Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (3): 615-622.DOI: 10.6048/j.issn.1001-4330.2024.03.011
• Horticultural Special Local Products • Previous Articles Next Articles
ZHANG Wei1(), YANG Guohui2, YU Hui1(
)
Received:
2023-07-19
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
YU Hui (1976-),male,from Qiqihar,Heilongjiang,associate professor,master,research direction: in watermelon planting resources and breeding,(E-mail)Supported by:
通讯作者:
于辉(1976- ),男,黑龙江齐齐哈尔人,副教授,硕士,西瓜种植资源及育种,(E-mail)作者简介:
张伟(1984- ),男,内蒙古包头人,讲师,硕士,研究方向园艺植物遗传育种,(E-mail)weizhang880310@126.com
基金资助:
CLC Number:
ZHANG Wei, YANG Guohui, YU Hui. Effects of 2,4-epibrassinolide on growth and related genes expression of watermelon seedlings under drought Stress[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 615-622.
张伟, 杨国慧, 于辉. 2,4-表油菜素内酯对干旱胁迫下西瓜幼苗生长及相关基因表达的影响[J]. 新疆农业科学, 2024, 61(3): 615-622.
西瓜基因 Watermelon gene | 同源基因名称 Homologous gene name | 引物序列(5'-3') Primer sequence(5'-3') | 基因功能 Gene function |
---|---|---|---|
Cla97C05G101410 | BRI1 | F:ATCTCCTCTCCCACCTTCCT R:CTTGCTCGGTAATCTCGCAC | BRI1激酶抑制剂 |
Cla97C07G136530 | BIN2 | F:GGTTGCCATTGGTGTTGTCT R:CCGACTGACCAAAGCTAACG | DNA结合蛋白 |
Cla97C08G158860 | BES1 | F:GACCTCAGCTCCATACTCCC R:GGTCAGCAGGTTTCACAAGG | BR信号转导 |
Cla97C09G163730 | DWF4 | F:AATTGTACCCGCGTATTGGC R:TACCCTGCTTCCCACCAAAA | 油菜素类固醇生物合成 |
Cla97C08G157590 | CDSP32 | F:TCCGACGGTGATAAAGCTGT R:TCTCCTTTACCGGACCCAAC | 硫氧还蛋白 |
Cla97C10G189540 | MYB101 | F:ACCACGCCGCAGTTAATTTT R:CTGGGTTGATGAAGGGAGGT | MYB相关转录因子 |
β-Actin | F:GTCGTACAACAGGTATTGTG R:AAGGTCCAGACGGAGGATAG | 内参基因 |
Tab.1 Information on drought resistance genes in watermelon
西瓜基因 Watermelon gene | 同源基因名称 Homologous gene name | 引物序列(5'-3') Primer sequence(5'-3') | 基因功能 Gene function |
---|---|---|---|
Cla97C05G101410 | BRI1 | F:ATCTCCTCTCCCACCTTCCT R:CTTGCTCGGTAATCTCGCAC | BRI1激酶抑制剂 |
Cla97C07G136530 | BIN2 | F:GGTTGCCATTGGTGTTGTCT R:CCGACTGACCAAAGCTAACG | DNA结合蛋白 |
Cla97C08G158860 | BES1 | F:GACCTCAGCTCCATACTCCC R:GGTCAGCAGGTTTCACAAGG | BR信号转导 |
Cla97C09G163730 | DWF4 | F:AATTGTACCCGCGTATTGGC R:TACCCTGCTTCCCACCAAAA | 油菜素类固醇生物合成 |
Cla97C08G157590 | CDSP32 | F:TCCGACGGTGATAAAGCTGT R:TCTCCTTTACCGGACCCAAC | 硫氧还蛋白 |
Cla97C10G189540 | MYB101 | F:ACCACGCCGCAGTTAATTTT R:CTGGGTTGATGAAGGGAGGT | MYB相关转录因子 |
β-Actin | F:GTCGTACAACAGGTATTGTG R:AAGGTCCAGACGGAGGATAG | 内参基因 |
处理 Treatment | 株高 Plant height (cm) | 根长 Root length (cm) | 地上鲜重 Fresh weight above ground (mg) | 地下鲜重 Fresh weigh underground (mg) | 地上干重 Dry weight above ground (mg) | 地下干重 Dry weight underground (mg) | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|
CK | 19.67±0.10c | 16.49±0.07c | 8.55±0.02b | 3.64±0.17b | 3.52±0.06b | 0.34±0.01b | 0.09±0.04a |
