Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (6): 1372-1378.DOI: 10.6048/j.issn.1001-4330.2023.06.009
• Germplasm Resources·Cultivation Physiology·Physiology and Biochemistry·Soil Fertilizer·Molecular Genetics • Previous Articles Next Articles
SHAO Panxia(), ZHAO Zhun, SHAO Wukui, HAO Xiaoyan, GAO Shengqi, LI Jianping, HU Wenran, HUANG Quansheng(
)
Received:
2022-11-10
Online:
2023-06-20
Published:
2023-06-20
Correspondence author:
HUANG Quansheng (1964-), male, Urumqi, researcher, doctor, research direction: molecular biology of crop resistance, (E-mail) hquansheng@126.com
Supported by:
邵盘霞(), 赵准, 邵武奎, 郝晓燕, 高升旗, 李建平, 胡文冉, 黄全生(
)
通讯作者:
黄全生(1964-),男,新疆乌鲁木齐人,研究员,博士(后),研究方向为作物抗逆分子生物学,(E-mail) hquansheng@126.com
作者简介:
邵盘霞(1996-),女,新疆乌鲁木齐人,研究方向为玉米抗逆分子生物学及新种质创制, (E-mail) 2655738862@qq.com
基金资助:
CLC Number:
SHAO Panxia, ZHAO Zhun, SHAO Wukui, HAO Xiaoyan, GAO Shengqi, LI Jianping, HU Wenran, HUANG Quansheng. Expression analysis of ZmCDPK22 gene in maize under drought stress[J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1372-1378.
邵盘霞, 赵准, 邵武奎, 郝晓燕, 高升旗, 李建平, 胡文冉, 黄全生. 玉米ZmCDPK22基因在干旱胁迫下的表达分析[J]. 新疆农业科学, 2023, 60(6): 1372-1378.
元件 Element | 数量 Number | 功能 Function | 元件 Element | 数量 Number | 功能 Function |
---|---|---|---|---|---|
TATA-box | 30 | 核心启动元件 | GT1-motif | 1 | 光响应元件 |
CAAT-box | 26 | 核心启动元件 | G-box | 1 | 光响应元件 |
STRE | 6 | unknown | DRE core | 1 | unknown |
MYC | 5 | unknown | AT-rich element | 1 | 富含AT的DNA蛋白结合位点 |
as-1 | 3 | unknown | A-box | 1 | 顺式作用调控元件 |
CGTCA-motif | 3 | 茉莉酸甲酯响应元件 | W box | 1 | unknown |
TGACG-motif | 3 | 茉莉酸甲酯响应元件 | CCGTCC motif | 1 | unknown |
ARE | 3 | 厌氧诱导元件 | TCT-motif | 1 | 光响应元件 |
ABRE | 2 | 脱落酸响应元件 | Box 4 | 1 | 参与光反应 |
ACE | 2 | 光响应元件 | G-Box | 1 | 光响应元件 |
AAGAA-motif | 2 | unknown | WUN-motif | 1 | unknown |
Sp1 | 2 | 光响应元件 | H-box | 1 | unknown |
AT~TATA-box | 2 | unknown | ERE | 1 | unknown |
LTR | 1 | 低温响应元件 | CAT-box | 1 | 分生组织表达元件 |
CCGTCC-box | 1 | unknown | WRE3 | 1 | unknown |
Myc | 1 | unknown |
Tab.1 Cis-acting elements in the promoter of ZmCDPK22
元件 Element | 数量 Number | 功能 Function | 元件 Element | 数量 Number | 功能 Function |
---|---|---|---|---|---|
TATA-box | 30 | 核心启动元件 | GT1-motif | 1 | 光响应元件 |
CAAT-box | 26 | 核心启动元件 | G-box | 1 | 光响应元件 |
STRE | 6 | unknown | DRE core | 1 | unknown |
MYC | 5 | unknown | AT-rich element | 1 | 富含AT的DNA蛋白结合位点 |
as-1 | 3 | unknown | A-box | 1 | 顺式作用调控元件 |
CGTCA-motif | 3 | 茉莉酸甲酯响应元件 | W box | 1 | unknown |
TGACG-motif | 3 | 茉莉酸甲酯响应元件 | CCGTCC motif | 1 | unknown |
ARE | 3 | 厌氧诱导元件 | TCT-motif | 1 | 光响应元件 |
ABRE | 2 | 脱落酸响应元件 | Box 4 | 1 | 参与光反应 |
ACE | 2 | 光响应元件 | G-Box | 1 | 光响应元件 |
AAGAA-motif | 2 | unknown | WUN-motif | 1 | unknown |
Sp1 | 2 | 光响应元件 | H-box | 1 | unknown |
AT~TATA-box | 2 | unknown | ERE | 1 | unknown |
LTR | 1 | 低温响应元件 | CAT-box | 1 | 分生组织表达元件 |
CCGTCC-box | 1 | unknown | WRE3 | 1 | unknown |
Myc | 1 | unknown |
[1] |
Kuromori T, Fujita M, Takahashi F, et al. Inter‐tissue and inter‐organ signaling in drought stress response and phenotyping of drought tolerance[J]. The Plant Journal, 2022, 109(2):342-358.
