Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (7): 1648-1656.DOI: 10.6048/j.issn.1001-4330.2024.07.011
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
GAO Jun1(), HOU Xianfei2, MIAO Haocui2, JIA Donghai2, GU Yuanguo2, WANGH Tianling2, HNU Yi2, CHENG Xiaolu1(
), LI Qiang2(
)
Received:
2023-11-10
Online:
2024-07-20
Published:
2024-09-04
Correspondence author:
CHENG Xiaolu, LI Qiang
Supported by:
高君1(), 侯献飞2, 苗昊翠2, 贾东海2, 顾元国2, 汪天玲2, 黄奕2, 陈晓露1(
), 李强2(
)
通讯作者:
陈晓露,李强
作者简介:
高君(1996-),女,山东济南人,硕士研究生,研究方向为花生栽培与育种,(E-mail)2287455311@qq.com
基金资助:
CLC Number:
GAO Jun, HOU Xianfei, MIAO Haocui, JIA Donghai, GU Yuanguo, WANGH Tianling, HNU Yi, CHENG Xiaolu, LI Qiang. Effect of cotton-peanut crop rotation pattern on the distribution of dry matter accumulation and yield of peanut[J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1648-1656.
高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656.
Fig.1 Planting schemes of peanut and cotton between different years Note: The cropping pattern between years in plot A is peanut-peanut-peanut, abbreviated as CK; the cropping pattern between years in plot C is cotton-peanut-cotton, abbreviated as CPC; and the cropping pattern between years in plot D is peanut-cotton-peanut, abbreviated as PCP
Fig.2 Dry-to-fresh ratio of each organ during peanut growth and development under different cropping patterns Note: Different lowercase letters on the plot columns of the same organ indicate significant differences between different cropping patterns at the 0.05 level
Fig.3 Changes of total dry matter accumulation of peanut monocots under different cropping patterns Note: Different lowercase letters on the graph bars for the same period indicate that the differences between different cropping patterns are significant at the 0.05 level
Fig.4 Changes of dry matter allocation in different cropping patterns at seedling, flowering-pegging, pod setting and pod filling stages Note:The numbers on the columns are the dry matter distribution ratios
指标 Indexes | Logistic方程 Logistic equation | R2 | t1 | t2 | t3 |
---|---|---|---|---|---|
花生-棉花-花生轮作干物质积累量 Dry matter accumulation in peanut-cotton-peanut | y= | 0.992 67 | 51.50 | 65.73 | 79.978 |
CK干物质积累量 Dry matter accumulation in CK | y= | 0.997 24 | 54.63 | 71.39 | 88.16 |
棉花-花生-棉花轮作干物质积累量 Dry matter accumulation in cotton-peanut-cotton | y= | 0.996 17 | 59.31 | 71.88 | 84.45 |
Tab.1 logistic equation and data of dry matter accumulation in continuous cropping and rotation of peanut
指标 Indexes | Logistic方程 Logistic equation | R2 | t1 | t2 | t3 |
---|---|---|---|---|---|
花生-棉花-花生轮作干物质积累量 Dry matter accumulation in peanut-cotton-peanut | y= | 0.992 67 | 51.50 | 65.73 | 79.978 |
CK干物质积累量 Dry matter accumulation in CK | y= | 0.997 24 | 54.63 | 71.39 | 88.16 |
棉花-花生-棉花轮作干物质积累量 Dry matter accumulation in cotton-peanut-cotton | y= | 0.996 17 | 59.31 | 71.88 | 84.45 |
处理 Treatments | 百果重 Hundred pods weight (g) | 百仁重 Hyakuren Heavy (g) | 出仁率 Kernel rate (%) | 500 g果数 Number of pods at 500 g | 单株生物量 single plant biomass | 单株产量 Single plant yield | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|---|---|
棉花-花生- 棉花轮作 Cotton-peanut-cotton | 204.35±4.53a | 87.26±3.03a | 75%±0.01c | 243±2.64c | 169.41±1.21a | 31.47±0.52b | 7 421.28a |
对照CK | 168.65±8.63c | 64.48±0.38c | 72%±0.01b | 286±3.21a | 137.40±1,53c | 30.26±0.86c | 4 160.42c |
花生-棉花- 花生轮作 Peanut-cotton-peanut | 193.47±1.74b | 68.76±2.15b | 73%±0.01a | 269±1.54b | 155.03±0.96b | 33.02±1.23a | 5 847.07b |
Tab.2 Yield and yield components of peanut under different cropping patterns
处理 Treatments | 百果重 Hundred pods weight (g) | 百仁重 Hyakuren Heavy (g) | 出仁率 Kernel rate (%) | 500 g果数 Number of pods at 500 g | 单株生物量 single plant biomass | 单株产量 Single plant yield | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|---|---|
