Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (8): 2006-2012.DOI: 10.6048/j.issn.1001-4330.2023.08.022
• Plant Protection · Microbes • Previous Articles Next Articles
MAO Xiaofei(), HUANG Shiping, YIN Fangliu, ZENG Youling(
)
Received:
2022-11-05
Online:
2023-08-20
Published:
2023-08-14
Correspondence author:
ZENG Youling (1971- ), Female, Professor, Master adviser, Research direction is plant stress physiology and molecular mechanism, (E-mail)zeng_ylxju@126.comSupported by:
通讯作者:
曾幼玲(1971-),女,四川人,教授,博士生导师,研究方向植物的逆境生理和分子机制,(E-mail)zeng_ylxju@126.com作者简介:
毛晓菲(1995-),女,山西人,硕士研究生,研究方向为植物的逆境生理和分子机制,(E-mail)mao_xf@126.com
基金资助:
CLC Number:
MAO Xiaofei, HUANG Shiping, YIN Fangliu, ZENG Youling. Prokaryotic expression of HcALDH7B4 gene enhanced salt tolerance and drought resistance[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2006-2012.
毛晓菲, 黄世平, 银芳柳, 曾幼玲. 盐穗木HcALDH7B4基因的原核表达增强耐盐抗旱性[J]. 新疆农业科学, 2023, 60(8): 2006-2012.
Name | Primer | Primer sequence(5'-3') |
---|---|---|
qRT -PCR | RHcALDH7B4-P1 | GTGCTCCAACAACTCCATTG |
RHcALDH7B4-P2 | CCCTTGAACTGCCTGTGAAT | |
RHcactin-P1 | CCAAAGGCCAACAGAGAGAAGAT | |
RHcactin-P2 | TGAGACACACCATCACCAGAAT |
Tab.1 Primer sequence
Name | Primer | Primer sequence(5'-3') |
---|---|---|
qRT -PCR | RHcALDH7B4-P1 | GTGCTCCAACAACTCCATTG |
RHcALDH7B4-P2 | CCCTTGAACTGCCTGTGAAT | |
RHcactin-P1 | CCAAAGGCCAACAGAGAGAAGAT | |
RHcactin-P2 | TGAGACACACCATCACCAGAAT |
Fig.1 Characteristics of predicted protein of ALDH7B4 of Halostachys caspica Note:A, B:The hydrophobicity analysis and tertiary structure prediction of HcALDH7B4
Fig.3 The relative expression of HcALDH7B4 under salt and drought treatment Note: Different concentrations of NaCl treatment(A); 600 mmol/L NaCl treatment(B); Drought treatment at different times(C)
Fig.4 SDS-PAGE and western blot detection for transettas protein containing pET-28a-HcALDH7B4 Note: A: SDS-PAGE identification.M: Protein molecular weight marker; 1,3,5: Un-induced recombinant E.coli Transetta:: pET28a-HcALDH7B4; 2,4,6: induced recombinant E.coli Transetta:: pET28a-HcALDH7B4; 7, Un-induced control Transetta:: pET28a; 8: induced control Transetta:: pET28a.B: Western blot analysis.1,2,3: Un-induced recombinant E.coli Transetta:: pET28a-HcALDH7B4; 4,5,6: induced recombinant E.coli Transetta:: pET28a-HcALDH7B4; Total: total crude protein of cells; Ins: insoluble protein; Sol: soluble protein
Fig.6 Growth detection of E.coli strains under salt and drought stress Note: (A) Control; (B) 500 mmol/L NaCl stress; (C) 500 mmol/L KCl stress; (D) 500 mmol/L Mannitol stress; (E) 800 mmol/L Mannitol stress
[1] |
Bartels D. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?[J]. Trends in Plant Science, 2001, 6(7):284-286.
DOI PMID |
[2] |
Chen X, Zeng Q, Wood A J. The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family[J]. Journal of Plant Physiology, 2002, 159(7):677-684.
DOI URL |
[3] |
Kibbe D S, Liu F, Wen T J, et al. Charaterization of the aldehyde dehydrogenase gene families of Zeamays and Arabidopsis[J]. Plant Molecular Biology, 2002, 48: 751-764.
