Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (12): 2933-2941.DOI: 10.6048/j.issn.1001-4330.2022.12.008
• Crop Genetics and Breeding · Cultivation Physiology · Germplasm Resources • Previous Articles Next Articles
GU Haitao, WANG Shanshan, XIE Huifang, HONG Luping, KONG Guangchao
Received:
2022-02-15
Online:
2022-12-20
Published:
2023-01-30
Correspondence author:
KONG Guangchao
Supported by:
谷海涛, 王珊珊, 谢慧芳, 侯路平, 孔广超
通讯作者:
孔广超
作者简介:
谷海涛(1994-),新疆人,硕士研究生,研究方向为六倍体小黑麦籽粒产量相关性状全基因组关联,(E-mail)1543274736@qq.com
基金资助:
CLC Number:
GU Haitao, WANG Shanshan, XIE Huifang, HONG Luping, KONG Guangchao. Genetic Diversity of 113 Hexaploid Winter Triticale Germplasms[J]. Xinjiang Agricultural Sciences, 2022, 59(12): 2933-2941.
谷海涛, 王珊珊, 谢慧芳, 侯路平, 孔广超. 113份六倍体冬性小黑麦种质遗传多样性[J]. 新疆农业科学, 2022, 59(12): 2933-2941.
编号 No | 名称 Source | Numb. |
---|---|---|
1 | 中国 | 39 |
2 | 俄罗斯 | 19 |
3 | 美国 | 18 |
4 | 瑞典 | 9 |
5 | 乌克兰 | 6 |
6 | 波兰 | 5 |
7 | 德国 | 5 |
8 | 日本 | 3 |
9 | 保加利亚 | 2 |
10 | 匈牙利 | 2 |
11 | 阿根廷 | 1 |
12 | 加拿大 | 1 |
13 | 罗马尼亚 | 1 |
14 | 瑞士 | 1 |
15 | 西班牙 | 1 |
合计 | 113 |
Table 1 Test material information
编号 No | 名称 Source | Numb. |
---|---|---|
1 | 中国 | 39 |
2 | 俄罗斯 | 19 |
3 | 美国 | 18 |
4 | 瑞典 | 9 |
5 | 乌克兰 | 6 |
6 | 波兰 | 5 |
7 | 德国 | 5 |
8 | 日本 | 3 |
9 | 保加利亚 | 2 |
10 | 匈牙利 | 2 |
11 | 阿根廷 | 1 |
12 | 加拿大 | 1 |
13 | 罗马尼亚 | 1 |
14 | 瑞士 | 1 |
15 | 西班牙 | 1 |
合计 | 113 |
性状 Trait | 最小值 Min | 最大值 Max | 平均值 Mean±SD | 变异系数 CV (%) | 多样性 指数H’ | 遗传力 H1 |
---|---|---|---|---|---|---|
单株籽粒产量Yield per plant(g) | 5.92 | 14.88 | 10.14±1.82 | 18.01 | 2.24 | 85.56 |
千粒重Thousand-grain weight (g) | 31.19 | 62.96 | 43.72±7.72 | 16.32 | 1.96 | 91.23 |
每穗粒数Grains per ear (粒) | 29.25 | 64.19 | 46.24±7.19 | 15.54 | 1.87 | 87.45 |
单株穗数Ears per plant (个) | 3.42 | 6.73 | 4.76±0.73 | 15.22 | 1.57 | 89.23 |
穗长Ear length (cm) | 7.14 | 16.54 | 11.40±1.32 | 11.58 | 1.65 | 88.32 |
粒长Grain length (mm) | 5.71 | 9.41 | 7.91±0.76 | 9.56 | 1.33 | 92.45 |
粒宽Grain width (mm) | 2.81 | 3.66 | 3.29±0.17 | 5.09 | 1.43 | 93.54 |
株高Plant height(cm) | 111.23 | 185.68 | 151.14±19.45 | 12.87 | 1.76 | 85.96 |
Table 2 Coefficient of variation and genetic diversity index of BLUP values for phenotypic traits of winter triticale germplasm resources
性状 Trait | 最小值 Min | 最大值 Max | 平均值 Mean±SD | 变异系数 CV (%) | 多样性 指数H’ | 遗传力 H1 |
---|---|---|---|---|---|---|
单株籽粒产量Yield per plant(g) | 5.92 | 14.88 | 10.14±1.82 | 18.01 | 2.24 | 85.56 |
千粒重Thousand-grain weight (g) | 31.19 | 62.96 | 43.72±7.72 | 16.32 | 1.96 | 91.23 |
每穗粒数Grains per ear (粒) | 29.25 | 64.19 | 46.24±7.19 | 15.54 | 1.87 | 87.45 |
