Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (6): 1363-1371.DOI: 10.6048/j.issn.1001-4330.2023.06.008
• Germplasm Resources·Cultivation Physiology·Physiology and Biochemistry·Soil Fertilizer·Molecular Genetics • Previous Articles Next Articles
QU Kejia1(), SHI Xiaolei2, ZHANG Heng3, WANG Xingzhou1, GENG Hongwei1, DING Sunlei2, ZHANG Jinbo2, YAN Yongliang2(
)
Received:
2022-07-20
Online:
2023-06-20
Published:
2023-06-20
Correspondence author:
YAN Yongliang (1982-), male, born in Wuwei, Gansu, associate researcher, Research area: crop genetics and breeding, (E-mail) yanliang198279@163.com
Supported by:
曲可佳1(), 时晓磊2, 张恒3, 王兴州1, 耿洪伟1, 丁孙磊2, 张金波2, 严勇亮2(
)
通讯作者:
严勇亮(1982-),男,甘肃武威人,副研究员,研究方向为作物遗传育种, (E-mail) yanliang198279@163.com
作者简介:
曲可佳(1998-),女,内蒙古呼伦贝尔人,硕士研究生,研究方向为小麦抗逆性, (E-mail)1742360930@qq.com
基金资助:
CLC Number:
QU Kejia, SHI Xiaolei, ZHANG Heng, WANG Xingzhou, GENG Hongwei, DING Sunlei, ZHANG Jinbo, YAN Yongliang. Evaluation of drought resistance of introduced spring wheat under PEG treatment[J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1363-1371.
曲可佳, 时晓磊, 张恒, 王兴州, 耿洪伟, 丁孙磊, 张金波, 严勇亮. PEG处理下引进春小麦品种苗期抗旱性评价[J]. 新疆农业科学, 2023, 60(6): 1363-1371.
编号 Code | 名称 Name | 来源 Origin | D值 D-value | 聚类号 Cluster number | 编号 Code | 名称 Name | 来源 Origin | D值 D-value | 聚类号 Cluster number |
---|---|---|---|---|---|---|---|---|---|
1 | Golden 731 | 美国 | 0.57 | Ⅰ | 43 | 农林28 | 日本 | 0.46 | Ⅱ |
2 | Cadet(CI 12053) | 美国 | 0.44 | Ⅱ | 44 | 先驱麦 | 日本 | 0.31 | Ⅲ |
3 | Kitchener | 美国 | 0.44 | Ⅱ | 45 | Atri 3890/Skl | 日本 | 0.46 | Ⅱ |
4 | 8 turgeon | 美国 | 0.39 | Ⅱ | 46 | Kenya 178 Q8 | 肯尼亚 | 0.37 | Ⅱ |
5 | Kenya B 286 | 阿根廷 | 0.25 | Ⅲ | 47 | Kenya 223F 1A | 肯尼亚 | 0.25 | Ⅲ |
6 | Klein 75 | 阿根廷 | 0.15 | Ⅳ | 48 | Kenya 280E 2A 5 | 肯尼亚 | 0.22 | Ⅲ |
7 | Klein H211T 1422 | 阿根廷 | 0.20 | Ⅲ | 49 | Kenya 10866 | 肯尼亚 | 0.24 | Ⅲ |
8 | Klein Trou | 阿根廷 | 0.28 | Ⅲ | 50 | TuNco"s" | 墨西哥 | 0.18 | Ⅲ |
9 | Kommunar | 阿根廷 | 0.30 | Ⅲ | 51 | MEXICO 82 | 墨西哥 | 0.15 | Ⅳ |
10 | Rafaela 6MA | 阿根廷 | 0.31 | Ⅲ | 52 | Pusa/Etiole de chisy Sr29 | 墨西哥 | 0.27 | Ⅲ |
11 | Sea Wari 48 | 澳大利亚 | 0.63 | Ⅰ | 53 | Quilamapu 10-077 | 墨西哥 | 0.23 | Ⅲ |
12 | Simbar Benvenuto | 澳大利亚 | 0.31 | Ⅲ | 54 | R Kf | 墨西哥 | 0.39 | Ⅱ |
13 | Simons Berg | 澳大利亚 | 0.12 | Ⅳ | 55 | Rnbw 234 | 墨西哥 | 0.27 | Ⅲ |
14 | Skov | 澳大利亚 | 0.22 | Ⅲ | 56 | Yakwax Eqypgotimstein | 缅甸 | 0.41 | Ⅱ |
15 | SK 989 | 澳大利亚 | 0.47 | Ⅱ | 57 | 荷兰小麦 | 波兰 | 0.38 | Ⅱ |
16 | Songlen | 澳大利亚 | 0.49 | Ⅱ | 58 | Horani | 波兰 | 0.36 | Ⅱ |
17 | Sw Sv 22 | 澳大利亚 | 0.32 | Ⅲ | 59 | Early Bird | 西南非 | 0.29 | Ⅲ |
18 | Tr 535 | 澳大利亚 | 0.50 | Ⅱ | 60 | Kamyshinskaja 3 | 前苏联 | 0.18 | Ⅲ |
19 | Preludio | 巴西 | 0.30 | Ⅲ | 61 | Kartner Fruhweizen | 前苏联 | 0.41 | Ⅱ |
20 | Cnt 1 | 巴西 | 0.77 | Ⅰ | 62 | 阿克斯克娅79 | 前苏联 | 0.51 | Ⅱ |
21 | Kenhi 13627 | 加拿大 | 0.32 | Ⅲ | 63 | моц щопус26 | 前苏联 | 0.48 | Ⅱ |
22 | White Fife | 加拿大 | 0.16 | Ⅳ | 64 | TA 3291 | 瑞典 | 0.25 | Ⅲ |