PEG | 18.49±0.05a | 11.27±0.03a | 7.27±0.03a | 3.02±0.02a | 2.78±0.09a | 0.26±0.01a | 0.10±0.03b |
PEG+EBR | 18.94±0.06b | 15.41±0.22b | 7.40±0.14a | 3.12±0.02a | 2.73±0.02a | 0.28±0.01a | 0.10±0.01b |
Tab.2 Effects of exogenous EBR on the biomass of watermelon seedlings under drought stress
处理 Treatment | 株高 Plant height (cm) | 根长 Root length (cm) | 地上鲜重 Fresh weight above ground (mg) | 地下鲜重 Fresh weigh underground (mg) | 地上干重 Dry weight above ground (mg) | 地下干重 Dry weight underground (mg) | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|
CK | 19.67±0.10c | 16.49±0.07c | 8.55±0.02b | 3.64±0.17b | 3.52±0.06b | 0.34±0.01b | 0.09±0.04a |
PEG | 18.49±0.05a | 11.27±0.03a | 7.27±0.03a | 3.02±0.02a | 2.78±0.09a | 0.26±0.01a | 0.10±0.03b |
PEG+EBR | 18.94±0.06b | 15.41±0.22b | 7.40±0.14a | 3.12±0.02a | 2.73±0.02a | 0.28±0.01a | 0.10±0.01b |
处理 Treatment | 净光合作用速率Pn Photosynthetic rate (μmol CO2/(m2·s)) | 气孔导度Gs Conductance to H2O (mmol/(m2·s)) | 胞间CO2浓度Ci Intercellular CO2 concentration(μL/L) | 蒸腾速率Tr Transpiration (mmol H2O/(m2·s)) | 叶绿素含量 Chlorophyll content (mg/g) |
---|---|---|---|---|---|
CK | 20.80±0.36c | 0.62±0.02c | 458.00±8.18a | 6.59±0.17b | 18.23±0.12a |
PEG | 13.03±0.21a | 0.27±0.03a | 504.00±7.21c | 4.96±0.18a | 21.50±0.06b |
PEG+EBR | 18.90±0.20b | 0.34±0.01b | 486.00±9.17b | 5.05±0.05a | 20.58±0.34b |
Tab.3 Effects of exogenous EBR on photosynthetic indexes of watermelon seedlings under drought stress
处理 Treatment | 净光合作用速率Pn Photosynthetic rate (μmol CO2/(m2·s)) | 气孔导度Gs Conductance to H2O (mmol/(m2·s)) | 胞间CO2浓度Ci Intercellular CO2 concentration(μL/L) | 蒸腾速率Tr Transpiration (mmol H2O/(m2·s)) | 叶绿素含量 Chlorophyll content (mg/g) |
---|---|---|---|---|---|
CK | 20.80±0.36c | 0.62±0.02c | 458.00±8.18a | 6.59±0.17b | 18.23±0.12a |
PEG | 13.03±0.21a | 0.27±0.03a | 504.00±7.21c | 4.96±0.18a | 21.50±0.06b |
PEG+EBR | 18.90±0.20b | 0.34±0.01b | 486.00±9.17b | 5.05±0.05a | 20.58±0.34b |
[1] |
Chandra P, Wunnava A, Verma P, et al. Strategies to mitigate the adverse effect of drought stress on crop plants—influences of soil bacteria: a Review[J]. Pedosphere, 2021, 31(3): 496-509.
DOI URL |
[2] | 何亚萍, 王春霞, 闫星, 等. 9份西瓜种质苗期抗旱性鉴定[J]. 中国瓜菜, 2020, 33(12): 14-21. |
HE Yaping, WANG Chunxia, YAN Xing, et al. Screening of drought resistance of nine watermelon germplasm at seedling stage[J]. China Cucurbits and Vegetables, 2020, 33(12): 14-21. | |
[3] | 贾斌, 高龙飞, 张卫华, 等. 西瓜苗期干旱胁迫下的代谢组学分析[J]. 分子植物育种, 2023, 21(21):7161-7170. |
JIA Bing, GAO Longfei, ZHANG Weihua, et al. Metabolomics analysis of watermelon seedlings under drought stress[J]. Molecular Plant Breeding, 2023, 21(21):7161-7170. | |
[4] |
Grove M D, Spencer G F, Rohwedder W K, et al. Brassinolide,a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728): 216-217.
