Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (4): 992-1002.DOI: 10.6048/j.issn.1001-4330.2023.04.025
• Prataculture·Plant Protection·Animal Husbandry Veterinarian·Agricultural Eeconomy • Previous Articles Next Articles
CHENG Lihua1,2(), YANG Honglan2(
), MA Qingqian1, SHI Ying3, ZHANG Dawei4, Alisher A. Abdullaev5, ZHANG Daoyuan2(
)
Received:
2022-08-19
Online:
2023-04-20
Published:
2023-05-06
Correspondence author:
ZHANG Daoyuan(1973-), female, researcher. Her research interest is resource conservation and molecular biology in arid region, (E-mail)Supported by:
程利华1,2(), 杨红兰2(
), 马清倩1, 史莹3, 张大伟4, Alisher A. Abdullaev5, 张道远2(
)
通讯作者:
张道远(1973-),女,安徽合肥人,研究员,研究方向为干旱区资源保育与分子生物学,(E-mail)作者简介:
程利华(1995-),女,河南商丘人,硕士研究生,研究方向为植物分子育种,(E-mail)chenglh5258@163.com
基金资助:
CLC Number:
CHENG Lihua, YANG Honglan, MA Qingqian, SHI Ying, ZHANG Dawei, Alisher A. Abdullaev, ZHANG Daoyuan. Physiological identification and analysis of Verticillium wilt resistance of 10 foreign cotton germplasm resources[J]. Xinjiang Agricultural Sciences, 2023, 60(4): 992-1002.
程利华, 杨红兰, 马清倩, 史莹, 张大伟, Alisher A. Abdullaev, 张道远. 陆地棉种质黄萎病抗性生理鉴定分析[J]. 新疆农业科学, 2023, 60(4): 992-1002.
编号 Code | 原名称 Original name | 来源国家 Original country |
---|---|---|
03804 | Ryad 285 | 土库曼斯坦 |
04219 | Acal Shafter P18C | 美国 |
04841 | Qalla lot 361 | 澳大利亚 |
05160 | Lightning express | 阿塞拜疆 |
05189 | Acala India | 阿塞拜疆 |
A-1139 | C-1211 | 乌兹别克斯坦 |
A-6 | no name | 秘鲁 |
A-688 | Chimbayski 1086 | 乌兹别克斯坦 |
A-91 | #4F Upland | 美国 |
A-924 | C-1472 | 乌兹别克斯坦 |
Tab.1 Information of cotton germplasm resources
编号 Code | 原名称 Original name | 来源国家 Original country |
---|---|---|
03804 | Ryad 285 | 土库曼斯坦 |
04219 | Acal Shafter P18C | 美国 |
04841 | Qalla lot 361 | 澳大利亚 |
05160 | Lightning express | 阿塞拜疆 |
05189 | Acala India | 阿塞拜疆 |
A-1139 | C-1211 | 乌兹别克斯坦 |
A-6 | no name | 秘鲁 |
A-688 | Chimbayski 1086 | 乌兹别克斯坦 |
A-91 | #4F Upland | 美国 |
A-924 | C-1472 | 乌兹别克斯坦 |
试剂 Reagent | 使用量 Usage(μL) |
---|---|
SYBR PremixEx TAqTMⅡ(TliRNAseHPlus) | 10 |
PCR-ForwArd Primer(10 μM) | 0.5 |
PCR-Reverse Primer(10 μM) | 0.5 |
DNA溶液 | 2.0 |
灭菌水 | 7.0 |
Total | 20 |
Tab.2 Real time PCR system
试剂 Reagent | 使用量 Usage(μL) |
---|---|
SYBR PremixEx TAqTMⅡ(TliRNAseHPlus) | 10 |
PCR-ForwArd Primer(10 μM) | 0.5 |
PCR-Reverse Primer(10 μM) | 0.5 |
DNA溶液 | 2.0 |
灭菌水 | 7.0 |
Total | 20 |
Fig.1 Dynamic phenotype observation of cotton seedlings at 0 d and 14 d after inoculation with Verticillium dahliae Kleb(bacterial solution 107CFU/mL)
Fig.2 Verticillium wilt disease index of indoor and diseased fields Note: (a) Verticillium wilt disease index of indoor cotton seedlings exposed to R. dahliae for 14 days, (b) Disease index of Daejeon;CK:the control group, T: the treatment group; Different letters (a, b...) It means that there were significant differences among all quality groups at 0.05 level, P<0.05, the same as below
