Xinjiang Agricultural Sciences ›› 2021, Vol. 58 ›› Issue (12): 2282-2299.DOI: 10.6048/j.issn.1001-4330.2021.12.016
• Plant Protection· Horticultural Special Local Products· Soil Fertilizer· Water Saving Irrigation Agroecological Environment· Agricultural Equipment Engineering and Mechanization • Previous Articles Next Articles
LU Yanan1(), GAO Lu1, YANG Yang2, WAN Zhongwu2, SONG Lihua1(
)
Received:
2020-10-30
Online:
2021-12-20
Published:
2021-12-31
Correspondence author:
SONG Lihua
Supported by:
陆亚楠1(), 高露1, 杨勇2, 万仲武2, 宋丽华1(
)
通讯作者:
宋丽华
作者简介:
陆亚楠(1997-),女,硕士研究生,研究方向为森林培育、果树栽培,(E-mail) 2277614561@qq.com
基金资助:
CLC Number:
LU Yanan, GAO Lu, YANG Yang, WAN Zhongwu, SONG Lihua. Effects of Different Fertilization Models on Soil Characteristics and Fruit Characters of Ziziphus jujube cv. Lingwuchangzao[J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2282-2299.
陆亚楠, 高露, 杨勇, 万仲武, 宋丽华. 不同培肥模式对灵武长枣种植园土壤特性和果实品质与产量的影响[J]. 新疆农业科学, 2021, 58(12): 2282-2299.
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
pH | 0~20 | 0.12±0.003ab | 0.07±0.004bc | -0.01±0.003cd | 0.07±0.003bc | 0.04±0.003c | 0.14±0.003a | -0.04±0.003d |
20~40 | -0.12±0.004cd | -0.07±0.006cd | 0.07±0.006a | -0.04±0.002bc | -0.14±0.006d | 0.04±0.004ab | -0.07±0.003cd | |
40~60 | 0.07±0.004b | -0.15±0.002c | -0.10±0.003c | 0.05±0.002b | 0.25±0.005a | 0.03±0.003b | -0.10±0.002c | |
0~60 | 0.02±0.001bc | -0.05±0.001d | -0.01±0.002c | 0.02±0.005bc | 0.05±0.017ab | 0.07±0.006a | -0.07±0.004d |
Table 1 Changes of soil pH in Lingwuchangzao plantation under different fertilization models
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
pH | 0~20 | 0.12±0.003ab | 0.07±0.004bc | -0.01±0.003cd | 0.07±0.003bc | 0.04±0.003c | 0.14±0.003a | -0.04±0.003d |
20~40 | -0.12±0.004cd | -0.07±0.006cd | 0.07±0.006a | -0.04±0.002bc | -0.14±0.006d | 0.04±0.004ab | -0.07±0.003cd | |
40~60 | 0.07±0.004b | -0.15±0.002c | -0.10±0.003c | 0.05±0.002b | 0.25±0.005a | 0.03±0.003b | -0.10±0.002c | |
0~60 | 0.02±0.001bc | -0.05±0.001d | -0.01±0.002c | 0.02±0.005bc | 0.05±0.017ab | 0.07±0.006a | -0.07±0.004d |
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
容重 (g/cm3) | 0~20 | -0.08±0.002d | -0.07±0.001d | -0.07±0.001d | 0.04±0.001b | -0.09±0.002d | -0.05±0.002c | 0.10±0.0001a |
20~40 | -0.11±0.001c | -0.06±0.002b | -0.04±0.001b | 0.02±0.001a | -0.17±0.004d | -0.17±0.003d | 0.06±0.001a | |
0~40 | -0.09±0.002d | -0.06±0.002c | -0.06±0.002c | 0.03±0.002b | -0.13±0.006e | -0.11±0.007d | 0.08±0.003a |
Table 2 Changes of soil bulk density in Lingwuchangzao plantation under different fertilization models
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