DOI |
[5] | Sreeramulu S, Mostizky Y, Sunitha S, et al. BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis.[J]. Plant Journal for Cell & Molecular Biology, 2013, 74(6): 905-919. |
[6] |
Sharma I, Bhardwaj R, Pati P K. Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety pusa basmati-1[J]. Journal of Plant Growth Regulation, 2015, 34(3): 509-518.
DOI URL |
[7] | Li J, Yang P, Kang J G, et al. Transcriptome analysis of pepper (capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling[J]. Frontiers in Plant Science, 2016, 29(7):1281. |
[8] | 李启程, 余学军. 外源油菜素内酯对毛竹实生苗生理特性的影响[J]. 浙江农林大学学报, 2021, 38(1): 120-127. |
LI Qicheng, YU Xuejun. Effects of exogenous BR on physiological characteristics of phyllostachys edulis seedlings[J]. Journal of Zhejiang A&F University, 2021, 38(1): 120-127. | |
[9] | 胡勇军, 韩德复, 郭继勋. 油菜素内酯对羊草人工草地产量及其品质的影响[J]. 长春师范学院学报, 2007, 26(4): 61-64. |
HU Yongjun, HAN Defu, GUO Jixun. Effect of Brassinolide (BR) on the quality and the yield of leymus chinensis growing in the sown grassland[J]. Journal of Changchun Normal University, 2007, 26(4): 61-64. | |
[10] | 丁丹阳, 张璐翔, 朱智威, 等. 叶面喷施2,4-表油菜素内酯对烟草抗旱性的影响[J]. 中国烟草科学, 2018, 39(4): 50-57. |
DING Danyang, ZHANG Luxiang, ZHU Zhiwei, et al. Effect of leaf spray 2,4-epibrassinolide on drought resistance of tobacco[J]. Chinese Tobacco Science, 2018, 39(4): 50-57. | |
[11] |
雷阳, 乔宁, 白扬, 等. 表油菜素内酯对重度镉胁迫下辣椒幼苗生理特性及抗逆基因的影响[J]. 华北农学报, 2021, 36(5): 99-106.
DOI |
LEI Yang, QIAO Ning, BAI Yang, et al. Effects of Epibrassinolide on Physiological Characteristics and Resistance Genes of Pepper Seedlings under Severe Cadmium Stress[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 99-106. | |
[12] |
Xia X J, Wang Y J, Zhou Y H, et al. Reactive Oxygen Species Are Involved in Brassinosteroid-induced Stress Tolerance in Cucumber[J]. Plant Physiology, 2009, 150(2): 801-814.
DOI URL |
[13] |
Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry, 2009, 47(1): 1-8.
DOI PMID |
[14] | 范小玉, 张显. 油菜素内酯对低温弱光胁迫下西瓜幼苗耐冷性的影响[J]. 北方园艺, 2012,(7): 5-8. |
FAN Xiaoyu, ZHANG Xian. The effect of brassinolide on chilling resistance of watermelon seedlings under low temperature and poor light stress[J]. Northern Horticulture, 2012,(7): 5-8. | |
[15] |
Sakamoto T, Morinaka Y, Ohnishi T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology, 2006, 24(1): 105-109.
DOI PMID |
[16] |
Chono M, Honda I, Zeniya H, et al. A semi dwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteriod receptor.[J]. Plant Physiology, 2003, 133(3):1209-1219.
DOI URL |
[17] |
Kir G, Ye H X, Nelissen H, et al. RNA interference knockdown of brassinosteroid insensitive1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiology, 2015, 169(1):826-839.
DOI PMID |
[18] |
Montoya T, Nomura T, Farrar K, et al. Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase Tbri1/sr160 in plant steroid hormone and peptide hormone signaling[J]. Plant Cell, 2002, 14(12): 3163-3176.
DOI PMID |
[19] |
Kim S Y, Kim B H, Lim C J, et al. Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold[J]. Physiologia Plantarum, 2010, 138(2): 191-204.
DOI URL |
[20] |
Martins S, Dohmann E M N, Cayrel A, et al. Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination[J]. Nature Communications, 2015, 6: 6151.
DOI PMID |
[21] |
Goddard R, Peraldi A, Ridout C, et al. Enhanced disease resistance caused by bri1 mutation is conserved between brachypodium distachyon and barley (hordeum Vulgare).[J]. Molecular Plant Microbe Interactions: MPMI, 2014, 27(10):1095-1106.