Fig.3 Real-time PCR analysis of bacterial content in leaves of cotton Note: (a)Real-time PCR analysis of V. dahliae content in leaves after 14 days post inoculation of Verticillium dahliae Kleb (b) Real-time PCR scale-up
Fig.4 Physiological and biochemical indexes of 10 cotton seedlings at 14 days after inoculation of Verticillium dahliae Kleb Note: CK:the control group, T: the treatment group; "*" "**" respectively represent P < 0.05 and P < 0.01 within germplasm group, the same as below
项目 Item | 丙二醛含量 MDA content | 过氧化氢含量 H2O2 content | 苯丙氨酸 解氨酶活性 PAL activity | 木质素含量 Lignin content | 游离脯氨酸含量 PRO content | 发病率 Incidencet |
---|---|---|---|---|---|---|
过氧化氢含量 H2O2 content | 0.833** | |||||
苯丙氨酸解氨酶活性 PAL activity | 0.782** | 0.954** | ||||
木质素含量 Lignin content | -0.454 | -0.638* | -0.615 | |||
游离脯氨酸含量 PRO content | 0.383 | 0.134 | 0.17 | -0.129 | ||
发病率 Incidence | 0.639* | 0.813** | 0.839** | -0.829** | 0.367 | |
含菌量 Bacterial content | -0.322 | 0.109 | 0.013 | -0.333 | -0.25 | 0.283 |
Tab.3 Correlation coefficient matrix of cotton Verticillium wilt resistance index
项目 Item | 丙二醛含量 MDA content | 过氧化氢含量 H2O2 content | 苯丙氨酸 解氨酶活性 PAL activity | 木质素含量 Lignin content | 游离脯氨酸含量 PRO content | 发病率 Incidencet |
---|---|---|---|---|---|---|
过氧化氢含量 H2O2 content | 0.833** | |||||
苯丙氨酸解氨酶活性 PAL activity | 0.782** | 0.954** | ||||
木质素含量 Lignin content | -0.454 | -0.638* | -0.615 | |||
游离脯氨酸含量 PRO content | 0.383 | 0.134 | 0.17 | -0.129 | ||
发病率 Incidence | 0.639* | 0.813** | 0.839** | -0.829** | 0.367 | |
含菌量 Bacterial content | -0.322 | 0.109 | 0.013 | -0.333 | -0.25 | 0.283 |
成分 Component | 特征值 Eigen value | 贡献率 Contribution rate (%) | 累计贡献率 Cumulative contribution rate(%) |
---|---|---|---|
1 | 4.457 | 64.951 | 64.951 |
2 | 1.427 | 20.386 | 85.337 |
3 | 0.56 | 8.005 | 93.342 |
4 | 0.381 | 5.442 | 98.784 |
5 | 0.054 | 0.765 | 99.550 |
6 | 0.025 | 0.357 | 99.906 |
7 | 0.007 | 0.094 | 100 |
Tab.4 Characteristic values, contribution andcumulative contribution of each comprehensive index of cotton after Verticillium wilt pathogen infection
成分 Component | 特征值 Eigen value | 贡献率 Contribution rate (%) | 累计贡献率 Cumulative contribution rate(%) |
---|---|---|---|
1 | 4.457 | 64.951 | 64.951 |
2 | 1.427 | 20.386 | 85.337 |
3 | 0.56 | 8.005 | 93.342 |
4 | 0.381 | 5.442 | 98.784 |
5 | 0.054 | 0.765 | 99.550 |
6 | 0.025 | 0.357 | 99.906 |
7 | 0.007 | 0.094 | 100 |
主成分 Princial component | 丙二醛含量 MDA content | 过氧化氢含量 H2O2 content | 苯丙氨酸 解氨酶活性 PAL Activity | 木质素含量 Lignin content | 游离脯氨酸 含量 PRO content | 发病率 Incidence | 含菌量 Bacterial content |
---|---|---|---|---|---|---|---|
第一主成分 PC1 | 0.936 | 0.985 | -0.867 | 0.879 | -0.344 | 0.978 | 0.317 |
第二主成分 PC2 | -0.265 | 0.065 | -0.041 | 0.139 | 0.791 | 0.032 | 0.8 |
Tab.5 Principal component coefficients of each physiological index in cotton after Verticillium wilt pathogen infection