棉花-花生- 棉花轮作 Cotton-peanut-cotton | 204.35±4.53a | 87.26±3.03a | 75%±0.01c | 243±2.64c | 169.41±1.21a | 31.47±0.52b | 7 421.28a |
对照CK | 168.65±8.63c | 64.48±0.38c | 72%±0.01b | 286±3.21a | 137.40±1,53c | 30.26±0.86c | 4 160.42c |
花生-棉花- 花生轮作 Peanut-cotton-peanut | 193.47±1.74b | 68.76±2.15b | 73%±0.01a | 269±1.54b | 155.03±0.96b | 33.02±1.23a | 5 847.07b |
[1] | 李培栋, 王兴祥, 李奕林, 等. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J]. 生态学报, 2010, 30(8): 2128-2134. |
LI Peidong, WANG Xingxiang, LI Yilin, et al. The contents of phenolic acids in continuous cropping peanut and their allelopathy[J]. Acta Ecologica Sinica, 2010, 30(8): 2128-2134. | |
[2] | 王春丽, 李增嘉. 小麦花生玉米不同间套作模式产量品质效益比较[J]. 耕作与栽培, 2005,(5): 11-12, 18. |
WANG Chunli, LI Zengjia. Comparison of yield, quality and benefit of different intercropping patterns of wheat, peanut and corn[J]. Tillage and Cultivation, 2005,(5): 11-12, 18. | |
[3] |
杨欢, 周颖, 陈平, 等. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
DOI |
YANG Huan, ZHOU Ying, CHEN Ping, et al. Effects of nutrient uptake and utilization on yield of maize-legume strip inter-cropping system[J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
DOI |
|
[4] | 席亚东, 向运佳, 吴婕, 等. 间套作对辣椒炭疽病、花生叶斑病的影响[J]. 西南农业学报, 2015, 28(1): 150-154. |
XI Yadong, XIANG Yunjia, WU Jie, et al. Efficacy of intercropping systems of pepper and peanut for pepper anthracnose and peanut leafspot diseases[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 150-154. | |
[5] | 李锐, 刘瑜, 褚贵新, 等. 棉花连作对北疆土壤酶活性、致病菌及拮抗菌多样性的影响[J]. 中国生态农业学报, 2015, 23(4): 432-440. |
LI Rui, LIU Yu, CHU Guixin, et al. Response of soil enzyme activity and microbial community structure, diversity to continuous cotton cropping in northern Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 432-440. | |
[6] | Xiong W, Li Z G, Liu H J, et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing[J]. PLoS One, 2015, 10(8): e0136946. |
[7] |
Urashima Y, Sonoda T, Fujita Y, et al. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping[J]. Microbes and Environments, 2012, 27(1): 43-48.
PMID |
[8] | Zhou X G, Gao D M, Liu J, et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativusL.) system[J]. European Journal of Soil Biology, 2014, 60: 1-8. |
[9] | 张晓玲, 潘振刚, 周晓锋, 等. 自毒作用与连作障碍[J]. 土壤通报, 2007, 38(4): 781-784. |
ZHANG Xiaoling, PAN Zhengang, ZHOU Xiaofeng, et al. Autotoxicity and continuous cropping obstacles: a review[J]. Chinese Journal of Soil Science, 2007, 38(4): 781-784. | |
[10] | 王根全, 郝晓芬, 郭二虎, 等. 连作与轮作谷子根际土壤真菌群落分布特征[J]. 中国生态农业学报(中英文), 2023, 31(5): 677-689. |
WANG Genquan, HAO Xiaofen, GUO Erhu, et al. Distribution characteristics of the soil fungi community in the rhizosphere of foxtail millet under different planting patterns[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 677-689. | |
[11] | 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018, 37(12): 2802-2809. |
NIU Qianyun, HAN Yansha, XU Lixia, et al. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil[J]. Journal of Agro-Environment Science, 2018, 37(12): 2802-2809. | |
[12] |
刘锦涛, 陈国栋, 万素梅, 等. 棉花干物质积累与转运对密度与行距配置的响应特征[J]. 中国农学通报, 2023, 39(14): 12-19.
DOI |
LIU Jintao, CHEN Guodong, WAN Sumei, et al. Response characteristics of cotton dry matter accumulation and transportation to density and row spacing configuration[J]. Chinese Agricultural Science Bulletin, 2023, 39(14): 12-19.
DOI |
|
[13] |
蒯婕, 李真, 汪波, 等. 密度和行距配置对油菜苗期性状及产量形成的影响[J]. 中国农业科学, 2021, 54(11): 2319-2332.
DOI |
KUAI Jie, LI Zhen, WANG Bo, et al. Effects of density and row spacing on seedling traits of rapeseed and seed yield[J]. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.