单株穗数Ears per plant (个) | 3.42 | 6.73 | 4.76±0.73 | 15.22 | 1.57 | 89.23 |
穗长Ear length (cm) | 7.14 | 16.54 | 11.40±1.32 | 11.58 | 1.65 | 88.32 |
粒长Grain length (mm) | 5.71 | 9.41 | 7.91±0.76 | 9.56 | 1.33 | 92.45 |
粒宽Grain width (mm) | 2.81 | 3.66 | 3.29±0.17 | 5.09 | 1.43 | 93.54 |
株高Plant height(cm) | 111.23 | 185.68 | 151.14±19.45 | 12.87 | 1.76 | 85.96 |
Fig.2 The relationship between the coefficient of variation of phenotypic traits and diversity index and heritability of winter triticale germplasm resources
性状 Trait | 单株籽粒 产量 Yield per plant | 千粒重 Thousand- grain weight | 每穗粒数 Grains per ear | 单株穗数 Ears per plant | 穗长 Ear length | 粒长 Grain length | 粒宽 Grain width | 株高 Plant height |
---|---|---|---|---|---|---|---|---|
单株籽粒产量 Yield per plant | 1.00 | |||||||
千粒重 Thousand-grain weight | 0.52*** | 1.00 | ||||||
每穗粒数Grains per ear | 0.49*** | 0.29*** | 1.00 | |||||
单株穗数Ears per plant | 0.17** | -0.35*** | -0.33*** | 1.00 | ||||
穗长ear length | 0.31*** | 0.37*** | 0.18** | -0.11 | 1.00 | |||
粒长Grain length | 0.34*** | 0.65*** | 0.34*** | -0.32*** | 0.44*** | 1.00 | ||
粒宽Grain width | 0.18** | 0.74*** | 0.18** | -0.16** | 0.11 | 0.27*** | 1.00 | |
株高Plant height | 0.37*** | 0.44*** | 0.021 | 0.13* | 0.41*** | 0.13* | 0.49*** | 1.00 |
Table 3 Correlation coefficients of BLUP values for phenotypic traits of winter triticale germplasm resources
性状 Trait | 单株籽粒 产量 Yield per plant | 千粒重 Thousand- grain weight | 每穗粒数 Grains per ear | 单株穗数 Ears per plant | 穗长 Ear length | 粒长 Grain length | 粒宽 Grain width | 株高 Plant height |
---|---|---|---|---|---|---|---|---|
单株籽粒产量 Yield per plant | 1.00 | |||||||
千粒重 Thousand-grain weight | 0.52*** | 1.00 | ||||||
每穗粒数Grains per ear | 0.49*** | 0.29*** | 1.00 | |||||
单株穗数Ears per plant | 0.17** | -0.35*** | -0.33*** | 1.00 | ||||
穗长ear length | 0.31*** | 0.37*** | 0.18** | -0.11 | 1.00 | |||
粒长Grain length | 0.34*** | 0.65*** | 0.34*** | -0.32*** | 0.44*** | 1.00 | ||
粒宽Grain width | 0.18** | 0.74*** | 0.18** | -0.16** | 0.11 | 0.27*** | 1.00 | |
株高Plant height | 0.37*** | 0.44*** | 0.021 | 0.13* | 0.41*** | 0.13* | 0.49*** | 1.00 |
性状 Trait | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 |
---|---|---|---|
单株籽粒产量Yield per plant (g) | 0.740 | 0.219 | -0.366 |
千粒重Thousand-grain weight (g) | 0.896 | 0.317 | -0.064 |
每穗粒数Grains per ear (粒) | 0.702 | -0.346 | -0.320 |
单株穗数Ears per plant (个) | -0.761 | 0.313 | -0.186 |
穗长Ear length (cm) | 0.282 | -0.251 | 0.628 |
粒长Grain length (mm) | 0.387 | 0.638 | 0.010 |
粒宽Grain width (mm) | 0.209 | 0.556 | -0.173 |
株高Plant height(cm) | 0.472 | -0.262 | 0.739 |
特征值Eigenvalue | 3.847 | 1.342 | 1.246 |