23 | Zipa 57 | 哥伦比亚 | 0.19 | Ⅲ | 65 | TA 4656 | 瑞典 | 0.13 | Ⅳ |
24 | Giza 141 | 埃及 | 0.39 | Ⅱ | 66 | Tcerros(CHECK) | 未知来源 | 0.48 | Ⅱ |
25 | Ruskea | 芬兰 | 0.23 | Ⅲ | 67 | GLENNSON 81 | 未知来源 | 0.25 | Ⅲ |
26 | S 468 | 芬兰 | 0.29 | Ⅲ | 68 | Duiken | 未知来源 | 0.39 | Ⅱ |
27 | S 5746 | 芬兰 | 0.29 | Ⅲ | 69 | Dvina | 未知来源 | 0.46 | Ⅱ |
28 | Samarskaja | 芬兰 | 0.29 | Ⅲ | 70 | Farrerton | 未知来源 | 0.48 | Ⅱ |
29 | Saminkel | 芬兰 | 0.31 | Ⅲ | 71 | Farward | 未知来源 | 0.37 | Ⅱ |
30 | Suno 43626 | 德国 | 0.09 | Ⅳ | 72 | Gereral Urquiza | 未知来源 | 0.41 | Ⅱ |
31 | Supreme | 德国 | 0.57 | Ⅰ | 73 | Gullen | 未知来源 | 0.14 | Ⅳ |
32 | Hohenwettersbacher Begrannter | 德国 | 0.46 | Ⅱ | 74 | W.S.25 | 未知来源 | 0.43 | Ⅱ |
33 | Holzapfelsdarwin | 德国 | 0.35 | Ⅱ | 75 | Hybrid 25 | 未知来源 | 0.23 | Ⅲ |
34 | Nap Hal-Atlas66 Sel 4 | 德国 | 0.44 | Ⅱ | 76 | Mironovskaja Rann | 未知来源 | 0.33 | Ⅱ |
35 | 澄利马拉 | 意大利 | 0.34 | Ⅱ | 77 | Pacific Blue Stem | 未知来源 | 0.45 | Ⅱ |
36 | 卡培蒂 | 意大利 | 0.46 | Ⅱ | 78 | Premorsky | 未知来源 | 0.28 | Ⅲ |
37 | 吉尔吉奥 449 | 意大利 | 0.44 | Ⅱ | 79 | Primorskaja 1130 | 未知来源 | 0.34 | Ⅱ |
38 | 季拉多 593 | 意大利 | 0.43 | Ⅱ | 80 | Purora | 未知来源 | 0.22 | Ⅲ |
39 | 季拉多 522 | 意大利 | 0.35 | Ⅱ | 81 | Par | 未知来源 | 0.08 | Ⅳ |
40 | 季拉多 533 | 意大利 | 0.29 | Ⅲ | 82 | Bob white"s" | 未知来源 | 0.43 | Ⅱ |
41 | 季拉多 572 | 意大利 | 0.31 | Ⅲ | 83 | Maya 74 | 未知来源 | 0.45 | Ⅱ |
42 | 濑户小麦 | 日本 | 0.69 | Ⅰ |
Tab.1 Sources and characteristics of tested wheat varieties
编号 Code | 名称 Name | 来源 Origin | D值 D-value | 聚类号 Cluster number | 编号 Code | 名称 Name | 来源 Origin | D值 D-value | 聚类号 Cluster number |
---|---|---|---|---|---|---|---|---|---|
1 | Golden 731 | 美国 | 0.57 | Ⅰ | 43 | 农林28 | 日本 | 0.46 | Ⅱ |
2 | Cadet(CI 12053) | 美国 | 0.44 | Ⅱ | 44 | 先驱麦 | 日本 | 0.31 | Ⅲ |
3 | Kitchener | 美国 | 0.44 | Ⅱ | 45 | Atri 3890/Skl | 日本 | 0.46 | Ⅱ |
4 | 8 turgeon | 美国 | 0.39 | Ⅱ | 46 | Kenya 178 Q8 | 肯尼亚 | 0.37 | Ⅱ |
5 | Kenya B 286 | 阿根廷 | 0.25 | Ⅲ | 47 | Kenya 223F 1A | 肯尼亚 | 0.25 | Ⅲ |
6 | Klein 75 | 阿根廷 | 0.15 | Ⅳ | 48 | Kenya 280E 2A 5 | 肯尼亚 | 0.22 | Ⅲ |
7 | Klein H211T 1422 | 阿根廷 | 0.20 | Ⅲ | 49 | Kenya 10866 | 肯尼亚 | 0.24 | Ⅲ |
8 | Klein Trou | 阿根廷 | 0.28 | Ⅲ | 50 | TuNco"s" | 墨西哥 | 0.18 | Ⅲ |
9 | Kommunar | 阿根廷 | 0.30 | Ⅲ | 51 | MEXICO 82 | 墨西哥 | 0.15 | Ⅳ |
10 | Rafaela 6MA | 阿根廷 | 0.31 | Ⅲ | 52 | Pusa/Etiole de chisy Sr29 | 墨西哥 | 0.27 | Ⅲ |
11 | Sea Wari 48 | 澳大利亚 | 0.63 | Ⅰ | 53 | Quilamapu 10-077 | 墨西哥 | 0.23 | Ⅲ |
12 | Simbar Benvenuto | 澳大利亚 | 0.31 | Ⅲ | 54 | R Kf | 墨西哥 | 0.39 | Ⅱ |
13 | Simons Berg | 澳大利亚 | 0.12 | Ⅳ | 55 | Rnbw 234 | 墨西哥 | 0.27 | Ⅲ |
14 | Skov | 澳大利亚 | 0.22 | Ⅲ | 56 | Yakwax Eqypgotimstein | 缅甸 | 0.41 | Ⅱ |
15 | SK 989 | 澳大利亚 | 0.47 | Ⅱ | 57 | 荷兰小麦 | 波兰 | 0.38 | Ⅱ |
16 | Songlen | 澳大利亚 | 0.49 | Ⅱ | 58 | Horani | 波兰 | 0.36 | Ⅱ |
17 | Sw Sv 22 | 澳大利亚 | 0.32 | Ⅲ | 59 | Early Bird | 西南非 | 0.29 | Ⅲ |
18 | Tr 535 | 澳大利亚 | 0.50 | Ⅱ | 60 | Kamyshinskaja 3 | 前苏联 | 0.18 | Ⅲ |