DOI |
|
[14] | 李猛, 陈现平, 张建, 等. 不同密度与行距配置对紧凑型玉米产量效应的研究[J]. 中国农学通报, 2009, 25(8): 132-136. |
LI Meng, CHEN Xianping, ZHANG Jian, et al. Study on the yield of erectophile type maize under the different density and the row spacing[J]. Chinese Agricultural Science Bulletin, 2009, 25(8): 132-136.
DOI |
|
[15] | 朱广凯. 花生连作弊端多[J]. 农家参谋, 2010,(5):10. |
ZHU Guangkai. Peanut crop with many drawbacks[J]. Farmers' Advice, 2010,(5):10. | |
[16] | 刘素, 吴宏亮, 陈倬, 等. 连作年限影响芹菜根际土壤微生物群落结构及功能类群[J]. 中国农业气象, 2023, 44(5): 372-385. |
LIU Su, WU Hongliang, CHEN Zhuo, et al. Continuous cropping years affect the rhizosphere soil microbial community structure and functional taxa of celery[J]. Chinese Journal of Agrometeorology, 2023, 44(5): 372-385. | |
[17] | 朱珏, 石雨荷, 李晴, 等. 百合种质资源遗传多样性及连作障碍研究进展[J]. 北方园艺, 2023,(9): 126-132. |
ZHU Jue, SHI Yuhe, LI Qing, et al. Research progress on genetic diversity and continuous cropping barriers of lily germplasm resources[J]. Northern Horticulture, 2023,(9): 126-132. | |
[18] | 方路斌, 李玉灵, 黄大庄, 等. 不同立地下白桑-花生间作系统生物量及营养元素的积累[J]. 林业科学, 2008, 44(1): 13-18. |
FANG Lubin, LI Yuling, HUANG Dazhuang, et al. Biomass and Nutrient Accumulation in the Morus alba and Peanut Intercropping Ecological System in Different Habitats[J]. Scientia Silvae Sinicae, 2008, 44(1): 13-18. | |
[19] | 伊淼, 王建国, 尹金. 减氮增钙及施用时期对花生生长发育及生理特性的影响[J]. Journal of Agricultural Science & Technology, 2021, 23(4):1008-0864. |
Yi Miao, WANG Jianguo, YIN Jin, et al. Effects of Nitrogen Reduction and Calcium Increase and Application Period on Peanut Growth and Physiological Characteristics[J]. Journal of Agricultural Science & Technology, 2021, 23(4):1008-0864. | |
[20] | 刘颖, 王建国, 郭峰. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994-1001. |
LIU Ying, WANG Jianguo, GUO Feng, et al. Effects of intercropping maize and peanut on dry matter accumulation and nitrogen uptake and utilisation[J]. Chinese Journal of Oil Crops, 2020, 42(6): 994-1001. | |
[21] | 刘文文, 王建国, 万书波. 花生荚果发育及其调控研究进展[J]. 中国油料作物学报, 2020, 42(6): 940. |
LIU Wenwen, WANG Jianguo, WAN Shubo, et al. Progress of peanut pod development and its regulation[J]. Chinese Journal of Oil Crops, 2020, 42(6): 940. | |
[22] |
王海娣, 吴兵, 高玉红, 等. 旱地胡麻同化物积累和分配与产量形成对轮作模式的响应[J]. 中国油料作物学报, 2022, 44(1): 158-167.
DOI |
WANG Haidi, WU Bing, GAO Yuhong, et al. Responses of assimilation accumulation and distribution and grain yield formation of oilseed flax to crop rotation patterns in dry land[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 158-167.
DOI |
|
[23] |
平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报, 2010, 34(1): 100-111.
DOI |
PING Xiaoyan, ZHOU Guangsheng, SUN Jingsong. Advances in the study of photosynthate allocation and its controls[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 100-111.
DOI |
|
[24] | 殷文, 冯福学, 赵财, 等. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响[J]. 作物学报, 2016, 42(5): 751-757. |
YIN Wen, FENG Fuxue, ZHAO Cai, et al. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize[J]. Acta Agronomica Sinica, 2016, 42(5): 751-757.(与22重复) | |
[25] |
杨锦浩, 李宇星, 张月, 等. 夜间增温对小麦干物质积累、转运、分配及产量的影响[J]. 核农学报, 2022, 36(11):2295-2306.
DOI |
YANG Jinhao, LI Yuxing, ZHANG Yue, et al. Effects of nighttime warming on dry matter accumulation, translocation, distribution and yield of wheat[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(11):2295-2306.
DOI |
|
[26] | 刘华健. 红麻套作油菜对生长发育及产量的影响[D]. 南宁: 广西大学, 2020: 24-25. |
LIU Huajian. Effects of kenaf intercropping rape on growth and yield[D]. Nanning: Guangxi University, 2020: 24-25. | |
[27] |
陆峰, 廖超林, 肖志鹏, 等. 烟-稻复种连作对红壤性水稻土团聚体组成及稳定性的影响[J]. 中国农学通报, 2022, 38(26): 56-61.