贡献率Contribution rate (%) | 48.085 | 16.772 | 15.571 |
累积百分率 Accumulative contribution rate (%) | 48.085 | 64.857 | 80.428 |
Table 4 Principal component analysis of phenotypic BLUP value of winter triticale germplasm resources
性状 Trait | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 |
---|---|---|---|
单株籽粒产量Yield per plant (g) | 0.740 | 0.219 | -0.366 |
千粒重Thousand-grain weight (g) | 0.896 | 0.317 | -0.064 |
每穗粒数Grains per ear (粒) | 0.702 | -0.346 | -0.320 |
单株穗数Ears per plant (个) | -0.761 | 0.313 | -0.186 |
穗长Ear length (cm) | 0.282 | -0.251 | 0.628 |
粒长Grain length (mm) | 0.387 | 0.638 | 0.010 |
粒宽Grain width (mm) | 0.209 | 0.556 | -0.173 |
株高Plant height(cm) | 0.472 | -0.262 | 0.739 |
特征值Eigenvalue | 3.847 | 1.342 | 1.246 |
贡献率Contribution rate (%) | 48.085 | 16.772 | 15.571 |
累积百分率 Accumulative contribution rate (%) | 48.085 | 64.857 | 80.428 |
材料名称 Material name | 材料来源 source | 单株籽粒 产量 Yield per plant (g) | 千粒重 Thousand -grain weight (g) | 每穗粒数 Grains per ear (粒) | 穗长 Ear length (cm) |
---|---|---|---|---|---|
PRAO 6/1 | 俄罗斯 | 14.88 | 52.36 | 55.54 | 13.34 |
Riebesel 48 | 德国 | 14.08 | 53.13 | 53.46 | 16.54 |
Mammoth | 美国 | 14.02 | 48.17 | 60.69 | 11.99 |
8A221 | 德国 | 13.53 | 44.73 | 59.37 | 11.17 |
Triticale A | 瑞典 | 12.97 | 50.01 | 51.99 | 11.82 |
AM 2147 | 美国 | 12.93 | 51.66 | 53.33 | 12.79 |
LT 344/72 | 波兰 | 12.66 | 44.15 | 50.61 | 13.92 |
冀饲3号 | 中国 | 12.50 | 54.08 | 55.54 | 13.21 |
甘农2号 | 中国 | 12.41 | 53.28 | 49.36 | 11.71 |
AMYP | 中国 | 12.21 | 55.86 | 49.73 | 11.36 |
5鉴2 | 中国 | 12.12 | 58.32 | 46.20 | 12.40 |
平均值 | 13.12 | 51.43 | 53.26 | 12.75 |
Table 5 Main phenotypic traits of high-yield winter triticale
材料名称 Material name | 材料来源 source | 单株籽粒 产量 Yield per plant (g) | 千粒重 Thousand -grain weight (g) | 每穗粒数 Grains per ear (粒) | 穗长 Ear length (cm) |
---|---|---|---|---|---|
PRAO 6/1 | 俄罗斯 | 14.88 | 52.36 | 55.54 | 13.34 |
Riebesel 48 | 德国 | 14.08 | 53.13 | 53.46 | 16.54 |
Mammoth | 美国 | 14.02 | 48.17 | 60.69 | 11.99 |
8A221 | 德国 | 13.53 | 44.73 | 59.37 | 11.17 |
Triticale A | 瑞典 | 12.97 | 50.01 | 51.99 | 11.82 |
AM 2147 | 美国 | 12.93 | 51.66 | 53.33 | 12.79 |
LT 344/72 | 波兰 | 12.66 | 44.15 | 50.61 | 13.92 |
冀饲3号 | 中国 | 12.50 | 54.08 | 55.54 | 13.21 |
甘农2号 | 中国 | 12.41 | 53.28 | 49.36 | 11.71 |
AMYP | 中国 | 12.21 | 55.86 | 49.73 | 11.36 |
5鉴2 | 中国 | 12.12 | 58.32 | 46.20 | 12.40 |
平均值 | 13.12 | 51.43 | 53.26 | 12.75 |
[1] | 王增远, 孙元枢, 陈秀珍, 等. 饲草小黑麦在农业中的作用[C]// 中国农学会耕作制度分会学术年会, 2004. |
WANG Zengyuan, SUN Yuanshu, CHEN Xiuzhen, et al. The role of forage triticale in agriculture[C]// Academic Annual Meeting of the Farming System Branch of the Chinese Society of Agriculture, 2004. | |