容重 (g/cm3) | 0~20 | -0.08±0.002d | -0.07±0.001d | -0.07±0.001d | 0.04±0.001b | -0.09±0.002d | -0.05±0.002c | 0.10±0.0001a |
20~40 | -0.11±0.001c | -0.06±0.002b | -0.04±0.001b | 0.02±0.001a | -0.17±0.004d | -0.17±0.003d | 0.06±0.001a | |
0~40 | -0.09±0.002d | -0.06±0.002c | -0.06±0.002c | 0.03±0.002b | -0.13±0.006e | -0.11±0.007d | 0.08±0.003a |
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
孔隙度 (%) | 0~20 | 0.07±0.001a | 0.02±0.001b | 0.06±0.002ab | 0.03±0.001ab | 0.06±0.004ab | 0.05±0.002ab | -0.09±0.002c |
20~40 | 0.11±0.002b | 0.01±0.001c | 0.03±0.001c | 0.02±0.001c | 0.10±0.002b | 0.15±0.003a | -0.03±0.001d | |
0~40 | 0.09±0.002a | 0.02±0.001b | 0.04±0.002b | 0.02±0.002b | 0.08±0.003a | 0.10±0.006a | -0.06±0.004c |
Table 3 Changes of soil porosity in Lingwuchangzao plantation under different fertilization models
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
孔隙度 (%) | 0~20 | 0.07±0.001a | 0.02±0.001b | 0.06±0.002ab | 0.03±0.001ab | 0.06±0.004ab | 0.05±0.002ab | -0.09±0.002c |
20~40 | 0.11±0.002b | 0.01±0.001c | 0.03±0.001c | 0.02±0.001c | 0.10±0.002b | 0.15±0.003a | -0.03±0.001d | |
0~40 | 0.09±0.002a | 0.02±0.001b | 0.04±0.002b | 0.02±0.002b | 0.08±0.003a | 0.10±0.006a | -0.06±0.004c |
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
碱解氮 (mg/kg) | 0~20 | 56.67±1.15a | 18.33±1.53c | 26.00±1.46b | -11.67±1.53e | -14.00±1.00e | 1.67±0.08d | -14.00±1.00e |
20~40 | 39.67±2.52c | 70.00±0.03a | 14.00±0.02e | -2.67±0.02f | 21.67±1.53d | 42.00±0.04b | -14.00±0.03g | |
40~60 | 64.00±0.04b | 70.00±0.02a | 24.67±1.53e | -14.00±0.02f | 43.67±0.58c | 29.33±0.58d | -14.00±0.02f | |
0~60 | 53.44±1.90a | 52.78±1.84a | 21.56±2.00c | -9.44±1.29e | 17.11±1.22d | 24.33±1.90b | -14.00±0.50f |
Table 4 Changes of N in Lingwuchangzao plantation under different fertilization modes
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
碱解氮 (mg/kg) | 0~20 | 56.67±1.15a | 18.33±1.53c | 26.00±1.46b | -11.67±1.53e | -14.00±1.00e | 1.67±0.08d | -14.00±1.00e |
20~40 | 39.67±2.52c | 70.00±0.03a | 14.00±0.02e | -2.67±0.02f | 21.67±1.53d | 42.00±0.04b | -14.00±0.03g | |
40~60 | 64.00±0.04b | 70.00±0.02a | 24.67±1.53e | -14.00±0.02f | 43.67±0.58c | 29.33±0.58d | -14.00±0.02f | |
0~60 | 53.44±1.90a | 52.78±1.84a | 21.56±2.00c | -9.44±1.29e | 17.11±1.22d | 24.33±1.90b | -14.00±0.50f |
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
有效磷 (mg/kg) | 0~20 | 17.68±0.82a | -17.54±0.98g | -6.88±0.85e | -16.10±0.52f | 9.10±0.60c | 6.02±1.02d | 13.99±0.70b |
20~40 | -27.88±0.91e | 19.97±0.88a | 9.02±0.23b | -47.83±0.71g | -35.58±0.86f | -4.09±0.76c | -16.54±0.65d | |
40~60 | -0.36±0.01b | 1.58±0.26a | -24.13±0.59e | -23.50±1.07e | -27.30±0.46f | -12.67±0.64c | -16.60±0.51d | |