19 | Preludio | 巴西 | 0.30 | Ⅲ | 61 | Kartner Fruhweizen | 前苏联 | 0.41 | Ⅱ |
20 | Cnt 1 | 巴西 | 0.77 | Ⅰ | 62 | 阿克斯克娅79 | 前苏联 | 0.51 | Ⅱ |
21 | Kenhi 13627 | 加拿大 | 0.32 | Ⅲ | 63 | моц щопус26 | 前苏联 | 0.48 | Ⅱ |
22 | White Fife | 加拿大 | 0.16 | Ⅳ | 64 | TA 3291 | 瑞典 | 0.25 | Ⅲ |
23 | Zipa 57 | 哥伦比亚 | 0.19 | Ⅲ | 65 | TA 4656 | 瑞典 | 0.13 | Ⅳ |
24 | Giza 141 | 埃及 | 0.39 | Ⅱ | 66 | Tcerros(CHECK) | 未知来源 | 0.48 | Ⅱ |
25 | Ruskea | 芬兰 | 0.23 | Ⅲ | 67 | GLENNSON 81 | 未知来源 | 0.25 | Ⅲ |
26 | S 468 | 芬兰 | 0.29 | Ⅲ | 68 | Duiken | 未知来源 | 0.39 | Ⅱ |
27 | S 5746 | 芬兰 | 0.29 | Ⅲ | 69 | Dvina | 未知来源 | 0.46 | Ⅱ |
28 | Samarskaja | 芬兰 | 0.29 | Ⅲ | 70 | Farrerton | 未知来源 | 0.48 | Ⅱ |
29 | Saminkel | 芬兰 | 0.31 | Ⅲ | 71 | Farward | 未知来源 | 0.37 | Ⅱ |
30 | Suno 43626 | 德国 | 0.09 | Ⅳ | 72 | Gereral Urquiza | 未知来源 | 0.41 | Ⅱ |
31 | Supreme | 德国 | 0.57 | Ⅰ | 73 | Gullen | 未知来源 | 0.14 | Ⅳ |
32 | Hohenwettersbacher Begrannter | 德国 | 0.46 | Ⅱ | 74 | W.S.25 | 未知来源 | 0.43 | Ⅱ |
33 | Holzapfelsdarwin | 德国 | 0.35 | Ⅱ | 75 | Hybrid 25 | 未知来源 | 0.23 | Ⅲ |
34 | Nap Hal-Atlas66 Sel 4 | 德国 | 0.44 | Ⅱ | 76 | Mironovskaja Rann | 未知来源 | 0.33 | Ⅱ |
35 | 澄利马拉 | 意大利 | 0.34 | Ⅱ | 77 | Pacific Blue Stem | 未知来源 | 0.45 | Ⅱ |
36 | 卡培蒂 | 意大利 | 0.46 | Ⅱ | 78 | Premorsky | 未知来源 | 0.28 | Ⅲ |
37 | 吉尔吉奥 449 | 意大利 | 0.44 | Ⅱ | 79 | Primorskaja 1130 | 未知来源 | 0.34 | Ⅱ |
38 | 季拉多 593 | 意大利 | 0.43 | Ⅱ | 80 | Purora | 未知来源 | 0.22 | Ⅲ |
39 | 季拉多 522 | 意大利 | 0.35 | Ⅱ | 81 | Par | 未知来源 | 0.08 | Ⅳ |
40 | 季拉多 533 | 意大利 | 0.29 | Ⅲ | 82 | Bob white"s" | 未知来源 | 0.43 | Ⅱ |
41 | 季拉多 572 | 意大利 | 0.31 | Ⅲ | 83 | Maya 74 | 未知来源 | 0.45 | Ⅱ |
42 | 濑户小麦 | 日本 | 0.69 | Ⅰ |
处理 Treatment | 性状 Trait | 总根长 TRL (cm) | 根表面积 SA (cm2) | 根体积 RV (cm3) | 根平均 直径 RD (mm) | 根尖数 RTN (个) | 最长根长 MRL (cm) | 根鲜重 RFW (mg) | 根干重 RDW (mg) |
---|---|---|---|---|---|---|---|---|---|
对照 Control | 均值Mean | 212.78 | 35.52 | 0.73 | 0.61 | 191.31 | 20.18 | 125.59 | 13.06 |
最小值Min. | 87.02 | 13.95 | 0.19 | 0.39 | 48.33 | 12.15 | 65.33 | 6.67 | |
最大值Max | 421.79 | 67.17 | 1.95 | 0.97 | 397.67 | 28.19 | 209.00 | 45.50 | |
标准差SD | 60.56 | 9.17 | 0.27 | 0.12 | 72.57 | 3.43 | 30.24 | 5.30 | |
变异系数CV(%) | 28.46 | 25.80 | 37.17 | 19.24 | 37.94 | 16.99 | 24.08 | 40.56 | |
PEG 胁迫 PEG stress | 均值Mean | 93.93 | 17.97 | 0.48 | 0.85 | 54.49 | 15.91 | 73.61 | 9.75 |
最小值Min. | 55.48 | 9.61 | 0.18 | 0.46 | 17.17 | 9.90 | 34.33 | 4.00 | |
最大值Max | 175.35 | 34.96 | 1.44 | 1.39 | 208.33 | 22.66 | 139.89 | 17.33 | |
标准差SD | 21.86 | 4.78 | 0.23 | 0.19 | 30.20 | 2.42 | 20.65 | 2.53 | |
变异系数CV(%) | 23.27 | 26.61 | 47.98 | 22.15 | 55.42 | 15.23 | 28.05 | 25.96 | |
较对照变化 Comparison with the control | 均值Mean | -118.85 | -17.55 | -0.25 | 0.23 | -136.82 | -4.27 | -51.98 | -3.32 |
变异系数CV(%) | -5.19 | 0.81 | 10.81 | 2.91 | 17.49 | -1.76 | 3.97 | -14.60 | |
t 值 t-value | -19.56** | -19.74** | -9.92** | 11.24** | -19.29** | -12.88** | -19.01** | -6.06** |