DOI URL |
[2] |
Chen H, Dong J, Wang T. Autophagy in Plant Abiotic Stress Management[J]. International Journal of Molecular Sciences, 2021, 22(8):4075.
DOI URL |
[3] |
Kudla J, Batistiĉ O, Hashimoto K. Calcium Signals: The Lead Currency of Plant Information Processing[J]. The Plant Cell, 2012, 22(3):541-563.
DOI URL |
[4] |
Valmonte G R, Arthur K, Higgins C M, et al. Calcium-Dependent Protein Kinases in Plants: Evolution, Expression and Function[J]. Plant and Cell Physiology, 2014, 55(3):551-569.
DOI PMID |
[5] |
Zhu S, Yu X, Wang X, et al. Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis[J]. The Plant Cell, 2007, 19(10):3019-3036.
DOI URL |
[6] |
Zou J, Li X, Ratnasekera D, et al. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress[J]. The Plant Cell, 2015, 27(5):1445-1460.
DOI URL |
[7] |
Zou J, Wei F, Wang C, et al. Arabidopsis Calcium-Dependent Protein Kinase CPK10 Functions in Abscisic Acid- and Ca2+-Mediated Stomatal Regulation in Response to Drought Stress[J]. Plant Physiology, 2010, 154(3):1232-1243.
DOI URL |
[8] |
Campo S, Baldrich P, Messeguer J, et al. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation?[J]. Plant Physiology, 2014, 165(2):688-704.
PMID |
[9] |
Wei S, Hu W, Deng X, et al. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility[J]. BMC Plant Biol, 2014, 14:133.
DOI PMID |
[10] |
Vivek P J, Tuteja N, Soniya E V. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum[J]. PLoS One, 2013, 8(10):e76392.
DOI URL |
[11] |
Kong X, Lv W, Jiang S, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize[J]. BMC Genomics, 2013, 14(1):433.
DOI |
[12] | Weckwerth P, Ehlert B, Romeis T. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling[J]. Plant, Cell & Environment, 2015, 38(3):544-558. |
[13] |
Szczegielniak J, Borkiewicz L, Szurmak B, et al. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signalling[J]. Physiologia Plantarum, 2012, 146(1):1-14.
DOI URL |
[14] |
Li C, Wang M, Wu X, et al. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis?[J]. Plant Physiology, 2016, 170(2):1090-1104.
DOI URL |
[15] |
Huang K, Peng L, Liu Y, et al. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response[J]. Biochemical and Biophysical Research Communications, 2018, 498(1):92-98.
DOI PMID |
[16] |
Zhang H, Liu D, Yang B, et al. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors[J]. Journal of Experimental Botany, 2020, 71(1):188-203.
DOI URL |
[17] |
Zhao P, Liu Y, Kong W, et al. Genome-Wide Identification and Characterization of Calcium-Dependent Protein Kinase (CDPK) and CDPK-Related Kinase (CRK) Gene Families in Medicago truncatula[J]. International Journal of Molecular Sciences, 2021, 22(3):1044.
DOI URL |
[18] | 赵长江, 彭晶晶, 董洁静, 等. 玉米rboh基因家族鉴定及非生物逆境表达分析[J]. 玉米科学, 2021, 29(4):43-50. |
ZHAO Changjiang, PENG Jingjing, DONG Jiejing, et al. Analysis of abiotic stress expression of rboh gene family identified in maize genome[J]. Journal of Maize Sciences, 2021, 29(4):43-50. | |
[19] |
Cheng C, Xu X, Gao M, et al. Genome-Wide Analysis of Respiratory Burst Oxidase Homologs in Grape (Vitis vinifera L.)[J]. International Journal of Molecular Sciences, 2013, 14(12):24169-24186.
DOI PMID |
[20] | 张腾国, 赖晶, 李萍, 等. 不同处理下油菜RbohA、RbohD基因的表达特性分析[J]. 生态学杂志, 2019, 38(1):173-180. |
ZHANG Tengguo, LAI Jing, LI Ping, et al. Expression analysis of RbohA and RbohD genes in Brassica campestris under different treatments.[J]. Chinese Journal of Ecology, 2019, 38(1):173-180. | |
[21] |
Chehab E W, Patharkar O R, Hegeman A D, et al. Autophosphorylation and Subcellular Localization Dynamics of a Salt- and Water Deficit-Induced Calcium-Dependent Protein Kinase from Ice Plant[J]. Plant Physiology, 2004, 135(3):1430-1446.
DOI PMID |
[22] |
Xu J, Tian Y, Peng R, et al. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta, 2010, 231(6):1251-1260.
DOI PMID |
[23] |
Giammaria V, Grandellis C, Bachmann S, et al. StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling[J]. Planta, 2011, 233(3):593-609.
DOI PMID |
[24] |
Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber[J]. Journal of Experimental Botany, 2006, 57(6):1341-1351.