0~60 | -3.52±0.88b | 1.34±0.26a | -7.33±0.37d | -29.14±0.39f | -17.93±0.59e | -3.58±0.13b | -6.38±0.29c |
Table 5 Changes of P in Lingwuchangzao plantation under different fertilization models
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
有效磷 (mg/kg) | 0~20 | 17.68±0.82a | -17.54±0.98g | -6.88±0.85e | -16.10±0.52f | 9.10±0.60c | 6.02±1.02d | 13.99±0.70b |
20~40 | -27.88±0.91e | 19.97±0.88a | 9.02±0.23b | -47.83±0.71g | -35.58±0.86f | -4.09±0.76c | -16.54±0.65d | |
40~60 | -0.36±0.01b | 1.58±0.26a | -24.13±0.59e | -23.50±1.07e | -27.30±0.46f | -12.67±0.64c | -16.60±0.51d | |
0~60 | -3.52±0.88b | 1.34±0.26a | -7.33±0.37d | -29.14±0.39f | -17.93±0.59e | -3.58±0.13b | -6.38±0.29c |
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
速效钾 (mg/kg) | 0~20 | -34.39±0.51e | -26.45±1.90d | 16.76±1.07a | -49.82±0.25g | -18.28±2.30c | -40.23±1.01f | -3.52±0.43b |
20~40 | -41.82±1.04f | -30.71±1.43d | -23.55±0.10c | -39.48±0.32e | -6.66±0.80b | -24.80±1.58c | 7.14±0.70a | |
40~60 | -55.77±0.19g | -1.11±0.06c | -12.81±0.43d | -34.71±0.27e | 1.94±0.15b | -43.38±1.25f | 23.78±1.38a | |
0~60 | -43.99±1.42g | -19.42±1.91d | -6.53±1.09b | -41.34±1.70f | -7.67±1.88c | -36.14±1.69e | 9.13±0.95a |
Table 6 Changes of K in Lingwuchangzao plantation under different fertilization modes
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
速效钾 (mg/kg) | 0~20 | -34.39±0.51e | -26.45±1.90d | 16.76±1.07a | -49.82±0.25g | -18.28±2.30c | -40.23±1.01f | -3.52±0.43b |
20~40 | -41.82±1.04f | -30.71±1.43d | -23.55±0.10c | -39.48±0.32e | -6.66±0.80b | -24.80±1.58c | 7.14±0.70a | |
40~60 | -55.77±0.19g | -1.11±0.06c | -12.81±0.43d | -34.71±0.27e | 1.94±0.15b | -43.38±1.25f | 23.78±1.38a | |
0~60 | -43.99±1.42g | -19.42±1.91d | -6.53±1.09b | -41.34±1.70f | -7.67±1.88c | -36.14±1.69e | 9.13±0.95a |
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
有机质 (g/kg) | 0~20 | -0.42±0.08b | -6.44±0.06d | -7.71±0.73d | -3.47±0.78c | -3.22±0.96c | 2.88±0.47a | -1.10±0.15b |
20~40 | -4.75±0.15d | -4.41±0.06cd | -8.39±0.25e | -3.14±0.64c | -8.22±0.39e | -1.78±0.44b | 1.70±0.03a | |
40~60 | -6.53±0.59d | -5.85±0.01cd | -6.19±0.65cd | -5.42±0.15cd | -4.92±0.59bc | -3.64±0.29b | 4.24±0.29a | |
0~60 | -3.90±0.82c | -5.57±0.18e | -7.43±0.34f | -4.01±0.31c | -5.45±0.28d | -0.85±0.01b | 1.61±0.35a |
Table 7 Changes of soil organic matter content in Lingwuchangzao plantation under different fertilization models
项目 | 土层深度 (cm) | BY | BD | BQ | HY | HD | HQ | CK |
---|---|---|---|---|---|---|---|---|
有机质 (g/kg) | 0~20 | -0.42±0.08b | -6.44±0.06d | -7.71±0.73d | -3.47±0.78c | -3.22±0.96c | 2.88±0.47a | -1.10±0.15b |
20~40 | -4.75±0.15d | -4.41±0.06cd | -8.39±0.25e | -3.14±0.64c | -8.22±0.39e | -1.78±0.44b | 1.70±0.03a | |
