极强 | 16 | 强 | 27 | 较强 | 100 | 极弱 |
新粳6号Xingeng 6 | 8 | 极强 | 10 | 极强 | 81 | 弱 | 100 | 极弱 | 新粳6号Xingeng 6 | 8 | 极强 | 11 | 强 | 17 | 强 | 85 | 弱 |
新粳10号Xingeng 10 | 31 | 中等 | 48 | 中等 | 99 | 极弱 | 100 | 极弱 | 新粳10号Xingeng 10 | 13 | 强 | 12 | 强 | 45 | 中等 | 84 | 弱 |
新粳11号Xingeng 11 | 19 | 强 | 25 | 较强 | 80 | 弱 | 100 | 极弱 | 新粳11号Xingeng 11 | 8 | 极强 | 20 | 强 | 28 | 较强 | 93 | 极弱 |
新粳13号Xingeng 13 | 33 | 中等 | 48 | 中等 | 85 | 弱 | 99 | 极弱 | 新粳13号Xingeng 13 | 18 | 强 | 30 | 较强 | 46 | 中等 | 87 | 弱 |
9HR156 | 54 | 较弱 | 68 | 较弱 | 88 | 弱 | 100 | 极弱 | 9HR156 | 28 | 较强 | 56 | 较弱 | 66 | 较弱 | 100 | 极弱 |
14GY44-5-1-7 | 9 | 极强 | 19 | 强 | 87 | 弱 | 100 | 极弱 | 14GY44-5-1-7 | 7 | 极强 | 13 | 强 | 19 | 强 | 89 | 弱 |
15GY65-3-2-1 | 7 | 极强 | 18 | 强 | 78 | 弱 | 100 | 极弱 | 15GY65-3-2-1 | 7 | 极强 | 19 | 强 | 28 | 较强 | 87 | 弱 |
15GY114-2-5-3-10 | 3 | 极强 | 37 | 中等 | 83 | 弱 | 99 | 极弱 | 15GY114-2-5-3-10 | 21 | 较强 | 34 | 中等 | 47 | 中等 | 87 | 弱 |
03GY28-1-10-2-2-1 | 8 | 极强 | 89 | 弱 | 100 | 极弱 | 100 | 极弱 | 新粳盐02 Xingengyan 02 | 13 | 强 | 26 | 较强 | 49 | 中等 | 89 | 弱 |
12GY11-5-4-3-1-1 | 10 | 极强 | 26 | 较强 | 88 | 弱 | 100 | 极弱 | 新粳香3号Xingengxiang 3 | 2 | 极强 | 5 | 极强 | 10 | 极强 | 80 | 弱 |
15GY114-2-5-3 | 3 | 极强 | 45 | 中等 | 79 | 弱 | 100 | 极弱 | 新粳12号Xingeng 12 | 9 | 极强 | 11 | 强 | 18 | 强 | 64 | 较弱 |
16GY54-2-3-1 | 9 | 极强 | 27 | 较强 | 89 | 弱 | 100 | 极弱 | 新粳14号Xingeng 14 | 1 | 极强 | 5 | 极强 | 9 | 极强 | 71 | 弱 |
新粳香2号Xingengxiang 2 | 11 | 强 | 19 | 强 | 84 | 弱 | 100 | 极弱 | 新粳18号Xingeng 18 | 18 | 强 | 52 | 较弱 | 69 | 较弱 | 91 | 极弱 |
新粳香5号Xingengxiang 5 | 9 | 极强 | 10 | 极强 | 88 | 弱 | 100 | 极弱 | 新稻36号Xindao 36 | 7 | 极强 | 19 | 强 | 26 | 较强 | 81 | 弱 |
新粳4号Xingeng 4 | 16 | 强 | 26 | 较强 | 100 | 极弱 | 100 | 极弱 | 盐丰47 Yanfeng 47 | 8 | 极强 | 20 | 强 | 26 | 较强 | 100 | 极弱 |
新粳9号Xingeng 9 | 19 | 强 | 29 | 较强 | 89 | 弱 | 100 | 极弱 | |||||||||
越光Yueguang | 55 | 较弱 | 69 | 较弱 | 100 | 极弱 | 100 | 极弱 |
Tab.4 Salt damage index and salt tolerance of different varieties of rice yield
品种(系) Varieties (Strain) | 2021年 | 品种(系) Varieties (Strain) | 2022年 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C50 | C100 | C150 | C200 | C50 | C80 | C120 | C150 | ||||||||||
盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | 盐害 指数 (%) | 耐盐 等级 | ||
秋田小町Qiutanxiaoding | 15 | 强 | 20 | 强 | 87 | 弱 | 100 | 极弱 | 秋田小町Qiutanxiaoding | 8 | 极强 | 16 | 强 | 29 | 较强 | 87 | 弱 |