Tab.2 The performance of different wheat traits under PEG stress
处理 Treatment | 性状 Trait | 总根长 TRL (cm) | 根表面积 SA (cm2) | 根体积 RV (cm3) | 根平均 直径 RD (mm) | 根尖数 RTN (个) | 最长根长 MRL (cm) | 根鲜重 RFW (mg) | 根干重 RDW (mg) |
---|---|---|---|---|---|---|---|---|---|
对照 Control | 均值Mean | 212.78 | 35.52 | 0.73 | 0.61 | 191.31 | 20.18 | 125.59 | 13.06 |
最小值Min. | 87.02 | 13.95 | 0.19 | 0.39 | 48.33 | 12.15 | 65.33 | 6.67 | |
最大值Max | 421.79 | 67.17 | 1.95 | 0.97 | 397.67 | 28.19 | 209.00 | 45.50 | |
标准差SD | 60.56 | 9.17 | 0.27 | 0.12 | 72.57 | 3.43 | 30.24 | 5.30 | |
变异系数CV(%) | 28.46 | 25.80 | 37.17 | 19.24 | 37.94 | 16.99 | 24.08 | 40.56 | |
PEG 胁迫 PEG stress | 均值Mean | 93.93 | 17.97 | 0.48 | 0.85 | 54.49 | 15.91 | 73.61 | 9.75 |
最小值Min. | 55.48 | 9.61 | 0.18 | 0.46 | 17.17 | 9.90 | 34.33 | 4.00 | |
最大值Max | 175.35 | 34.96 | 1.44 | 1.39 | 208.33 | 22.66 | 139.89 | 17.33 | |
标准差SD | 21.86 | 4.78 | 0.23 | 0.19 | 30.20 | 2.42 | 20.65 | 2.53 | |
变异系数CV(%) | 23.27 | 26.61 | 47.98 | 22.15 | 55.42 | 15.23 | 28.05 | 25.96 | |
较对照变化 Comparison with the control | 均值Mean | -118.85 | -17.55 | -0.25 | 0.23 | -136.82 | -4.27 | -51.98 | -3.32 |
变异系数CV(%) | -5.19 | 0.81 | 10.81 | 2.91 | 17.49 | -1.76 | 3.97 | -14.60 | |
t 值 t-value | -19.56** | -19.74** | -9.92** | 11.24** | -19.29** | -12.88** | -19.01** | -6.06** |
性状 Trait | 总根长 抗旱系数 DCTRL (cm) | 根表面积 抗旱系数 DCSA (cm2) | 根体积 抗旱系数 DCRV (cm3) | 根平均直径 抗旱系数 DCRD (mm) | 根尖数 抗旱系数 DCRTN (个) | 最长根长 抗旱系数 DCMRL (cm) | 根鲜重 抗旱系数 DCRF (mg) | 根干重 抗旱系数 DCRDW (mg) |
---|---|---|---|---|---|---|---|---|
总根长抗旱系数 DCTRL(cm) | 1.000 | |||||||
根表面积抗旱系数 DCSA(cm2) | 0.752** | 1.000 | ||||||
根体积抗旱系数 DCRV(cm3) | 0.420** | 0.855** | 1.000 | |||||
根平均直径抗旱系数 DCRD(mm) | -0.288** | 0.230* | 0.563** | 1.000 | ||||
根尖数抗旱系数 DCRTN(个) | 0.705** | 0.507** | 0.272* | -0.387** | 1.000 | |||
最长根长抗旱系数 DCMRL(cm) | 0.614** | 0.360** | 0.087 | -0.502** | 0.372** | 1.000 | ||
根鲜重抗旱系数 DCRFW(mg) | 0.670** | 0.656** | 0.469** | 0.026 | 0.422** | 0.330** | 1.000 | |
根干重抗旱系数 DCRDW(mg) | 0.526** | 0.504** | 0.346** | -0.040 | 0.346** | 0.279* | 0.671** | 1.000 |
Tab.3 Correlation analysis of drought resistance coefficients of root traits under PEG stress
性状 Trait | 总根长 抗旱系数 DCTRL (cm) | 根表面积 抗旱系数 DCSA (cm2) | 根体积 抗旱系数 DCRV (cm3) | 根平均直径 抗旱系数 DCRD (mm) | 根尖数 抗旱系数 DCRTN (个) | 最长根长 抗旱系数 DCMRL (cm) | 根鲜重 抗旱系数 DCRF (mg) | 根干重 抗旱系数 DCRDW (mg) |
---|---|---|---|---|---|---|---|---|
总根长抗旱系数 DCTRL(cm) | 1.000 | |||||||
根表面积抗旱系数 DCSA(cm2) | 0.752** | 1.000 | ||||||
根体积抗旱系数 DCRV(cm3) | 0.420** | 0.855** | 1.000 | |||||
根平均直径抗旱系数 DCRD(mm) | -0.288** | 0.230* | 0.563** | 1.000 | ||||
根尖数抗旱系数 DCRTN(个) | 0.705** | 0.507** | 0.272* | -0.387** | 1.000 | |||
最长根长抗旱系数 DCMRL(cm) | 0.614** | 0.360** | 0.087 | -0.502** | 0.372** | 1.000 | ||
根鲜重抗旱系数 DCRFW(mg) | 0.670** | 0.656** | 0.469** | 0.026 | 0.422** | 0.330** | 1.000 | |