40~60 | -6.53±0.59d | -5.85±0.01cd | -6.19±0.65cd | -5.42±0.15cd | -4.92±0.59bc | -3.64±0.29b | 4.24±0.29a | |
0~60 | -3.90±0.82c | -5.57±0.18e | -7.43±0.34f | -4.01±0.31c | -5.45±0.28d | -0.85±0.01b | 1.61±0.35a |
[1] | 宋丽华, 秦芳, 白祥, 等. 气温升高与干旱胁迫对灵武长枣坐果与果实品质的影响[J]. 西北林学院学报, 2015,30(2):129-133. |
SONG Lihua, QIN Fang, BAI Xiang, et al. Effects of rising temperature and drought stress on fruit setting and fruit quality of lingwu jujube[J]. Journal of northwest forestry university, 2015,30(2):129-133. | |
[2] | 曹兵, 王晶, 姬全喜. 不同施氮水平下盐胁迫对灵武长枣苗生长的影响[J]. 西北林学院学报, 2012,27(2):34-38. |
CAO Bing, WANG Jing, JI Quanxi. Effects of salt stress on seedling growth of Lingwu Jujube under different nitrogen application levels[J]. Journal of Northwest Forestry University, 2012,27(2):34-38. | |
[3] | 姜文倩, 连亚妮, 贾昊, 等. 模拟气温升高对枣果实主要色素含量的影响[J]. 西北林学院学报, 2019,34(6):115-119,146. |
JIANG Wenqian, LIAN Yanni, JIA Hao, et al. Effect of simulated temperature rise on the main Pigment content of jujube fruit[J]. Journal of Northwest Forestry University, 2019,34(6):115-119,146. | |
[4] | 朱峰, 康自俊. 灵武长枣产业发展状况探析[J].现代农业科技, 2018(21):90, 93. |
ZHU Feng, KANG Zijun. Analysis on the Industrial Development of Lingwuchang Jujube[J]. Modern Agricultural Science and Technology, 2018(21): 90, 93. | |
[5] | 高登涛, 郭景南, 魏志峰, 等. 果园地面覆盖对土壤质量和苹果生长发育的影响[J]. 果树学报, 2010,27(5):770-777. |
GAO Dengtao, GUO Jingnan, WEI Zhifeng, et al. Effects of orchard ground cover on soil quality and Apple growth and Development[J]. Journal of fruit trees, 2010,27(5):770-777. | |
[6] | 赵长增, 陆璐, 陈佰鸿. 干旱荒漠地区苹果园地膜及秸秆覆盖的农业生态效应研究[J]. 中国生态农业学报, 2004(1):160-163. |
ZHAO Changzeng, LU Lu, CHEN Baihong. Agricultural ecological effects of mulching and straw mulching in Apple orchards in arid Desert region[J]. Chinese Journal of Ecological Agriculture, 2004(1):160-163. | |
[7] | 陈双剑. 日本青森县苹果园生草栽培概况[J]. 山西果树, 2005,1:60. |
CHEN Shuangjian. Overview of Raw grass cultivation of Apple orchard in Aomori County, Japan[J]. Shanxi Fruit Trees, 2005,1:60. | |
[8] | 关松荫. 土壤酶及其研究方法. 北京: 农业出版社. 1986. |
GUAN Yinsong. Soil enzymes and their research methods. Beijing: Agricultural Press. 1986. | |
[9] | 周丹蓉, 方智振, 廖汝玉, 等. 李果皮花色素苷、类黄酮和类胡萝卜素含量及抗氧化性研究[J]. 营养学报, 2013,35(6):571-576. |
ZHOU Danrong, FANG Zhizhen, LIAO Ruyu, et al. Studies on the content and antioxidant properties of anthocyanin, flavonoids and carotenoids in plum skins[J]. Journal of nutrition, 2013,35(6):571-576. | |
[10] | 董田建, 程力, 张学强. 洪雅林场3种植被恢复模式下土壤理化性质的调查分析[J]. 四川林业科技, 2015,36(1):43-47. |
DONG Tianjian, CHEN Li, ZHANG Xueqiang. Investigation and analysis of soil physical and chemical properties under the restoration mode of hongya forest farm 3[J]. Sichuan forestry science and technology, 2015,36(1):43-47. | |