新稻11号Xindao 11 | 24 | 较强 | 29 | 较强 | 84 | 弱 | 100 | 极弱 | 新稻11号Xindao 11 | 18 | 强 | 21 | 较强 | 27 | 较强 | 90 | 弱 |
新粳香8号Xingengxiang 8 | 7 | 极强 | 18 | 强 | 81 | 弱 | 100 | 极弱 | 新粳香8号Xingengxiang 8 | 8 | 极强 | 16 | 强 | 27 | 较强 | 100 | 极弱 |
新粳6号Xingeng 6 | 8 | 极强 | 10 | 极强 | 81 | 弱 | 100 | 极弱 | 新粳6号Xingeng 6 | 8 | 极强 | 11 | 强 | 17 | 强 | 85 | 弱 |
新粳10号Xingeng 10 | 31 | 中等 | 48 | 中等 | 99 | 极弱 | 100 | 极弱 | 新粳10号Xingeng 10 | 13 | 强 | 12 | 强 | 45 | 中等 | 84 | 弱 |
新粳11号Xingeng 11 | 19 | 强 | 25 | 较强 | 80 | 弱 | 100 | 极弱 | 新粳11号Xingeng 11 | 8 | 极强 | 20 | 强 | 28 | 较强 | 93 | 极弱 |
新粳13号Xingeng 13 | 33 | 中等 | 48 | 中等 | 85 | 弱 | 99 | 极弱 | 新粳13号Xingeng 13 | 18 | 强 | 30 | 较强 | 46 | 中等 | 87 | 弱 |
9HR156 | 54 | 较弱 | 68 | 较弱 | 88 | 弱 | 100 | 极弱 | 9HR156 | 28 | 较强 | 56 | 较弱 | 66 | 较弱 | 100 | 极弱 |
14GY44-5-1-7 | 9 | 极强 | 19 | 强 | 87 | 弱 | 100 | 极弱 | 14GY44-5-1-7 | 7 | 极强 | 13 | 强 | 19 | 强 | 89 | 弱 |
15GY65-3-2-1 | 7 | 极强 | 18 | 强 | 78 | 弱 | 100 | 极弱 | 15GY65-3-2-1 | 7 | 极强 | 19 | 强 | 28 | 较强 | 87 | 弱 |
15GY114-2-5-3-10 | 3 | 极强 | 37 | 中等 | 83 | 弱 | 99 | 极弱 | 15GY114-2-5-3-10 | 21 | 较强 | 34 | 中等 | 47 | 中等 | 87 | 弱 |
03GY28-1-10-2-2-1 | 8 | 极强 | 89 | 弱 | 100 | 极弱 | 100 | 极弱 | 新粳盐02 Xingengyan 02 | 13 | 强 | 26 | 较强 | 49 | 中等 | 89 | 弱 |
12GY11-5-4-3-1-1 | 10 | 极强 | 26 | 较强 | 88 | 弱 | 100 | 极弱 | 新粳香3号Xingengxiang 3 | 2 | 极强 | 5 | 极强 | 10 | 极强 | 80 | 弱 |
15GY114-2-5-3 | 3 | 极强 | 45 | 中等 | 79 | 弱 | 100 | 极弱 | 新粳12号Xingeng 12 | 9 | 极强 | 11 | 强 | 18 | 强 | 64 | 较弱 |
16GY54-2-3-1 | 9 | 极强 | 27 | 较强 | 89 | 弱 | 100 | 极弱 | 新粳14号Xingeng 14 | 1 | 极强 | 5 | 极强 | 9 | 极强 | 71 | 弱 |
新粳香2号Xingengxiang 2 | 11 | 强 | 19 | 强 | 84 | 弱 | 100 | 极弱 | 新粳18号Xingeng 18 | 18 | 强 | 52 | 较弱 | 69 | 较弱 | 91 | 极弱 |
新粳香5号Xingengxiang 5 | 9 | 极强 | 10 | 极强 | 88 | 弱 | 100 | 极弱 | 新稻36号Xindao 36 | 7 | 极强 | 19 | 强 | 26 | 较强 | 81 | 弱 |
新粳4号Xingeng 4 | 16 | 强 | 26 | 较强 | 100 | 极弱 | 100 | 极弱 | 盐丰47 Yanfeng 47 | 8 | 极强 | 20 | 强 | 26 | 较强 | 100 | 极弱 |
新粳9号Xingeng 9 | 19 | 强 | 29 | 较强 | 89 | 弱 | 100 | 极弱 | |||||||||
越光Yueguang | 55 | 较弱 | 69 | 较弱 | 100 | 极弱 | 100 | 极弱 |
[1] |
Xu D Q, Huang J, Guo S Q, et al. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice(Oryza sativa L.)[J]. FEBS Letters, 2008, 582(7):1037-1043.