DOI |
LU Feng, LIAO Chaolin, XIAO Zhipeng, et al. Effects of tobacco-rice continuous cropping on distribution and stability of soil aggregates in red paddy soil[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 56-61.
DOI |
[1] | YANG Minghua, LIU Qiang, FENG Guorui, LIAO Biyong, Dawulai Jiekeshan, PENG Yuncheng, Buayixiamu Namanti, CHEN Yanping. Study on suitable harvesting time and grain water content of fresh waxy maize [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1626-1630. |
[2] | ZHANG Zhao, ZHANG Guilong, TANG Qiuxiang, YAN Xueying, ZHANG Yanjun. Effects of combination of organic and inorganic fertilizers on fertility and yield of winter wheat in fluvo-aquic soil [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1067-1076. |
[3] | SHI Junjie, HOU Xianfei, YU Yuehua, LI Qiang, MIAO Haocui, JIA Donghai, GU Yuanguo, WANG Tianling. Effects of different mulching patterns and supplementary irrigation on peanut photosynthesis and dry matter accumulation [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1122-1130. |
[4] | JIA Donghia, SONG Xianming, GU Yuanguo, LI Qiang, ZENG Youling, MIAO Haocui, GUO Meili, HOU Xianfei. Effect of reducing chemical fertilizer and applying microbial one on the growth and yield of Carthamus tinctorius L. under mulch drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 781-790. |
[5] | HOU Xianfei, SONG Xianming, LI Qiang, GU Yuanguo, MIAO Haocui, ZENG Youling, GUO Meili, JIA Donghai. Effects of water and nitrogen coupling on growth and yield of Carthamus tinctorius L. under mulch drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 791-803. |
[6] | SONG Xianming, HOU Xianfei, GU Yuanguo, MIAO Haocui, LI Qiang, GUO Meili, ZENG Youling, JIA Donghia. Effects of planting density and row spacing on growth and yield of Carthamus tinctorius L. under mulch drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 804-813. |
[7] | SHAO Jiang, ZHAO Yun, HU Xiangwei, LIU Jie, Nasirula Keremu, SHI Shubing, FENG Guojun. Effects of drought stress on foxtail millet yield and dry matter accumulation in different periods [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2388-2395. |
[8] | LIU Haijun, ZHANG Hao, WANG Yifan, CHEN Maoguang, WU Fengquan, LIN Tao, TANG Qiuxiang. Effects of different mulching materials and irrigation on yield formation and effective accumulated temperature production efficiency of machine-picked cotton [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2091-2100. |
[9] | DONG Yanxue, JIA Yonghong, ZHANG Jinshan, LI Dandan, WANG Kai, LUO Siwei, WANG Runqi, SHI Shubing. Effects of different ecological conditions on dry matter accumulation and yield of spring wheat varieties [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1848-1857. |
[10] | LI Huaisheng, AI Hongyu, MENG Ling, WANG Heya, ZHANG Lei, AI Haifeng. Effects of chasing rate during peak nutrient uptake of transport under n Reduction on spring wheat [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1866-1872. |
[11] | MA Jun, WANG Jing, LI Chunyan, WANG Liang, SHI Weijun, CUI Jianping, TIAN Liwen, GUO Rensong. Effect of subsoiling depth on canopy photosynthetic characteristics and yield of cotton [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2878-2884. |
[12] | LUO Xiaoying, FANG Yanfei, SUN Tingting, TANG Jianghua, WANG Luzhen, TANG Tian, WANG Chen, XU Wenxiu. The influence of sowing rate on dry matter sccumulation, grain filling characteristics and yield of dryland spring wheat [J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2704-2711. |
[13] | ZHENG Zipiao, XU Haijiang, CUI Jianping, LIN Tao, GUO Rensong, WANG Liang, ZHANG Dawei, WEI Xin, KONG fanyang. Effects of Water Stress on Growth and Development in Cotton (Gossypium hirsutum L.) [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1821-1830. |
[14] | ZHOU Anding, LI Lei, SUN Shiren, ZHANG Jianxing, KONG Depeng, MIAO Yu, XUE Lihua. Comparison of Dry Matter Distribution and Grain Filling Characteristics of Different Wheat Varieties for Overwinter Seeds Cultivation [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 320-328. |
[15] | XU Haitao, FENG Xiaoxi, XU Bo, GUO Haibin, ZHANG Jungang, WANG Chengye. Effects of Nitrogen and Water Collaborative Supply on Accumulation and Distribution of Dry Matter and Nitrogen, Nitrogen Transport and Use Efficiency of corn [J]. Xinjiang Agricultural Sciences, 2022, 59(12): 2957-2968. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||