主成分 Princial component | 丙二醛含量 MDA content | 过氧化氢含量 H2O2 content | 苯丙氨酸 解氨酶活性 PAL Activity | 木质素含量 Lignin content | 游离脯氨酸 含量 PRO content | 发病率 Incidence | 含菌量 Bacterial content |
---|---|---|---|---|---|---|---|
第一主成分 PC1 | 0.936 | 0.985 | -0.867 | 0.879 | -0.344 | 0.978 | 0.317 |
第二主成分 PC2 | -0.265 | 0.065 | -0.041 | 0.139 | 0.791 | 0.032 | 0.8 |
品种(系) Variety(line) | Y1 | Y2 | U(X1) | U(X2) | D值 D value | 综合评价 Comprehensive evaluation |
---|---|---|---|---|---|---|
03804 | 5.330 | 0.020 | 1.000 | 0.437 | 0.866 | 抗 |
A-6 | 0.630 | 1.860 | 0.340 | 1.000 | 0.498 | 耐 |
05160 | 1.420 | -1.410 | 0.451 | 0.000 | 0.343 | 耐 |
A-91 | -0.580 | 1.240 | 0.170 | 0.810 | 0.323 | 耐 |
A-924 | -1.490 | 1.560 | 0.042 | 0.908 | 0.249 | 耐 |
A-688 | -0.140 | -0.510 | 0.232 | 0.275 | 0.242 | 耐 |
04219 | -0.590 | -0.720 | 0.169 | 0.211 | 0.179 | 敏 |
04841 | -1.530 | 0.160 | 0.037 | 0.480 | 0.143 | 敏 |
A-1139 | -1.260 | -0.830 | 0.074 | 0.177 | 0.099 | 敏 |
05189 | -1.790 | -1.380 | 0.000 | 0.009 | 0.002 | 敏 |
权重Weight | 0.761 | 0.239 |
Tab.6 Value of each comprehensive index(CI), index weight, U(Xj)and comprehensive evaluation value (D value) of cotton after Verticillium wilt pathogen infection
品种(系) Variety(line) | Y1 | Y2 | U(X1) | U(X2) | D值 D value | 综合评价 Comprehensive evaluation |
---|---|---|---|---|---|---|
03804 | 5.330 | 0.020 | 1.000 | 0.437 | 0.866 | 抗 |
A-6 | 0.630 | 1.860 | 0.340 | 1.000 | 0.498 | 耐 |
05160 | 1.420 | -1.410 | 0.451 | 0.000 | 0.343 | 耐 |
A-91 | -0.580 | 1.240 | 0.170 | 0.810 | 0.323 | 耐 |
A-924 | -1.490 | 1.560 | 0.042 | 0.908 | 0.249 | 耐 |
A-688 | -0.140 | -0.510 | 0.232 | 0.275 | 0.242 | 耐 |
04219 | -0.590 | -0.720 | 0.169 | 0.211 | 0.179 | 敏 |
04841 | -1.530 | 0.160 | 0.037 | 0.480 | 0.143 | 敏 |
A-1139 | -1.260 | -0.830 | 0.074 | 0.177 | 0.099 | 敏 |
05189 | -1.790 | -1.380 | 0.000 | 0.009 | 0.002 | 敏 |
权重Weight | 0.761 | 0.239 |
[1] | 石磊岩. 我国棉花黄萎病研究进展[J]. 棉花学报, 1995,(4):243-245, 251. |
SHI Leiyan. Advances in research on Verticillium wilt of cotton in China[J]. Cotton Science, 1995,(4):243-245, 251. | |
[2] | A. Aguado, B. De Los Santos, D. Gamane, et al. Gene effects for cotton-fiber traits in cotton plant (Gossypium hirsutum L.) under Verticillium conditions[J]. Field Crops Research, 2009, 116(3): |
[3] | 张兴华, 李捷. 棉黄萎病发生和研究进展[J]. 江西农业学报, 2006,(1):99-104. |
ZHANG Xinghua, LI Jie. Research Progress of Verticillium wilt in Cotton[J]. Acta Agriculturae Jiangxi, 2006,(1):99-104. | |
[4] | 李凤瑞, 史加亮, 杨秀凤. 棉花抗黄萎病研究进展及前景展望[J]. 山东农业科学, 2009,(9):57-59. |
LI Fengrui, SHI Jialiang, YANG Xiufeng. Avances y perspectivas de la resistencia del algodón al Verticillium[J]. Shandong Agricultural Sciences, 2009,(9):57-59. | |
[5] | 简桂良, 邹亚飞, 马存. 棉花黄萎病连年流行的原因及对策[J]. 中国棉花, 2003,(3):13-14. |
JIAN Guiliang, ZOU Yafei, MA Cun. Causes and Countermeasures of Verticillium wilt Epidemic in Cotton[J]. China Cotton, 2003,(3):13-14. | |
[6] |
崔淑芳, 李俊兰, 金卫平, 等. 棉花抗黄萎病种质资源的选育与鉴定[J]. 华北农学报, 2006,(S2):180-182.