[11] | 张学权. 不同植被恢复土壤容重和孔隙度特征分析[J]. 成都大学学报(自然科学版), 2017,36(3):325-327. |
ZHANG Xuequan. Analysis of soil bulk density and porosity characteristics of different vegetation restoration[J]. Journal of chengdu university (natural science edition), 2017,36(3):325-327. | |
[12] | 罗水清, 于法展, 夏羚, 等. 苏北丘陵区典型性次生林地土壤容重与孔隙度的时空变异特征[J]. 苏州科技学院学报(自然科学版), 2013,30(3):72-75. |
LUO Shuiqing, YU Fazhan, XIA Ling, et al. Spatial-temporal variation characteristics of soil bulk density and porosity in typical secondary woodland in northern Jiangsu Hilly region[J]. Journal of suzhou institute of technology (natural science edition), 2013,30(3):72-75. | |
[13] | 朱梓弘, 朱同彬, 杨霖, 等. 中国土壤碱解氮含量与影响因子的空间关系研究[J]. 生态环境学报, 2019,28(11):2199-2207. |
ZHU Zihong, ZHU Tongbin, YANG Lin, et al. Spatial relationship between soil alkali-hydrolytic nitrogen content and influencing factors in China[J]. Chinese journal of ecological environment, 2019,28(11):2199-2207. | |
[14] | 方向, 王文才, 金秀, 等. 土壤速效磷可见-近红外光谱检测方法[J]. 江苏农业学报, 2019,35(5):1112-1118. |
FANG Xiang, WANG Wencai, JIN Xiu, et al. Visible near-infrared spectroscopy for soil available phosphorus[J]. Journal of Jiangsu Agriculture, 2019,35(5):1112-1118. | |
[15] | 陈洋, 齐雁冰, 王茵茵, 等. 秦巴中部山区耕地土壤速效钾空间变异及其影响因素[J]. 环境科学研究, 2017,30(2):257-266. |
CHEN Yang, QI Yanbing, WANG Yinyin, et al. Spatial variation of available potassium in cultivated soil and its influencing factors in central qinba mountains[J]. Environmental science research, 2017,30(2):257-266. | |
[16] | Weijun Fu, Hubert Tunney, Chaosheng Zhang. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application[J]. Soil & Tillage Research, 2009,106(2). |
[17] | 张瑞芳, 王红, 张爱军, 等. 河北省中部平原土壤速效钾和缓效钾的分析与评价[J]. 湖北农业科学, 2015,54(8):1816-1821. |
ZHANG Ruifang, WANG Hong, ZHANG Aijun, et al. Analysis and evaluation of available potassium and slow-available potassium in soil of central plain of hebei province[J]. Hubei agricultural science, 2015,54(8):1816-1821. | |
[18] | 周萌, 肖扬, 刘晓冰. 土壤活性有机质组分的分类方法及其研究进展[J]. 土壤与作物, 2019,8(4):349-360. |
ZHOU Meng, XIAO Yang, LIU Xiaobing. Classification of soil active organic matter components and its research progress[J]. soil and crops, 2019,8(4):349-360. | |
[19] | 郭艳. 土壤有机质不同测定方法的对比[J]. 农业与技术, 2019,39(18):25-26. |
GUO Yan. Comparison of different methods for the determination of soil organic matter[J]. Agriculture and technology, 2019,39(18):25-26. | |
[20] | 班春果, 陈炜, 云美丽, 等. 土壤有机质与氮肥互作对苹果幼树的影响[J]. 内蒙古林业, 2019, (8):36-38. |
BEN Chun GUO, Chen Wei, YUN Meli, et al. Effects of interaction of soil organic matter and nitrogen fertilizer on young Apple trees[J]. Inner Mongolia Forestry, 2019 ,(8):36-38. | |