[2] | 孙元枢. 中国小黑麦遗传育种研究与应用[M]. 杭州: 浙江科学技术出版社, 2002. |
SUN Yuanshu. Research and Application of Chinese Triticale Genetics and Breeding[M]. Hangzhou: Zhejiang Science and Technology Press, 2002. | |
[3] | 杨伟光, 李红, 黄兴育, 等. 黑龙江省西部干旱区小黑麦引种试验[J]. 草原与草坪, 2011, 31(2):33-37. |
YANG Weiguang, LI Hong, HUANG Xinyu, et al. Trial of Triticale Introduction in Arid Areas in Western Heilongjiang Province[J]. Grassland and Turf, 2011, 31(2):33-37. | |
[4] | 谢楠, 赵海明, 李源, 等. 几种饲用麦类作物远缘杂交的亲和性比较[J]. 草原与坪, 2010, 30(4):39-44. |
XIE Nan, ZHAO Haiming, LI Yuan, et al. Compatibility comparison of distant hybridization of several forage wheat crops[J]. Grassland and Turf, 2010, 30(4):39-44. | |
[5] | 朱铁霞, 高凯, 王国成. 小黑麦研究进展[J]. 内蒙古民族大学学报(自然科学版), 2011, 26(4):433-437. |
ZHU Tiexia, GAO Kai, WANG Guocheng. A Review of Studies on Triticale[J]. Journal of Inner Mongolia University of Nationalities (Natural Science Ed), 2011, 26(4):433-437. | |
[6] | 贾继增, 张正斌. 小麦21条染色体RFLP作图位点遗传多样性分析[J]. 中国科学(C 辑), 2001, 31(1) :13-21. |
JIA Jizeng, ZHANG Zhengbing. Analysis of genetic diversity of RFLP mapping sites on 21 chromosomes of wheat[J]. Science in China (Series C), 2001, 31(1) :13-21. | |
[7] | 杜金昆, 姚颖垠, 倪中福, 等. 普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR 分子标记遗传差异研究[J]. 遗传学报, 2002, 29(5):445-452. |
DU Jinkun, YAO Yingyin, NI Zhongfu, et al. Study on the genetic difference of ISSR molecular markers in common wheat, spelt wheat, close spike wheat and recurrent selection progeny materials[J]. Acta Genetics, 2002, 29(5):445-452. | |
[8] |
Williams J G K. DNA polymorphisms amplified by arbi-trary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990, 18(22):6531-6535.
DOI PMID |
[9] | 赵光磊, 张雅奎, 吴凌娟, 等. 黑龙江省马铃薯主栽品种遗传多样性的RAPD分析[J]. 中国马铃薯, 2014, 28(2):65-69. |
ZHAO Guanglei, ZHANG Yakui, WU Lingjuan, et al. RAPD analysis of the genetic diversity of main potato varieties in Heilongjiang Province[J]. China Potato, 2014, 28(2):65-69. | |
[10] | 胡宝忠, 刘娣, 胡国富, 等. 中国紫花苜蓿地方品种随机扩增多态性DNA的研究[J]. 植物生态学报, 2000, 24(6):697-701. |
HU Baozhong, LIU Di, HU Guofu, et al. Study on random amplified polymorphic DNA of Chinese alfalfa landraces[J]. Acta Plant Ecology, 2000, 24(6):697-701. | |
[11] | 杨天育, 窦全文, 沈裕琥, 等. 应用RAPD标记研究不同生态区谷子品种的遗传差异[J]. 西北植物学报, 2003, 23(5):765-770. |
YANG Tianyu, DOU Wenwen, SHEN Yuhu, et al. Using RAPD markers to study the genetic differences of millet varieties in different ecological regions[J]. Northwestern Journal of Botany, 2003, 23(5):765-770. | |
[12] |
Welsh J. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research, 1990, 18 (24):7213-7218.