DOI |
CUI Shufang, LI Junlan, JIN Weiping, et al. Breeding and identification of germplasm resources resistant to Verticillium wilt in cotton[J]. Acta Agriculturae Boreali-Sinica, 2006,(S2):180-182. | |
[7] | 邢宏宜, 贺道华, 易永华, 等. 陕西棉花抗枯黄萎病种质资源评价[J]. 中国农学通报, 2008,(10):222-227. |
XING Hongyi, HE Daohua, YI Yonghua, et al. Evaluation of germplasm resources for resistance to Verticillium wilt in cotton in Shaanxi[J]. Chinese Agricultural Science Bulletin, 2008,(10):222-227. | |
[8] | Wang Yiqin, Liang Chengzhen, Wu Shenjie, et al. Significant Improvement of Cotton Verticillium wilt Resistance by Manipulating the Expression of Gastrodia Antifungal Proteins.[J]. Molecular Plant, 2016, 9(10): |
[9] |
Zhao Y L, Zhou T T, Guo H S. Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca2+ Signaling Is Required for Plant Infection by Verticillium dahliae[J]. PLoS Pathogens, 2016, 12(7):e1005793.
DOI URL |
[10] |
Zhang Tao, Jin Yun, Zhao Jianhua, et al. Host-Induced Gene Silencing of the Target Gene in Fungal Cells Confers Effective Resistance to the Cotton Wilt Disease Pathogen Verticillium dahliae[J]. Molecular Plant, 2016, 9(6): 939-942.
DOI PMID |
[11] |
Zhang T, Zhao Y L, Zhao J H, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature Plants, 2016, 2(10):16153.
DOI PMID |
[12] |
Xu J, Xu X, Tian L, et al. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton[J]. Scientific Reports, 2016, 6:29022.
DOI |
[13] |
Zhang Z, Zhao J, Ding L, et al. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton[J]. Scientific Reports, 2016, 6(1):20773.
DOI |
[14] | 程红梅, 简桂良, 倪万潮, 等. 转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性[J]. 中国农业科学, 2005,(6):1160-1166. |
CHENG Hongmei, JIAN Guiliang, NI Wanchao, et al. Transgenic chitinase and β-1, 3-glucanase genes improve resistance of cotton to Fusarium wilt and Verticillium wilt[J]. Scientia Agricultura Sinica, 2005,(6):1160-1166. | |
[15] | Tohidfar M, Hossaini R, Bashir N S, et al. Enhanced resistance to Verticillium dahliae in transgenic cotton expressing an endochitinase gene from Phaseolus vulgaris[J]. Czech Journal of Genetics & Plant Breeding, 2012, 48(1):33-41. |
[16] |
吴家和, 张献龙, 罗晓丽, 等. 转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性[J]. 遗传学报, 2004,(2):183-188.
PMID |
WU Jiahe, ZHANG Xianlong, LUO X iaoli, et al. Effects of chitinase and glucanase genes on resistance to Verticillium wilt in cotton[J]. Acta Genetica Sinica, 2004,(2):183-188.
PMID |
|
[17] | Miss C. B.. Sulochana. B-Vitamins in root exudates of cotton[J]. Plant and Soil, 1962, 16(3): |
[18] | Yao Z, Badawi, et al. Overexpression of StRboh A in Arabidopsis thaliana enhances defense responses against Verticillium dahliae[J]. Physiological & Molecular Plant Pathology, 2015. |
[19] |
Zhang B, Tremousaygue D, Denancé D, et al. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis[J]. Plant Journal, 2015, 79(6):1009-1019.