根干重抗旱系数 DCRDW(mg) | 0.526** | 0.504** | 0.346** | -0.040 | 0.346** | 0.279* | 0.671** | 1.000 |
主成分 Principal component | 初始特征值 Initial eigenvalue | 提取平方和载入 Extract the sum of squares and load | |||||||
---|---|---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 方差百分比 Percentage of variance (%) | 累积总方差贡献率 Cumulative total variance contribution rate(%) | 特征值 Eigenvalue | 方差百分比 Percentage of variance (%) | 累积总方差贡献率 Cumulative total variance contribution rate(%) | ||||
1 | 4.001 | 50.01 | 50.010 | 4.001 | 50.010 | 50.010 | |||
2 | 1.970 | 24.631 | 74.641 | 1.970 | 24.631 | 74.641 | |||
3 | 0.767 | 9.585 | 84.226 | ||||||
4 | 0.606 | 7.570 | 91.797 | ||||||
5 | 0.313 | 3.911 | 95.708 | ||||||
6 | 0.173 | 2.164 | 97.872 | ||||||
7 | 0.125 | 1.557 | 99.428 | ||||||
8 | 0.046 | 0.572 | 100 |
Tab.4 Eigenvalues of all factors and their contributions
主成分 Principal component | 初始特征值 Initial eigenvalue | 提取平方和载入 Extract the sum of squares and load | |||||||
---|---|---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 方差百分比 Percentage of variance (%) | 累积总方差贡献率 Cumulative total variance contribution rate(%) | 特征值 Eigenvalue | 方差百分比 Percentage of variance (%) | 累积总方差贡献率 Cumulative total variance contribution rate(%) | ||||
1 | 4.001 | 50.01 | 50.010 | 4.001 | 50.010 | 50.010 | |||
2 | 1.970 | 24.631 | 74.641 | 1.970 | 24.631 | 74.641 | |||
3 | 0.767 | 9.585 | 84.226 | ||||||
4 | 0.606 | 7.570 | 91.797 | ||||||
5 | 0.313 | 3.911 | 95.708 | ||||||
6 | 0.173 | 2.164 | 97.872 | ||||||
7 | 0.125 | 1.557 | 99.428 | ||||||
8 | 0.046 | 0.572 | 100 |
主成分 Principal component | 总根长 TRL (cm) | 根表面积 SA (cm2) | 根体积 RV (cm3) | 根平均直径 RD (mm) | 根尖数 RTN (个) | 最长根长 MRL (cm) | 根鲜重 RFW (mg) | 根干重 RDW (mg) |
---|---|---|---|---|---|---|---|---|
1 | 0.906 | 0.888 | 0.652 | -0.084 | 0.698 | 0.566 | 0.814 | 0.699 |
2 | -0.238 | 0.338 | 0.669 | 0.960 | -0.343 | -0.548 | 0.103 | 0.037 |
Tab.5 Initial factor loading matrix
主成分 Principal component | 总根长 TRL (cm) | 根表面积 SA (cm2) | 根体积 RV (cm3) | 根平均直径 RD (mm) | 根尖数 RTN (个) | 最长根长 MRL (cm) | 根鲜重 RFW (mg) | 根干重 RDW (mg) |
---|---|---|---|---|---|---|---|---|
1 | 0.906 | 0.888 | 0.652 | -0.084 | 0.698 | 0.566 | 0.814 | 0.699 |
2 | -0.238 | 0.338 | 0.669 | 0.960 | -0.343 | -0.548 | 0.103 | 0.037 |
抗旱类型 Drought- tolerance type | 品种数 No.of varieties | D值 D-Value | 频率 Frequency (%) |
---|---|---|---|
Ⅰ | 5 | 0.65 | 6.02 |
Ⅱ | 37 | 0.42 | 44.58 |
Ⅲ | 33 | 0.26 | 39.76 |
Ⅳ | 8 | 0.13 | 9.64 |
总计Total | 83 | 100 |
Tab.6 Distribution frequency of drought resistance types based on cluster analysis of test materials
抗旱类型 Drought- tolerance type | 品种数 No.of varieties | D值 D-Value | 频率 Frequency (%) |
---|---|---|---|
Ⅰ | 5 | 0.65 | 6.02 |
Ⅱ | 37 | 0.42 | 44.58 |
Ⅲ | 33 | 0.26 | 39.76 |
Ⅳ | 8 | 0.13 | 9.64 |
总计Total | 83 | 100 |
[1] |
Shpiler L, Blum A. Differential reaction of wheat cultivars to hot environments[J]. Euphytica, 1986, 35(2): 483-492.