DOI URL |
[2] | 杨帆, 王志春, 马红媛, 等. 东北苏打盐碱地生态治理关键技术研发与集成示范[J]. 生态学报, 2016, 36(22):7054-7058. |
YANG Fan, WANG Zhichun, MA Hongyuan, et al. Research and integrated demonstration of ecological amelioration techniques of saline-sodic land in Northeast China[J]. Acta Ecologica Sinica, 2016, 36(22):7054-7058. | |
[3] | 路晓筠, 项卫东, 郑光耀, 等. 盐碱地改良措施研究进展[J]. 江苏农业科学, 2015, 43(12):5-8. |
LU Xiaojun, XIANG Weidong, ZHENG Guangyao, et al. Research progress on saline improvement measures[J]. Jiangsu Agricultural Sciences, 2015, 43(12):5-8. | |
[4] | 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究, 2018, 31(4):70-75. |
ZHU Jianfeng, CUI Zhenrong, WU Chunhong, et al. Research advances and prospect of saline and alkali land greening in China[J]. World Forestry Research, 2018, 31(4):70-75. | |
[5] | 钟克焱, 顾骁, 马启林, 等. 盐胁迫下耐盐番茄根的蛋白质组分析[J]. 湖南农业大学学报(自然科学版), 2018, 44(5):495-499. |
ZHONG Keyan, GU Xiao, MA Qilin, et al. Proteomic analysis of root of salt-tolerant tomato under salt stress[J]. Journal of Hunan Agricultural University (Natural Sciences Edition), 2018, 44(5):495-499. | |
[6] | 新疆维吾尔自治区农业厅. 新疆土壤[M]. 北京: 科学出版社,1996. |
Xinjiang Uygur Autonomous Region Department of Agriculture. Xinjiang Soil[M]. Beijing: Science Press,1996. | |
[7] | 韩贵清, 周连仁. 黑龙江盐渍土改良与利用[M]. 北京: 中国农业出版社, 2011. |
HAN Guiqing, ZHOU Lianren. Heilongjiang Saline Soil Improvement and Utilization[M]. Beijing: China Agriculture Press, 2011. | |
[8] | 田长彦, 周宏飞, 刘国庆. 21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J]. 干旱区地理, 2000, 23(2):177-181. |
TIAN Changyan, ZHOU Hongfei, LIU Guoqing. The proposal on control of soil salinizing and agricultural sustaining development in 21’s century in Xinjiang[J]. Arid Land Geography, 2000, 23(2):177-181. | |
[9] | 张治振, 李稳, 周起先, 等. 不同水稻品种幼苗期耐盐性评价[J]. 作物杂志, 2020,(3):92-101. |
ZHANG Zhizhen, LI Wen, ZHOU Qixian, et al. Salt tolerance evaluation of different rice varieties at seedling stage[J]. Crops, 2020,(3):92-101. | |
[10] |
孙现军, 姜奇彦, 胡正, 等. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11):1656-1663.
DOI |
SUN Xianjun, JIANG Qiyan, HU Zheng, et al. Screening and identification of salt-tolerant rice germplasm in whole growth period[J]. Acta Agronomica Sinica, 2019, 45(11):1656-1663.
DOI |
|
[11] |
杜孝敬, 张燕红, 吕玉平, 等. 不同香稻品种种子萌发和苗期对NaCl胁迫的响应[J]. 新疆农业科学, 2022, 59(4):827-838.
DOI |
DU Xiaojing, ZHANG Yanhong, LYU Yuping, et al. Responses of seeds of different fragrant rice varieties to NaCl stress in germination and seedling stages[J]. Xinjiang Agricultural Sciences, 2022, 59(4):827-838.