DOI URL |
[4] |
Buchman C D, Hurley T D. Inhibition of the Aldehyde Dehydrogenase 1/2 Family by Psoralen and Coumarin Derivatives[J]. Journal of Medicinal Chemistry, 2017, 60(6): 2439-2455.
DOI PMID |
[5] |
Stiti N, Giarola V, Bartels D. From algae to vascular plants: The multistep evolutionary trajectory of the ALDH superfamily towards functional promiscuity and the emergence of structural characteristics[J]. Environmental and Experimental Botany, 2021, 185:104376.
DOI URL |
[6] |
Konĉitíková R, Vigouroux A, Kopeĉná M, et al. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7[J]. Biochemical Journal, 2015, 468: 109-123.
DOI PMID |
[7] |
Zhao J Y, Missihoun T D, Dorothea B. The ATAF1 transcription factor is a key regulator of aldehyde dehydrogenase 7B4 (ALDH7B4) gene expression in Arabidopsis thaliana[J]. Planta, 2018, 248(4): 1017-1027.
DOI |
[8] |
Nakazono M, Tsuji H, Li Y, et al. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions[J]. Plant Physiology, 2000, 124(2):587-598.
PMID |
[9] | Xu X, Guo R, Cheng C, et al. Overexpression of ALDH2B8, an aldehyde dehydrogenase gene from grapevine, sustains Arabidopsis growth upon salt stress and protects plants against oxidative stress[J]. Plant Cell Tissue & Organ Culture, 2013, 114(2): 187-196. |
[10] |
Huang W, Ma X, Wang Q, et al. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays)[J]. Plant Molecular Biology, 2008, 68:451-463.
DOI PMID |
[11] | 黄世平, 戴玲玲, 宋策, 等. 盐穗木醛脱氢酶基因HcALDH7A1原核表达载体的构建及蛋白诱导表达与优化[J]. 新疆农业科学, 2015, 52(8): 1510-1516. |
HUANG Shiping, DAI Lingling, SONG Ce, et al. The Vector Construction and Prokaryotic Expression of Halostachys caspica Aldehyde Dehydrogenase Gene(HcALDH7A1)in E coli[J]. Xinjiang Agricultural Sciences, 2015, 52(8): 1510-1516. | |
[12] | 周涛, 王娟, 胡佳蕙, 等. 番茄转录因子基因SlWRKY6的克隆与原核表达分析[J]. 西北植物学报, 2020, 40(11):1824-1832. |
ZHOU Tao, WANG Juan, HU Jiahui, et al. Cloning and prokaryotic expression analysis of a WRKY transcription factor gene SlWRKY6 in solanumly copersicum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(11):1824-1832. | |
[13] |
Kirch H H, Bartels D, Wei Y L, et al. The ALDH gene superfamily of Arabidopsis[J]. Trends in Plant Science, 2004, 9(8): 371-377.
DOI URL |
[14] |
Liu F, Schnable P S. Functional specialization of maize mitochondrial aldehyde dehydrogenases[J]. Plant Physiology, 2002, 130(4): 1657-1674.
PMID |
[15] | Xia A, Duan F Y, Guo S, et al. Transcriptional Regulation of Expression of the Maize Aldehyde Dehydrogenase 7 Gene (ZmALDH7B6) in Response to Abiotic Stresses[J]. Journal of Integrative Agriculture, 2014, 9: 1900-1908. |
[16] |
Gao C X, Han B. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa)[J]. Gene, 2009, 431(1): 86-94.
DOI URL |
[17] |
Rodrigues S M, Andrade M O, Gomes A P S, et al. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress[J]. Journal of Experimental Botany, 2006, 57(9): 1909-1918.
PMID |
[18] |
Shin J H, Kim S R, An G. Rice aldehyde dehydrogenase7 is needed for seed maturation and viability[J]. Plant Physiology, 2009, 149(2): 905-915.
DOI URL |
[19] | 陈加敏, 朱承慧. 高粱耐逆基因SbALDH7的克隆与表达分析[J]. 中国农学报, 2013, 29(12): 62-68. |
CHEN Jiamin, ZHU Chenghui. Isolation and expressing analysis of a stress tolerance gene SbALDH7 in Sorghum bicolor[J]. Chinese Agricultural Science Bulletin, 2013, 29(12): 62-68. | |
[20] |
Kirch H H, Schlingensiepen S, Kotchoni S, et al. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana[J]. Plant Molecular Biology, 2005, 57(3): 315-332.