DOI URL |
[2] |
Shpiler L, Blum A. Heat tolerance for yield and its components in different wheat cultivars[J]. Euphytica, 1990, 51(3): 257-263.
DOI URL |
[3] |
Liu C Y, Yang Z Y, Hu Y G. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield[J]. Field Crops Research, 2015, 179: 103-112.
DOI URL |
[4] | El Fakhri M, Mahboub S, Benchekroun M, et al. Grain filling and stem accumulation effects on durum wheat (Triticum Durum L.) yield under drought[J]. Nature and Technology, 2012(7): 67-73. |
[5] | Pireivatlou A S, Yazdansepas A. Evaluation of wheat (Triticumaestivum L.) genotypes under pre-and post-anthesis drought stress conditions[J]. Journal of Agricultural Science and Technology, 2008, 10: 109-121. |
[6] | Dai A. Drought under global warming: A review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45-65. |
[7] | 赵海燕, 张文千, 邹旭恺, 等. 气候变化背景下中国农业干旱时空变化特征分析[J]. 中国农业气象, 2021, 42(1): 69-79. |
ZHAO Haiyan, ZHANG Wenqian, ZOU Xukai, et al. Analysis on the temporal and spatial characteristics of agricultural drought in China under the background of climate change[J]. Chinese Agricultural Meteorology, 2021, 42(1): 69-79. | |
[8] | 孔令文, 王旭, 荆海亮. 新疆干旱特征分析及防灾减灾措施[J]. 农业灾害研究, 2020, 10(1):43-44,67. |
KONG Lingwen, WANG Xu, JING Hailiang. Analysis of Xinjiang Drought Characteristics and Disaster Prevention and Mitigation Measures[J]. Agricultural Disaster Research, 2020, 10(1): 43-44,67. | |
[9] | 黄静, 张运, 汪明秀, 等. 近17年新疆干旱时空分布特征及影响因素[J]. 生态学报, 2020, 40(3):1077-1088. |
HUANG Jing, ZHANG Yun, WANG Mingxiu, et al. Spatial and temporal distribution characteristics and influencing factors of drought in Xinjiang in the past 17 years[J]. Acta Ecologica Sinica, 2020, 40(3):1077-1088. | |
[10] | 赵广才, 常旭虹, 王德梅, 等. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1-7. |
ZHAO Guangcai, CHANG Xuhong, WANG Demei, et al. Overview of wheat production and its development[J]. Crop Journal, 2018, (4): 1-7. | |
[11] | 陈坤, 张会金, 贾宝华, 等. 优质专用小麦生产概况[J]. 种业导刊, 2009,(4): 18-20. |
CHEN Kun, ZHANG Huijin, JIA Baohua, et al. Overview of production of high-quality special-purpose wheat[J]. Seed Industry Guide, 2009,(4): 18-20. | |
[12] | 王丹. 气候变化对中国粮食安全的影响与对策研究[D]. 武汉: 华中农业大学, 2009. |
WANG Dan. Research on the Impact of Climate Change on China’s Food Security and Countermeasures[D]. Wuhan: Huazhong Agricultural University, 2009. | |
[13] | 葛培, 郭广芳, 晏月明. 小麦抗旱机理研究进展[J]. 生物技术通报, 2010,(4): 22-27. |
GE Pei, GUO Guangfang, YAN Yueming. Research progress on drought resistance mechanism of wheat[J]. Biotechnology Bulletin, 2010,(4): 22-27. | |
[14] | 韩慧敏. 干旱胁迫及复水对小麦苗期生长的影响及其生理机理[D]. 南京: 南京农业大学, 2014. |
HAN Huimin. The effect of drought stress and rewatering on the growth of wheat seedlings and its physiological mechanism[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[15] | 段舜山, 谷文祥, 张大勇, 等. 半干旱地区小麦群体的根系特征与抗旱性的关系[J]. 应用生态学报, 1997, (2): 134-138. |
DUAN Shunshan, GU Wenxiang, ZHANG Dayong, et al. The relationship between root characteristics and drought resistance of wheat populations in semi-arid areas[J]. Chinese Journal of Applied Ecology, 1997, (2): 134-138. | |
[16] | 赵燕昊, 曹跃芬, 孙威怡, 等. 小麦抗旱研究进展[J]. 植物生理学报, 2016, 52(12): 1795-1803. |
ZHAO Yanhao, CAO Yuefen, SUN Weiyi, et al. Advances in research on drought resistance of wheat[J]. Plant Physiology Journal, 2016, 52(12): 1795-1803. | |
[17] | 吴珍. PEG 6000模拟干旱对兰黑粒小麦苗期生理特性的影响[J]. 陕西农业科学, 2016, 62(11): 9-12. |
WU Zhen. Effects of PEG 6000 simulated drought on physiological characteristics of blue-black wheat seedlings[J]. Shaanxi Agricultural Sciences, 2016, 62(11): 9-12. | |
[18] | 李凤珍, 马晓岗. PEG处理下青海栽培小麦萌发期及幼苗期抗旱性研究[J]. 中国农学通报, 2011, 27(21): 44-48. |
LI Fengzhen, MA Xiaogang. Research on drought resistance of Qinghai cultivated wheat at germination and seedling stage under PEG treatment[J]. Chinese Agricultural Science Bulletin, 2011, 27(21): 44-48. | |
[19] |
赵佳佳, 乔玲, 武棒棒, 等. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
DOI |
ZHAO Jiajia, QIAO Ling, WU Bangbang, et al. Root characteristics and drought resistance characteristics of wheat seedling in Shanxi Province[J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
DOI |
|
[20] | 王瑾, 刘桂茹, 杨学举. PEG胁迫下小麦再生植株根系特性与抗旱性的关系[J]. 麦类作物学报, 2006(3): 117-119. |