DOI |
|
[12] |
李红宇, 李逸, 司洋, 等. 北方粳稻耐盐碱相关性状主成分分析及综合评价[J]. 核农学报, 2020, 34(8):1862-1871.
DOI |
LI Hongyu, LI Yi, SI Yang, et al. Principal component analysis and comprehensive evaluation of saline-alkaline tolerance related traits of northern japonica rice[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8):1862-1871.
DOI |
|
[13] | 张素红, 李振宇, 宋双, 等. 水稻田间耐盐性能评价研究[J]. 北方水稻, 2021, 51(3):17-19,22. |
ZHANG Suhong, LI Zhenyu, SONG Shuang, et al. Evaluation of salt tolerance of rice in field[J]. North Rice, 2021, 51(3):17-19,22. | |
[14] | 张鑫, 李景鹏, 陈艳辉, 等. 水稻农艺性状的耐盐碱鉴定及比较分析[J]. 土壤与作物, 2020, 9(3):260-270. |
ZHANG Xin, LI Jingpeng, CHEN Yanhui, et al. Identification and analysis of saline-alkali tolerance in rice agronomic traits[J]. Soils and Crops, 2020, 9(3):260-270. | |
[15] | 梁正伟, 杨福, 王志春, 等. 盐碱胁迫对水稻主要生育性状的影响[J]. 生态环境, 2004, 13(1):43-46. |
LIANG Zhengwei, YANG Fu, WANG Zhichun, et al. Effect of the main growth characteristics of rice under saline-alkali stress[J]. Ecology and Environment, 2004, 13(1):43-46. | |
[16] | 胡时开, 陶红剑, 钱前, 等. 水稻耐盐性的遗传和分子育种的研究进展[J]. 分子植物育种, 2010, 8(4):629-640. |
HU Shikai, TAO Hongjian, QIAN Qian, et al. Progresses on genetics and molecular breeding for salt-tolerance in rice[J]. Molecular Plant Breeding, 2010, 8(4):629-640. | |
[17] | 周毅, 崔丰磊, 杨萍, 等. 水稻不同品种幼苗期耐盐性评价[J]. 江西农业大学学报, 2015, 37(5):781-787. |
ZHOU Yi, CUI Fenglei, YANG Ping, et al. Evaluation of salt tolerance in different rice cultivar resources during the seedling stage[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(5):781-787. | |
[18] | 李红宇, 潘世驹, 钱永德, 等. 混合盐碱胁迫对寒地水稻产量和品质的影响[J]. 南方农业学报, 2015, 46(12):2100-2105. |
LI Hongyu, PAN Shiju, QIAN Yongde, et al. Effects of saline-alkali stress on yield and quality of rice in cold region[J]. Journal of Southern Agriculture, 2015, 46(12):2100-2105. | |
[19] | 周婵婵, 王术, 黄元财, 等. 不同水稻品种产量和品质对盐碱胁迫的响应[J]. 种子, 2017, 36(11):29-33. |
ZHOU Chanchan, WANG Shu, HUANG Yuancai, et al. Response of different rice yield and quality to saline-alkali stress[J]. Seed, 2017, 36(11):29-33. | |
[20] | 罗成科, 肖国举, 张峰举, 等. 不同浓度复合盐胁迫对水稻产量和品质的影响[J]. 干旱区资源与环境, 2017, 31(1):137-141. |
LUO Chengke, XIAO Guoju, ZHANG Fengju, et al. Effects of different salt stresses on rice yield and quality[J]. Journal of Arid Land Resources and Environment, 2017, 31(1):137-141. | |
[21] | 张瑞珍, 邵玺文, 童淑媛, 等. 盐碱胁迫对水稻源库与产量的影响[J]. 中国水稻科学, 2006, 20(1):116-118. |
ZHANG Ruizhen, SHAO Xiwen, TONG Shuyuan, et al. Effect of saline-alkali stress on source-sink and yield of rice[J]. Chinese Journal of Rice Science, 2006, 20(1):116-118. | |
[22] | 陈洁. 水稻幼苗耐盐性的定量鉴定及耐盐生理生化研究[D]. 海口: 华南热带农业大学, 2003. |
CHEN Jie. Quantitative Analysis of Salt-tolerant Properties of Rice Seedling and Its Physiological and Biochemical Studies on Salt-tolerance[D]. Haikou: South China University of Tropical Agriculture, 2003. |
[1] | ZHANG Fan, CHEN Xiaolu, WANG Jie, HOU Xianfei, JIA Donghai, GU Yuanguo, MIAO Haocui, LI Qiang. Effects of mixed salt stress on seed germination and seedling growth of peanut seed [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2168-2182. |
[2] | DONG Zhiduo, XU Fei, FU Qiuping, HUANG Jian, QI Tong, MENG Ajing, FU Yanbo, Kaisaier Kuerban. Effects of different types of salt and alkali stress on cotton seed germination [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1831-1844. |