DOI URL |
[20] |
Buhtz A, Witzel K, Strehmel N, et al. Perturbations in the Primary Metabolism of Tomato and Arabidopsis thaliana Plants Infected with the Soil-Borne Fungus Verticillium dahliae[J]. Plos One, 2015, 10(9):e0138242.
DOI URL |
[21] | Mo H, Wang X, Zhang Y, et al. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae[J]. Plant Journal, 2015, 83(6). |
[22] | 蒋明义, 郭绍川, 张学明. 氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J]. 植物生理学报, 1997,(4):347-352. |
JING Mingyi, GUO Shaochuan, ZHANG Xueming. Antioxidant effects of proline accumulation in rice seedlings under oxidative stress[J]. Plant Physiology Journal, 1997,(4):347-352. | |
[23] | 刘丽霞. 海岛棉抗黄萎病基因GbVe抗病机制研究[D]. 保定: 河北农业大学, 2013. |
LIU Lixia. Research on resistance mechanism of Verticillium wilt resistance gene GBVE in island cotton[D]. Baoding: Agricultural University of Hebei, 2013. | |
[24] | 王省芬, 马峙英. 一种新的棉花黄萎病抗性鉴定方法[J]. 棉花学报, 2002,(4):231-233. |
WANG Shengfen, MA Zhiying. A new method for identification of Verticillium wilt resistance in cotton[J]. Cotton Science, 2002,(4):231-233. | |
[25] | 郭秀华. 分子标记辅助聚合陆地棉不同抗黄萎病QTL材料创制与鉴定[D]. 南京: 南京农业大学, 2014. |
GUO Xiuhua. Development and identification of QTLs for resistance to Verticillium wilt in upland cotton (Gossypium hirsutum L.)[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[26] | 朱荷琴, 吴征彬, 邹奎, 等. 国家棉花品种区域试验抗枯黄萎病鉴定方法[J]. 中国棉花, 2007,(11):9-10. |
ZHU Heqin, WU Zhengbin, ZOU Kui, et al. Identification of resistance to Verticillium wilt in national cotton cultivars in regional tests[J]. China Cotton, 2007,(11):9-10. | |
[27] | 南英子. 实证分析中运用主成分分析法应注意的几个问题[J]. 统计与决策, 2009,(21):155-156. |
NAN Yingzi. Several problems in the application of principal component analysis in empirical analysis[J]. Statistics and Decision, 2009,(21):155-156. | |
[28] | 吴殿廷, 吴迪. 用主成分分析法作多指标综合评价应该注意的问题[J]. 数学的实践与认识, 2015, 45(20):143-150. |
WU Dianting, WU Di. Problems that should be paid attention to when using principal component analysis as multi-index comprehensive evaluation[J]. Mathematics in Practice and Theory, 2015, 45(20):143-150. | |
[29] | 何团结, 程福如, 江本利, 等. 棉花区试黄萎病田间调查抽样技术研究[J]. 中国棉花, 2010, 37(7):15-18. |
HE Tuanjie, CHENG Furu, JIANG Benli, et al. Study on sampling technique of Verticillium wilt in cotton field test[J]. China Cotton, 2010, 37(7):15-18. | |
[30] | 王瑞卿, 张旭, 王景怀, 等. 影响我国棉花黄萎病发生的综合因素分析[A]. 中国农学会棉花分会.中国棉花学会 2007年年会论文汇编[C].中国农学会棉花分会:中国农学会棉花分会, 2007. |
WANG Ruiqing, ZHANG Xu, WANG Jinghuai, et al. Analysis of comprehensive factors affecting cotton Verticillium wilt occurrence in China[A]. Cotton Branch of Chinese Society of Agronomic Society. Cotton Branch of Chinese Society of Agronomy: Cotton Branch of Chinese Society of Agronomy, 2007. | |
[31] | 李琼芳, 谭永久, 叶鹏盛, 等. 棉花抗枯、黄萎病性早期鉴定方法的研究[J]. 西南农业学报, 1994,(1):49-54. |
LI Qiongfang, TAN Yongjiu, YE Pengsheng, et al. Study on early Identification of Resistance to Blight and Verticillium wilt in Cotton[J]. Southwest China Journal of Agricultural Sciences, 1994, (1):49-54. | |
[32] |
Gayoso C, Pomar F, Novo-Uzal E, et al. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression[J]. BMC Plant Biology, 2010, 10(1):232-232.