DOI PMID |
[13] | Melchinger AE Genetic diversity and heterosis. In: Coors JG, 99-118.No. Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, and SSSA, Madison, pp 57 and 64. Wheat Info Serv 1999, 32:20-22. |
[14] |
Igrejas G, Guedes-Pinto H, Carnide V, et al. Seed storage protein diversity in triticale varieties commonly grown in Portugal[J]. Plant Breeding, 1999, 118(4): 303-306.
DOI URL |
[15] |
Amiour N, Bouguennec A, Marcoz C, et al. Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe[J]. Euphytica, 2002, 123(3):295-305.
DOI URL |
[16] |
周福平, 孙黛珍, 王曙光, 等. 六倍体小黑麦种质资源遗传多样性分析[J]. 华北农学报, 2006, 21(6): 33-36.
DOI |
ZHOU Fuping, SUN Daizhen, WANG Shuguang, et al. Analysis of Genetic Diversity of Hexaploid Triticale Germplasm Resources[J]. Journal of North China Agriculture, 2006, 21(6): 33-36. | |
[17] | 王曙光, 孙黛珍, 李瑞, 等. 六倍体小黑麦品种资源Glu-1位点的多态性[J]. 中国生态农业学报, 2013, 21(2): 179-183. |
WANG Shuguang, SUN Daizhen, LI Rui, et al. Polymorphism of Glu-1 locus in hexaploid triticale resources[J]. Chinese Journal of Eco-Agriculture, 2013, 21(2): 179-183. | |
[18] |
Breeding in winter triticale: I. Heterosis and combining ability for agro-nomic traits in European elite germplasm.[J]. Crop Sci 45:1476-1482.
DOI URL |
[19] | Tams S H, Bauer E, Oettler G, et al. Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient[J]. Theoretical & Applied Genetics, 2004, 108(7):1385-1391. |
[20] |
Kuleung C, Baenziger P S, Kachman S D, et al. Evaluating the Genetic Diversity of Triticale with Wheat and Rye SSR Markers[J]. Crop Science, 2006, 46(4):1692-1700.
DOI URL |
[21] |
Costa, Daalbuquerque C T, Domarcelino A, et al. Genetic diversity of Brazilian triticales evaluated with genomic wheat microsatellites[J]. Pesquisa Agropecuária Brasileira, 2007, 42(11):1577-1586.
DOI URL |
[22] |
Trebichalsk |
[23] |
Fischer S, Maurer H P, Würschum T, et al. Development of Heterotic Groups in Triticale[J]. Crop Science, 2010, 50(2):584-590.