WANG Jin, LIU Guiru, YANG Xueju. The relationship between root characteristics and drought resistance of wheat regenerated plants under PEG stress[J]. Journal of Triticeae Crops, 2006(3): 117-119. | |
[21] | 张灿军, 冀天会, 杨子光, 等. 小麦抗旱性鉴定方法及评价指标研究鉴定方法及评价指标[J]. 中国农学通报, 2007(9): 226-230. |
ZHANG Canjun, JI Tianhui, YANG Ziguang, et al. Research on identification methods and evaluation indexes of wheat drought resistance[J]. Chinese Agricultural Science Bulletin, 2007(9): 226-230. | |
[22] | 汪妤, 李红霞, 张畅通. 小麦种质资源苗期抗旱性评价[J]. 中国科技论文, 2017, 12(12): 1364-1370. |
WANG Yu, LI Hongxia, ZHANG Changtong. Evaluation of drought resistance of wheat germplasm resources at seedling stage[J]. Chinese Science Paper, 2017, 12(12): 1364-1370. | |
[23] | 杜广悦, 李喜焕, 李文龙, 等. 河北省冬小麦品种苗期抗旱性鉴定及指标筛选[J]. 河北农业大学学报, 2013, 36(3): 1-7. |
DU Guangyue, LI Xihuan, LI Wenlong, et al. Drought resistance identification and index screening of winter wheat varieties in Hebei Province at seedling stage[J]. Journal of Hebei Agricultural University, 2013, 36(3): 1-7. | |
[24] | 张龙龙, 杨明明, 董剑, 等. 三个小麦新品种不同生育阶段抗旱性的综合评价[J]. 麦类作物学报, 2016, 36(4): 426-434. |
ZHANG Longlong, YANG Mingming, DONG Jian, et al. Comprehensive evaluation of drought resistance of three new wheat varieties at different growth stages[J]. Acta Triticeae Sinica, 2016, 36(4): 426-434. | |
[25] |
杨进文, 朱俊刚, 王曙光, 等. 用GGE双标图及隶属函数综合分析山西小麦地方品种抗旱性[J]. 应用生态学报, 2013, 24(4): 1031-1038.
PMID |
YANG Jinwen, ZHU Jungang, WANG Shuguang, et al. Comprehensive analysis of drought resistance of Shanxi wheat landraces with GGE double plot and membership function[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 1031-1038.
PMID |
|
[26] | GB /T21127-2007. 小麦抗旱性鉴定评价技术规范[S]. |
GB /T21127-2007. Technical specifications for identification and evaluation of wheat drought resistance[S]. | |
[27] | 杨婉君. 小麦苗期抗旱性的GWAS分析及综合评价[D]. 泰安: 山东农业大学, 2020. |
YANG Wanjun. GWAS analysis and comprehensive evaluation of drought resistance in wheat seedling stage[D]. Tai’an: Shandong Agricultural University, 2020. | |
[28] | 胡雯媚, 王思宇, 樊高琼, 等. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选[J]. 麦类作物学报, 2016, 36(2): 182-189. |
HU Wenmei, WANG Siyu, FAN Gaoqiong, et al. Drought resistance identification and index screening of wheat varieties at seedling stage in southwestern wheat regions[J]. Acta Triticeae Sinica, 2016, 36(2): 182-189. | |
[29] | 时晓磊, 严勇亮, 石书兵, 等. 小麦根部耐盐性状全基因组关联分析[J]. 植物遗传资源学报, 2021, 22(1):57-73. |
SHI Xiaolei, YAN Yongliang, SHI Shubing, et al. Whole genome association analysis of salt tolerance traits in wheat roots[J]. Journal of Plant Genetic Resources, 2021, 22(1): 57-73. | |
[30] | 冀天会. 小麦抗旱性鉴定评价指标比较研究[D]. 杨凌: 西北农林科技大学, 2006. |
JI Tianhui. Comparative Study on Evaluation Indexes of Wheat Drought Resistance[D]. Yangling: Northwest A&F University, 2006. | |
[31] | 程凯. 小麦苗期抗旱性的QTL分析和综合评价[D]. 泰安: 山东农业大学, 2012. |
CHENG Kai. QTL analysis and comprehensive evaluation of drought resistance in wheat seedling stage[D]. Tai’an: Shandong Agricultural University, 2012. | |
[32] | 李鲁华, 李世清, 翟军海, 等. 小麦根系与土壤水分胁迫关系的研究进展[J]. 西北植物学报, 2001,(1): 1-7. |
LI Luhua, LI Shiqing, ZHAI Junhai, et al. Research progress on the relationship between wheat root system and soil water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2001,(1): 1-7. | |
[33] | 单长卷. 水分胁迫对洛麦9133幼苗根系生长特征的影响[J]. 河南科技学院学报(自然科学版), 2010, 38(3): 8-11. |
SHAN Changjuan. Effects of Water Stress on Root Growth Characteristics of Luomai 9133 Seedlings[J]. Journal of Henan Institute of Science and Technology (Natural Science Ed.), 2010, 38(3): 8-11. | |
[34] | 李慧. 节节麦苗期抗旱性综合评价[D]. 雅安: 四川农业大学, 2014. |
LI Hui. Comprehensive evaluation of drought resistance of Jiejie wheat seedling stage[D]. Ya’an: Sichuan Agricultural University, 2014. | |
[35] | 王璐. 小麦RIL群体苗期抗旱性的QTL分析及综合评价[D]. 泰安: 山东农业大学, 2020. |
WANG Lu. QTL analysis and comprehensive evaluation of drought resistance of wheat RIL population at seedling stage[D]. Tai’an: Shandong Agricultural University, 2020. | |
[36] | 陈伟. 中国地方小麦抗旱相关性状关联分析[D]. 雅安: 四川农业大学, 2016. |
CHEN Wei. Association analysis of drought-resistance traits in Chinese local wheat[D]. Ya’an: Sichuan Agricultural University, 2016. | |
[37] | 李同花, 王笑, 蔡剑, 等. 不同小麦品种对干旱锻炼响应的综合评价[J]. 麦类作物学报, 2018, 38(1): 65-73. |