[3] | LIU Huijie, WANG Junhao, GONG Zhaolong, LIANG Yajun, WANG Junduo, LI Xueyuan, ZHENG Juyun, WANG Jichuan. Identification of salt tolerance of 197 upland cotton varieties at germination stage [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1574-1581. |
[4] | SUN Jian, LI Xue, CHU Min, GU Meiying, Ainijiang Ersiman, ZHU Jin, HE Qi, TAN Huilin, ZHANG Zhidong. Screening,identification and characteristics of Lactic acid bacteria from raw camel milk [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 1021-1028. |
[5] | QI Ping, Suoyin Tuya, WEI Yang, ZHANG Shuo, Adili Shataer, Adili Aihemaiti. Evaluation of field control efficacy of 10 medications against Acalitus phloeocoptes Nalepa [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2761-2768. |
[6] | ZHAO Kang, CHENG Rongrong, PANG Bo, ZHANG Mengyuan, ZHANG Ru, WANG Yongpan, YANG Zhining, WANG Zhi, WANG Honggang, GAO Wenwei. Effects of salt stress and re-watering on the physiology, biochemistry and microstructure of cotton leaf structure [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2351-2357. |
[7] | KONG Xiaoshuang, WEI Ran, DONG Yinghong, HOU Min, Maierhaba Aihemaiti, HOU Xinqiang, YANG Wenqi, CUI Weidong. Isolation and screening of cultivable endophytes in sifferent organs of Glycyrrhiza uralensis Fisch and preliminary screening of β-glucosidase producing strains [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 199-208. |
[8] | HE Qi, FENG Qian, LI Xue, YI Yuanyang, GU Meiying, ZHU Jin, SUN Jian, ZHANG Zhidong. Screening, identification and characteristics of Lactic acid bacteria from the sayram ketteki [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2323-2330. |
[9] | ZHANG Yanhong, HOU Tianyu, BA Yinhua, ZHAO Caiyue, LYU Yuping, Buhalikeimu Abunzi, ZHAO Zhiqiang, LI Dong, DU Xiaojing, YUAN Jie, WANG Fengbin. Identification and evaluation of salt tolerance of rice recombinant inbred lines at bud and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1041-1049. |
[10] | LU Tao, ZENG Qingtao, ZHANG Wen, WANG Wenbo, WANG Zhengyang, YANG Rui, SUN Yuyan. Comprehensive evaluation of cotton yield and quality by principal component analysis and grey correlation analysis [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1099-1109. |
[11] | Halidan Yikeremu, LIU Na, LIU Lianzheng, ZHOU Anding, JIANG Qiyan, Damailijiang Hezier, CAO Junmei, ZHANG Xinzhong. Identification and evaluation of salt tolerance in wheat relatives at germination and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1118-1126. |
[12] | CHEN Liliang, LU Qianjun, MA Yuanyuan, LIU Ying, ZHAO Baolong, SUN Junli. Effects of NaCl stress on antioxidant enzyme content and malondialdehyde content in grape cultivars leaves [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 880-888. |
[13] | DOU Ziwei, YANG Lu, CHENG Ping, ZHANG Zhigang, LI Hong. Analysis and Comprehensive Evaluation of Nutritional Quality of Different Mulberry Varieties [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 127-139. |
[14] | ZHENG Ruiming, WANG Li, ZHANG Jungao, YAN Rong, LI Jin, LIANG Jing, LEI Bin, ZHOU Xiaoyun. Screening and Evaluation of Wheat Germination and Seedling Growth Activity by 16 Plant Methanol Extracts [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 32-42. |
[15] | SAI Jingyi, WEN Yue, HAO Zhichao, TIAN Jia. Construction of Yeast Two-Hybrid Three-Frame cDNA Library and Screening of Interacting Proteins in FWL1 Membrane System of Pear Young Fruit [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1877-1888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||