DOI URL |
[24] | Glaszmann J C, Killian B, Upadhyaya H D, et al. Accessing genetic diversity for crop improvement[J]. Current Opinion in Plant Biology, 2010, (13): 167-173. |
[25] | Ramanatha R V, Hodgkin T. Genetic diversity and conservation and utilization of plant genetic resources[J]. Plant Cell Tissue & Organ Culture, 2002, (68): 1-19. |
[26] | 郭莹, 杨芳萍. 六倍体小黑麦饲用特性及应用前景[J]. 草业科学, 2018, 35(3):635-644. |
Guo Ying, Yang Fangping. Feeding characteristics and application prospects of hexaploid triticale[J]. Grassland Science, 2018, 35(3):635-644. |
[1] | MIAO Yu, CHEN Cuixia, MA Yanming, XING Guofang, DONG Yusheng, CHEN Zhijun, WANG Xian, XIANG Li. Genetic diversity analysis of phenotypic traits of 276 Central Asian barley germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1888-1895. |
[2] | YANG Lu, WANG Na, FAN Shaoli, CHENG Ping, LI Hong, WANG Yangdong. Analysis of phenotypic trait variation characteristics of Morus nigra L.germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1172-1181. |
[3] | GAO Mutian, XIAO Yanmei, LIAO Zhijie, HUANG Cheng. Comprehensive evaluation of kernel and quality traits in maize-teosinte introgression line population [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 885-891. |
[4] | Mahemuti Abulaiti, Muhetaer zhare, Mireguli Waili, Hadier Yishake. Correlation and regression analysis between leaf margin scorch diseases and leaf nutrient content of walnut [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 945-953. |
[5] | WANG Jijiao, PAN Yue, WANG Shiwei, HAN Zhengwei, MA Yong, HU Haifang, WANG Baoqing. Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 355-364. |
[6] | YANG Cunming, ZHANG Xiaoxue, ZHANG Menghua, ZHAO Zhiwen, LI Fengjie, HUANG Xixia, LI Jie, Aizimaiti Awuti, HE Junmin, LI Xue, LI Tingting, TANG Li, ZHANG Wenjing, TIAN Yuezhen, TIAN Kechuan. Analysis of correlation and difference of target traits in fine wool sheep breeding [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 514-520. |
[7] | YANG Xiangbo, CHEN Liangyu, YANG Songnan, CHEN Xifeng, XING Weiming, LI Xueying, CONG Weixuan, ZANG Zhenyuan, ZANG Yuanbo, ZHANG Jun. Phenotype analysis and comprehensive evaluation of spring soybean germplasm resources from northeast China [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2921-2933. |
[8] | LI Chunyu, TAN Zhanming, CHENG Yunxia, GAO Yuan, MA Quanhui, LI Zhiguo, MA Xing. Effects of water and fertilizer coupling on diurnal changes of chlorophyll content and photosynthetic characteristics of sand-cultivated tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3006-3013. |
[9] | XU Bin, WANG Zheng, SONG Zhanteng, Merhaba Paerhati, ZHU Jingrong, CHE Fengbin, LI Yonghai, WU Fengyan, MIAO Fuhong. Analysis and comprehensive evaluation of the fruit quality of 11 wild seabuckthorn germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3020-3031. |
[10] | TANG Li, TIAN Kechuan, ZHANG Xinning, LIU Li, Abulikemu Adili, YANG Zhi, YANG Cunming, ZHANG Xiaoxue, HUANG Xixia, TIAN Yuezhen. Clustering and principal component analysis of Hotan sheep body weight indexes in different growth stages [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2853-2860. |
[11] | Wang Tianling, Hou Xianfei, Shi Junjie, Sun Quanxi, Jia Donghai, Gu Yuanguo, Shan Shihua, Miao Haocui, Li Qiang. Genetic diversity analysis of 67 creeping peanut germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 42-54. |
[12] | OUYANG Danhua, ZHAO Kang, SONG Dongbo, LIU Ziqing, GUO Wangzhen, LIU Yan, GU Aixing, Azhatiguli Maimaitituer, Alikaerjiang Amaier. Identification and comprehensive analysis of Verticillium wilt resistance in 35 cotton strains [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 9-18. |
[13] | WANG Peng, ZHENG Kai, ZHAO Jieyin, GAO Wenju, LONG Yilei, CHEN Quanjia, QU Yanying. Evaluation and index screening of heat resistance of Gossypium hirsutum germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2081-2090. |
[14] | ZHAO Lianjia, LI Gan, XU Lin, YAN Guorong, LIU Ning, WANG Fan, DENG Chaohong, Abudukeyoumu Abudurezike, WANG Cong, WANG Wei. Analysis of the main characters of soybean varieties in Xinjiang and their correlation with yield [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1663-1670. |
[15] | HUANG Qiannan, Maerheba Aisibaier, ZOU Hui, WANG Cairong, Ailimaimaiti Kuerban, SUN Na, LEI Junjie. Genetic diversity of main agronomic traits in Xinjiang winter wheat germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1050-1058. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||