DOI URL |
[22] | 王斐, 何伟, 闫海芳. 油菜素甾醇信号转导的调控机制[J]. 植物生理学报, 2013, 49(12): 1309-1318. |
WANG Fei, HE Wei, YAN Haifang. Regulation mechanism of brassinosteroids signal transduction[J]. Plant Physiology Journal, 2013, 49(12): 1309-1318. | |
[23] |
Yang J N, Thames S, Best N B, et al. Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in setaria viridis[J]. Plant Cell, 2018, 30(1):48-66.
DOI URL |
[24] |
Yin Y H, Wang Z Y, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2):181-191.
DOI PMID |
[25] |
Bancoş S Nomura T, Sato T, et al. Regulation of transcript levels of the arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis[J]. Plant Physiology, 2002, 130(1): 504-513.
DOI PMID |
[26] |
Eymery F, Rey P. Immunocytolocalization of CDSP 32 and CDSP 34,two chloroplastic drought-induced stress proteins in solanum tuberosum plants[J]. Plant Physiology and Biochemistry, 1999, 37(4): 305-312.
DOI URL |
[27] |
Broin M, Cuiné S, Eymery F, et al. The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage[J]. The Plant Cell, 2002, 14(6): 1417-1432.
DOI URL |
[28] |
Zhang F G, Xiao X, Yan G X, et al. Association mapping of cadmium-tolerant QTLs in Brassica Napus L.and insight into their contributions to phytoremediation[J]. Environmental and Experimental Botany, 2018, 155: 420-428.
DOI URL |
[29] |
An R, Liu X Y, Wang R, et al. The over-expression of two transcription factors,ABS5/BHLH30 and ABS7/MYB101,leads to upwardly curly leaves[J]. Plos One, 2014, 9(9):e107637.
DOI URL |
[30] |
Gong H J, Zhu X Y, Chen K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought[J]. Plant Science, 2005, 169(2):313-321.
DOI URL |
[31] |
Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress[J]. Plant Physiology, 2003, 132(3):1335-1343.
PMID |
[32] |
Guo S G, Shu H G, Zhang H Y, et al. Comparative transcriptome analysis of cultivated and wild watermelon during fruit development[J]. Plos One, 2015, 10(6):e0130267.
DOI URL |
[33] | 樊正球. 干旱环境胁迫下的植物分子适应机理及其应用研究[D]. 上海: 复旦大学, 2004. |
FAN Zhengqiu. Study on plant molecular adaptation to drought stress and its application[D]. Shanghai: Fudan University, 2004. | |
[34] | 赵小强, 任续伟, 张金乾, 等. 外源2,4-表油菜素内酯对干旱胁迫下青贮玉米幼苗生长和光合特性的影响[J]. 分子植物育种, 2023, 21(10),3371-3382. |
ZHAO Xiaoqiang, REN Xuwei, ZHANG Jinqian, et al. Effects of exogenous 2,4-epibrassinolide on growth and photosynthetic characteristics of Silage Maize Seedlings under drought stress[J]. Molecular Plant Breeding, 2023, 21(10),3371-3382. | |
[35] |
Choudhary S P, Yu J Q, Yamaguchi-Shinozaki K, et al. Benefits of Brassinosteroid Crosstalk[J]. Trends in Plant Science, 2012, 17(10):594-605.
DOI PMID |
[36] |
Clouse D, Sasse M. Brassionsteroids: Essential Regulators of Plant Growth and Development[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:427-451.
DOI URL |
[37] | 许金亮, 谢鹏飞, 向世鹏, 等. 喷施外源EBR和H2O2对低温胁迫烟苗恢复生长期生理特性的影响[J]. 中国烟草学报, 2022, 28(3):44-51. |
XU Jinliang, XIE Pengfei, XIANG Shipeng, et al. Effects of exogenous EBR and H2O2 on physiological characteristics of tobacco seedlings under low temperature stress[J]. Chinese Tobacco Science, 2022, 28(3):44-51. | |
[38] |
Mahesh K, Balaraju P, Ramakrishna B, et al. Effect of brassinosteroids on germination and seedling growth of radish (Raphanus SativusL.) under PEG-6000 induced water stress[J]. American Journal of Plant Sciences, 2013, 4(12): 2305-2313.
DOI URL |
[39] |
吴志勇, 顾红, 程大伟, 等. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报, 2022, 24(2): 68-76.
DOI |
WU Zhiyong, GU Hong, CHENG Dawei, et al. Advances in regulatory mechanism of brassinolide on plant root development[J]. Journal of Agricultural Science and Technology, 2022, 24(2): 68-76.