DOI |
[33] |
Qiao Z, Dixon R A. Transcriptional networks for lignin biosynthesis: more complex than we thought[J]. Trends in Plant Science, 2011, 16(4):227-233.
DOI PMID |
[34] | Boudet A M. Lignins and lignification: Selected issues[J]. Plant Physiology & Biochemistry, 2000, 38(1-2):81-96. |
[35] | 宋喜贵, 佘小平. 植物体内过氧化氢的产生及其生理作用[J]. 连云港师范高等专科学校学报, 2010, 27(4):99-103. |
SONG Xigui, SHE Xiaoping. The Generation and the Role of Hydrogen Peroxide in Plant[J]. Journal of Lianyungang Teachers College, 2010, 27(4):99-103. | |
[36] | 陈贵, 胡文玉, 谢甫绨, 等. 提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J]. 植物生理学通讯, 1991,(1):44-46. |
CHEN Gui, HU Wenyu, XIE Fudi, et al. Solvent for Extracting Malondialdehyde in Plant as an Index of Senescence[J]. Plant Physiology Communications, 1991,(1):44-46. | |
[37] | 张江涛, 段光明, 于泽英. 苯丙氨酸解氨酶(PaL)与水稻抗稻瘟病的关系[J]. 植物生理学通讯, 1987,(6):34-37. |
ZHANG Jiangtao, DUAN Guangming, YU Zeying. Relationship between phenylalanine ammonia-lyase (PAL) and rice blast resistance[J]. Plant Physiology Communications, 1987,(6):34-37. | |
[38] | 侯丽娟, 李卫, 刘燕霞, 等. 棉花黄萎病菌毒素对棉花生化代谢的影响[J]. 西北农业学报, 2010, 19(12):63-67. |
HOU Lijuan, LI Wei, LIU Yanxia, et al. Effects of Verticillium dahliae toxin on cotton biochemical metabolism[J]. Acta Agriculturae Boreali-Occidentalia Sinica, 2010, 19(12):63-67. | |
[39] | 王玉, 刘维信, 孙令强, 等. 南瓜幼苗叶片感染白粉病菌后一些酶活性的变化[J]. 西北农业学报, 2009, 18(4):103-105. |
WANG Yu, LIU Weixin, SUN Lingqiang, et al. Effects of powdery mildew on the enzymatic activity of pumpkin seedlings[J]. Acta Agriculturae Boreali-Occidentalia Sinica, 2009, 18(4):103-105. | |
[40] | 全先庆, 张渝洁, 单雷, 等. 脯氨酸在植物生长和非生物胁迫耐受中的作用[J]. 生物技术通讯, 2007,(1):159-162. |
QUAN Xianqing, ZHANG Yujie, SHAN Lei, et al. Effects of proline on plant growth and Abiotic Stress tolerance[J]. Biotechnology Letters, 2007,(1):159-162. | |
[41] | 宋凤鸣, 郑重. 细胞壁羟脯氨酸和游离脯氨酸与棉花对枯萎病抗性的关系[J]. 植物生理学报, 1995,(3):235-241. |
SONG Fengming, ZHENG Zheng. Relationship between Cell Wall Hydroxyproline and Free ProLine and Resistance to Fusarium wilt of Cotton[J]. Plant Physiology Journal, 1995,(3):235-241. | |
[42] | 冯洁, 陈其煐, 石磊岩. 枯萎菌诱导棉花细胞壁富含羟脯氨酸糖蛋白积累与枯萎病抗性间的关系[J]. 植物病理学报, 1995,(2):133-138. |
FENG Jie, CHEN Qiying, SHI Leiyan. Effects of Fusarium oxysporum (Fu sarium oxysporum) on resistance to Fusarium oxysporum[J]. Chinese Journal of Plant Pathology, 1995,(2):133-138. | |
[43] | 王军, 周美学, 许如根, 等. 大麦耐湿性鉴定指标和评价方法研究[J]. 中国农业科学, 2007, 40(10):2145-2152. |
WANG Jun, ZHOU Meixue, XU Rugen, et al. Studies on Selecting Indices and Evaluation Methods for Barley's (Hordeum vulgare L.)Waterlogging Tolerance[J]. Scientia Agricultura Sinica, 2007, 40(10):2145-2152. | |
[44] | 赵晓军. 利用主成分分析法评价6个燕麦品种[J]. 养殖与饲料, 2020, 19(7):32-34. |
ZHAO Xiaojun. Evaluation of six oat varieties by principal component analysis[J]. Animals Breeding and Feed, 2020, 19(7):32-34. | |
[45] | 葛礼姣, 方馨妍, 张云月, 等. 菊花苗期氮高效品种资源筛选及氮效率评价体系建立[J]. 南京农业大学学报, 2021, 4(6): 2054-2062. |
GE Lijiao, FANG Xinyan, ZHANG Yunyue, et al. Screening of nitrogen efficient varieties and its assessment system construction at seedling stage of chrysanthemum[J]. Journal of Nanjing Agricultural University, 2021, 4(6): 2054-2062. |