DOI URL |
[21] |
Gautam R, Ahmed I, Shukla P, et al. Genome-wide characterization of ALDH Superfamily in Brassica rapa and enhancement of stress tolerance in heterologous hosts by BrALDH7B2 expression[J]. Scientific Reports, 2019, 9(1): 7012-7025.
DOI |
[22] |
Gautam R, Rajesh K M, Woch N, et al. Ectopic expression of BrALDH7B2 gene encoding an antiquitin from Brassica rapa confers tolerance to abiotic stresses and improves photosynthetic performance under salt stress in tobacco[J]. Environmental and Experimental Botany, 2020, 180:104223.
DOI URL |
[1] | LI Min, MA Ying, Huercha , HE Wenwen, SHI Qianyun, Alimujiang Jiapaer, JIANG Qian, Bayinchahan . Expression of Dm86 Gene of Dermacenter Marginatus and Analysis of Immunogenicity [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2324-2332. |
[2] | Delinur Alimujiang, FENG Xiaoli, WANG Yan. Study of the Promoter properties of the HcSCL13 Gene for the Transcription Factor of Halostachys caspica (Bieb.) C. A. Mey. [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 990-1000. |
[3] | GONG Lintao, SU Xiujuan, YIN Songsong, SUN Minghui, YAN Bowen, Adilai Abdur aimu. Cloning, Expression Analysis and Prokaryotic Expression of Lavender DXS Gene [J]. Xinjiang Agricultural Sciences, 2020, 57(7): 1233-1242. |
[4] | WANG Min, LI Jiang, LI Peng, TIAN Jia, LUO Shuping. Cloning and Prokaryotic Expression of Almond AcDHN1 Gene [J]. Xinjiang Agricultural Sciences, 2020, 57(12): 2221-2229. |
[5] | WANG Peng-ju, HUANG Shi-ping, YANG Rui-rui, ZENG You-ling. Expression and Correlation Analysis of the Halophyte Halostachys caspica miR393b with Predictive Target Gene HcTIR1 under Salt Stress [J]. Xinjiang Agricultural Sciences, 2019, 56(4): 707-713. |
[6] | ZHANG Hui-zhen, HUANG Shi-ping, YANG Rui-rui, ZENG You-ling. Expression Pattern and Correlation Analysis of the Halophyte Halostachys Caspica miR167d with Predictive Target Gene ARF8 under Salt Stress [J]. Xinjiang Agricultural Sciences, 2018, 55(11): 2080-2088. |
[7] | YU Chang-jiang;QI Cheng-nian;ZHANG Yun-sheng;SHEN Ming;YANG Hua;YANG Yong-lin. Cloning, Prokaryotic Expression and Protein Identification of eIF3h Gene from Ovis aries [J]. , 2017, 54(2): 386-392. |
[8] | HUANG Shi-ping;DAI Ling-ling;SONG Ce;ZENG You-ling. The Vector Construction and Prokaryotic Expression of Halostachys caspica Aldehyde Dehydrogenase Gene (HcALDH7A1) in E.coli [J]. , 2015, 52(8): 1510-1516. |
[9] | ZHANG Kai;YAO Zheng-pei;ZHANG Hua;QU Yan-ying. The Prokaryotic Expression Analysis of CBF Genes in the two Early Spring Ephemeral Plants [J]. , 2015, 52(11): 2016-2022. |
[10] | ZHANG Qiang;CHEN Ying-jie;XIANG Ben-chun;ZHENG Yin-ying. Cloning and Prokaryotic Expression of Coat Protein Gene of Cucumber Mosaic Virus subgroup Ⅰ B Separated from Chilli Pepper in Xinjiang [J]. , 2014, 51(12): 2257-2261. |
[11] | LU Ya-zhou;SAI Fu-tao;LI Rong;LI Hong-bin. Cloning,Sequence Analysis and Prokaryotic Expression of Cotton GhGGPase cDNA [J]. , 2013, 50(6): 1008-1015. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||