DOI |
|
[40] | 周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4): 499-511. |
ZHOU Ye, ZHAO Xuan, WANG Lu, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(4): 499-511.
DOI |
|
[41] |
Jia D D, Chen L G, Yin G M, et al. Brassinosteroids regulate outer ovule integument growth in part via the control of inner no outer by brassinozole-resistant family transcription factors[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1093-1111.
DOI URL |
[42] | 兰彩耘, 宋洪元. 超量表达DWF4基因对芥菜生长发育的影响[J]. 西南大学学报(自然科学版), 2021, 43(12): 26-37. |
LAN Caiyun, SONG Hongyuan. Effect of DWF4 Gene Overexpression on Growth and Development in Brassica juncea[J]. Journal of Southwest University (Natural Science Ed.), 2021, 43(12): 26-37. |
[1] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[2] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[3] | JU Le, QI Juncang, NIU Yinting, SHI Peichun, SONG Ruijiao, SONG Lingyu, YIN Zhigang, CHEN Peiyu, QIANG Xuelan. RNA-seq-based mining and analysis of drought-related genes in barley seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1077-1084. |
[4] | WANG Kaidi, GAO Chenxu, PEI Wenfeng, YANG Shuxian, ZHANG Wenqing, SONG Jikun, MA Jianjiang, WANG Li, YU Jiwen, CHEN Quanjia. Identification of TRM gene family and fiber quality related excellent haplotype analysis in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 521-536. |
[5] | CHENG Yunxia, TAN Zhanming, GUO Ling, LI Wenwen, DU Jiageng. Effects of different drought stresses on anatomical structure of roots, stems and leaves of two apricot varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2684-2692. |
[6] | SHAO Jiang, ZHAO Yun, HU Xiangwei, LIU Jie, Nasirula Keremu, SHI Shubing, FENG Guojun. Effects of drought stress on foxtail millet yield and dry matter accumulation in different periods [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2388-2395. |
[7] | WANG Xiaoyu, WANG Xiaoping, SHI Wenyu, LIU Meiyan, MA Jian, GUO Yunpeng, SONG Ruixin, WANG Qingtao. Responses of photosynthetic characteristics, dry matter accumulation and yield to drought stress in winter wheat at jointing stage [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2163-2172. |
[8] | XIANG Li, WANG Xian, DONG Yusheng, GUO Xiaoling, FANG Furong, CHEN Zhijun, MA Yanming, MIAO Yu. Effects of exogenous butyric acid on yield and quality of barley under drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2173-2181. |
[9] | Mierzhati Mutalifu, SHI Xiunan, BO Junbing, Zubaidai Abudukerimu, Wulejialehasi Azhati, SHI Shubing. Effects of different delinting modes on seed vigor and seedling characteristics of cotton under PEG stress [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1561-1568. |
[10] | SHAO Panxia, ZHAO Zhun, SHAO Wukui, HAO Xiaoyan, GAO Shengqi, LI Jianping, HU Wenran, HUANG Quansheng. Expression analysis of ZmCDPK22 gene in maize under drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1372-1378. |
[11] | JIANG Zhu, ZHANG Jianghui, BAI Yungang, YANG Pengnian, LIU Hongbo, XIAO Jun, LIU Xuhui. Effects of fertilizer and salt regulation on cotton growth and yield under plastic film drip irrigation [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1389-1397. |
[12] | TANG Dong, AN Yuguang, CHENG Ping, LI Hong, YANG Jianjun, WANG Kai. Responses of photosynthetic characteristics of typical shrubs in piedmont on the northern slope of tianshan mountains to drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1531-1539. |
[13] | LIU Yanchen, LIU Zhigang, BAI Xinhui, QIAO Peng, XU Cheng, BAI Huiming, ZHANG Juan. The effect of vermiculite compound matrix on pepper seedling cultivation [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1190-1199. |
[14] | TANG Bihui, ZHANG Lihua, LI Haiying, ZHANG Chong, JIANG Tinghao, ZHAO Xiaoyu, JIANG Teng, DING Yawen, WU Yingping, ZHAO Quanzhuang. A comparative study on reproductive performance, serum hormone levels and gene expression between Yili goose and hortobágy goose [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1271-1280. |
[15] | SHANG Jing, PANG Hongbo, WANG Lanlan, LI Xuemei, WANG Yanqiu, LI Yueying. Study on the relationship between auxin and sorghum heterosis [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 841-846. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||