LI Tonghua, WANG Xiao, CAI Jian, et al. Comprehensive evaluation of the response of different wheat varieties to drought stress[J]. Acta Triticeae Sinica, 2018, 38(1): 65-73. | |
[38] | 刘新春. 小麦苗期抗旱相关形态指标的灰色关联度分析和Lr1基因在小麦骨干亲本衍生系的分布[D]. 雅安: 四川农业大学, 2010. |
LIU Xinchun. Grey correlation analysis of morphological indicators related to drought resistance in wheat seedling stage and the distribution of Lr1 gene in wheat backbone parental derived lines[D]. Ya’an: Sichuan Agricultural University, 2010. |
[1] | WANG Chunsheng, LI Jianfeng, ZHANG Yueqiang, FAN Zheru, WANG Zhong, GAO Xin, SHI Jia, ZHANG Hongzhi, WANG Lihong, XIA Jianqiang, WANG Fangping, ZHAO Qi. Study on genotypic differences of anther culture ability in mainly cultivated spring wheat varieties in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2081-2086. |
[2] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[3] | YUAN Yilin, YAN An, ZUO Xiaoxiao, HOU Zhengqing, ZHANG Zhenfei, XIAO Shuting, SUN Zhe, MA Mengqian, ZHAO Yuhang. Impact of reduced nitrogen fertilization combined with bio-organic fertilizer on spring wheat yield enhancement and soil enrichment [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1872-1882. |
[4] | LIU Xuhuan, YU Shan, LIU Yue, SHI Shubing. Comparative on the vigor differences of spring wheat seeds of different sizes [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1883-1887. |
[5] | YANG Mei, ZHAO Hongmei, Dilireba Xiamixiding, YANG Weijun, ZHANG Jinshan, HUI Chao. Effects of nitrogen fertilizer reduction and biochar application on population structure, photosynthetic characteristics and yield of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1582-1589. |
[6] | WANG Yizhao, YANG Qizhi, LIU Yuxiu, Alayi Nurkamali, Vladimir Shvidchenko, ZHANG Zhengmao. Evaluation of drought resistance of different Kazakhstan spring wheat at seeding stage under PEG-6000 stress [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1352-1360. |
[7] | ZHANG Hongzhi, WANG Lihong, SHI Jia, KONG Depeng, WANG Zhong, GAO Xin, LI Jianfeng, WANG Chunsheng, XIA Jianqiang, FAN Zheru, ZHANG Yueqiang. Effects of soil moisture on leaf protective enzyme activities and yield of spring wheat cultivars with different drought resistance [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1041-1047. |
[8] | Gulinigaer Tuerhong, ZHANG Jinshan, LI Dandan, ZHANG Lulu, WANG Runqi, SHI Shubing. Effects of different priming treatments on seed vigor and physiological characteristics of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 869-877. |
[9] | DONG Yanxue, JIA Yonghong, ZHANG Jinshan, LI Dandan, WANG Kai, LUO Siwei, WANG Runqi, SHI Shubing. Effects of different ecological conditions on dry matter accumulation and yield of spring wheat varieties [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1848-1857. |
[10] | LI Huaisheng, AI Hongyu, MENG Ling, WANG Heya, ZHANG Lei, AI Haifeng. Effects of chasing rate during peak nutrient uptake of transport under n Reduction on spring wheat [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1866-1872. |
[11] | JU Le, QI Juncang, CHEN Peiyu, NIU Yinting, YIN Zhigang. Effects of drought stress on seed germination, seedling growth and physiological characteristics of barley [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1879-1886. |
[12] | MAO Xiaofei, HUANG Shiping, YIN Fangliu, ZENG Youling. Prokaryotic expression of HcALDH7B4 gene enhanced salt tolerance and drought resistance [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2006-2012. |
[13] | BAI Ling, FENG Guojun, HU Xiangwei, ZHAO Yun, SHI Shubing. Drought resistance identification and physiological changes of different millet varieties during germination [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1630-1640. |
[14] | WANG Xingzhou, SHI Xiaolei, ZHANG Heng, QU Kejia, GENG Hongwei, DING Sunlei, ZHANG Jinbo, YAN Yongliang. Identification and evaluation of salt tolerance at germination stage of introduced spring wheat varieties [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1353-1362. |
[15] | LIU Xingyu, YUAN Jianyu, LI Guang, ZHANG Juan, XU Wanheng, ZHANG Xiaxia. Study on Spring Wheat Varieties and Fertilization Optimization in the Loess Plateau of Longzhong [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1398-1405. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||