PMID |
[25] |
足木热木·吐尔逊, 陈勋基, 陈果, 等. 玉米ZmCPK9基因在非生物胁迫下的表达分析[J]. 新疆农业科学, 2017, 54(9):1606-1612.
DOI |
Zumuremu Turxun, CHEN Xunji, CHEN Guo, et al. Expression Analysis of ZmCDPK9 Gene in Maize under Abiotic Stress[J]. Xinjiang Agricultural Sciences, 2017, 54(9):1606-1612.
DOI |
|
[26] |
李建平, 足木热木·吐尔逊, 常晓春, 等. 玉米钙依赖蛋白激酶38(ZmCDPK38)的生物信息学及表达特性分析[J]. 新疆农业科学, 2021, 58(1):49-55.
DOI |
LI Jianping, Zhumuremu Turxon, CHANG Xiaochun, et al. Expression Characteristics and Bioinformatics Analysis of ZmCDPK38 Gene in Maize[J]. Xinjiang Agricultural Sciences, 2021, 58(1):49-55.
DOI |
|
[27] | Yan S, Weng B, Jing L, et al. Effects of drought stress on water content and biomass distribution in summer maize(Zea mays L.)[J]. Frontiers in Plant Science, 2023, 14. |
[28] | 冯晓钰, 周广胜. 夏玉米叶片水分变化与光合作用和土壤水分的关系[J]. 生态学报, 2018, 38(1):177-185. |
FENG Xiaoyu, ZHOU Guangsheng. Relationship of leaf water content with photosynthesis and soil water content in summer maise[J]. Acta Ecologica Sinica, 2018, 38(1):177-185. |
[1] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[2] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[3] | YANG Minghua, LIU Qiang, FENG Guorui, LIAO Biyong, Dawulai Jiekeshan, PENG Yuncheng, Buayixiamu Namanti, CHEN Yanping. Study on suitable harvesting time and grain water content of fresh waxy maize [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1626-1630. |
[4] | JU Le, QI Juncang, NIU Yinting, SHI Peichun, SONG Ruijiao, SONG Lingyu, YIN Zhigang, CHEN Peiyu, QIANG Xuelan. RNA-seq-based mining and analysis of drought-related genes in barley seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1077-1084. |
[5] | ZHANG Lei, YAO Mengyao, LIU Zhigang, LI Juan, YANG Yang, CAI Darun, CHEN Guo, LI Bo, LI Xiaorong, CHEN Xunji, ZHAI Yunlong. Research of maize yield estimation based on unmanned aerial vehicle multispectral NDVI [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 845-851. |
[6] | GAO Mutian, XIAO Yanmei, LIAO Zhijie, HUANG Cheng. Comprehensive evaluation of kernel and quality traits in maize-teosinte introgression line population [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 885-891. |
[7] | WANG Kaidi, GAO Chenxu, PEI Wenfeng, YANG Shuxian, ZHANG Wenqing, SONG Jikun, MA Jianjiang, WANG Li, YU Jiwen, CHEN Quanjia. Identification of TRM gene family and fiber quality related excellent haplotype analysis in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 521-536. |
[8] | ZHANG Wei, YANG Guohui, YU Hui. Effects of 2,4-epibrassinolide on growth and related genes expression of watermelon seedlings under drought Stress [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 615-622. |
[9] | MENG Hanying, GUO Dandan, HE Wanjie, ZHANG Weiwei, ZHANG Jianping, CHEN Jing. Effects of different feeding time of Monolepta Signata on the composition and content of volatile in maize leaves [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 421-433. |
[10] | CHENG Yunxia, TAN Zhanming, GUO Ling, LI Wenwen, DU Jiageng. Effects of different drought stresses on anatomical structure of roots, stems and leaves of two apricot varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2684-2692. |
[11] | LIAO Caiyun, MA Gui, ZHOU Yanyan, DING Jiafu, ZHOU Yue, BI Kexin, SUN Rong, LI Youhua. Effects of combined exposure of zinc and different microplastics on seed germination and growth of maize [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2713-2721. |
[12] | LI Chi, CHEN Gang, YANG Jige, YANG Tingrui, ZHAO Jinghua, MA Mingjie. Stu dy on leaf information collection of spring maize under different water nitrogen treatment conditions based on ground-based multispectrum [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2374-2387. |
[13] | SHAO Jiang, ZHAO Yun, HU Xiangwei, LIU Jie, Nasirula Keremu, SHI Shubing, FENG Guojun. Effects of drought stress on foxtail millet yield and dry matter accumulation in different periods [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2388-2395. |
[14] | WANG Xiaoyu, WANG Xiaoping, SHI Wenyu, LIU Meiyan, MA Jian, GUO Yunpeng, SONG Ruixin, WANG Qingtao. Responses of photosynthetic characteristics, dry matter accumulation and yield to drought stress in winter wheat at jointing stage [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2163-2172. |
[15] | XIANG Li, WANG Xian, DONG Yusheng, GUO Xiaoling, FANG Furong, CHEN Zhijun, MA Yanming, MIAO Yu. Effects of exogenous butyric acid on yield and quality of barley under drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2173-2181. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||