[1] | ZHOU Xin, LIU Xuanfeng, JIANG Yuhan, ZHANG Haichun, YANG Yuxin, Yeerbdati Tiemuer, JIANG Yongxin, ZHANG Li. Current situation and development proposal of mechanized recovery and resource utilization of used mulch film in cotton fields in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 131-141. |
[2] | MIAO Hongping, WANG Xiaowei, TIAN Conghua, LI Zhi, ZHANG Yuxin, DAI Junsheng. Evolution characteristics and driving factors of cotton production and distribution in Tarim River basin [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 217-226. |
[3] | WANG Junduo, CUI Yujiang, LIANG Yajun, GONG Zhaolong, ZHENG Junyun, LI Xueyuan. Xinjiang cotton production advantageous regional layout scheme [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 60-69. |
[4] | ZHENG Juyun, GONG Zhaolong, LIANG Yajun, GENG Shiwei, SUN Fenglei, YANG ni, LI Xueyuan, WANG Junduo. Key technology model of machine-picked cotton production in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 70-74. |
[5] | LI Jie, LIU Jia, WANG Liang, ZHANG Na, YANG Yanlong, ZHENG Zipiao, WEI Xin, WANG Meng, ZHOU Zixin, YANG Ni, GONG Zhaolong, HOU Xianfei, HUANG Qixiu, Abudukadier kuerban, ZHANG Jipeng, CHANG Pengzhong. Current situation of transformation and application of scientific and technological achievements of "cotton, oil and sugar" [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 89-94. |
[6] | BIAN Qingyong, FU Yanbo, QI Tong, HUANG Jian, PU Shenghai, MENG Ajing, Halihashi Yibati. Study on influencing factors of cotton emergence and protection measures in saline-alkali land in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 95-100. |
[7] | LI Yongtai, GAO Axiang, LI Yanjun, ZHANG Xinyu. Effects of defoliants on the physiological characteristics of cotton varieties with different sensitivities [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2094-2102. |
[8] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[9] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[10] | HUANG Boxuan, LI Pengcheng, ZHENG Cangsong, SUN Miao, SHAO Jingjing, FENG Weina, PANG Chaoyou, XU Wenxiu, DONG Helin. Effects of different nitrogen inhibitors on growth, nitrogen utilization and yield of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2122-2131. |
[11] | WANG Chao, XU Wenxiu, LI Pengcheng, ZHENG Cangsong, SUN Miao, FENG Weina, SHAO Jingjing, DONG Helin. Response of cotton seedling growth and development to soil available potassium levels [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2132-2139. |
[12] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[13] | ZHANG Tingjun, LI Zihui, CUI Yujiang, SUN Xiaogui, CHEN Fang. Effects of microbial agents on cotton growth and soil physico-chemical properties [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2269-2276. |
[14] | DONG Zhiduo, XU Fei, FU Qiuping, HUANG Jian, QI Tong, MENG Ajing, FU Yanbo, Kaisaier Kuerban. Effects of different types of salt and alkali stress on cotton seed germination [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1831-1844. |
[15] | LAI Chengxia, YANG Yanlong, LI Chunping, Mayila Yusuyin, WANG Yan, YANG Dong, YANG Ni, GE Fengwei, WANG Penglong, MA Jun. Biological characteristics and chemical control of defoliating cotton Verticillium wilt [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2034-2042. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||