[21] | 喻菊芳, 朱连成, 魏天军, 陈卫军, 等,. 灵武长枣品种特性及规范化栽培技术研究与示范[J]. 宁夏农林科技, 2007,(2):1-4. |
YU Jufang, ZHU Liancheng, WEI Tianjun, Chen Weijun, et al. Studies and Demonstration on variety Characteristics and Standardized Cultivation Techniques of Lingwu Long Jujube[J]. Ningxia Agriculture and Forestry Science and Technology, 2007,(2):1-4. | |
[22] | 郑章云. 果桑不同留条长对桑椹质量与品质的影响[J]. 中国蚕业, 2019,40(3):1-4. |
ZHENG zhangyun. Effects of different length of mulberry leaves on mulberry quality and mulberry quality[J]. China sericulture, 2019,40(3):1-4. | |
[23] | 毛祝新, 崔严葡, 赵宁, 等. 紫果黑蕊猕猴桃营养品质变化及其相关性分析[J]. 中国农学通报, 2015,31(28):99-103. |
MAO Zhuxin, CUI Yanpu, ZHAO Ning, et al. Changes of nutritional quality and correlation analysis of kiwifruit with black core[J]. Chinese journal of agriculture, 2015,31(28):99-103. | |
[24] | 周江涛, 李燕青, 闫帅, 等. 果园地面覆盖对苹果果实品质和矿质营养的影响[J]. 中国果树, 2019,(4):16-20,117. |
ZHOU Jiangtao, LI Yanqing, YAN Shuai, et al. Effects of orchard ground cover on apple fruit quality and mineral nutrition[J]. China Fruit Tree, 2019,(4):16-20,117. | |
[25] | 吴文明, 黄贝, 吴韶辉, 等. 有机叶面肥对柑橘生长和果实品质的影响[J]. 浙江农业科学, 2020,61(1):65-66,172. |
WU Wenming, HUANG Bei, WU Shaohui, et al. Wang Peng. Effects of organic foliar fertilizer on citrus growth and fruit quality[J]. Zhejiang agricultural sciences, 2020,61(1):65-66,172. | |
[26] | 许晶晶. 果树栽培技术与果实品质之间关系的探讨[J]. 新农业, 2020,(2):49. |
XU Jingjing. Discussion on the relationship between fruit cultivation techniques and fruit quality[J]. New Agriculture, 2020,(2):49. | |
[27] | Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J. Transcriptome-based discovery of AP2/ERF transcripti on factors related to temperature stress in tea plant (Camellia sinensis)[J]. Functional& Integrative Genomics, 2015,15(6):741-752. |
[28] | 陈丽, 姚允聪. 苹果愈伤过表达MdMYB1对花色素苷合成的影响[J]. 北京农学院学报, 2019,34(3):37-41. |
CHEN Li, YAO Yuncong. Effect of MdMYB1 overexpression on anthocyanin synjournal in Apple callus[J]. Journal of Beijing Agricultural University, 2019,34(3):37-41. | |
[29] | 赵思东, 张琳, 谢志明, 等. 覆草栽培对梨园土壤理化性质的影响[J]. 中南林学院学报, 2005,(4):66-70. |
ZHAO Sidong, ZHANG Lin, XIE Zhiming, et al. Effects of overlying grass cultivation on physical and chemical properties of Liyuan Soil[J]. Journal of Zhongnan Forestry University, 2005,(4):66-70. | |
[30] | 刘建新. 覆草对杏园土壤物理性状、肥力及果实产量与品质的影响[J]. 水土保持学报, 2004,(2):183-185. |
LIU Jianxin. Effects of mulch on soil physical properties, fertility and fruit yield and quality in apricot orchard[J]. Journal of Soil and Water Conservation, 2004,(2):183-185. | |
[31] | Ramos ME, Benitez E, Garcia PA, Robles AB. Cover crops under different managements vs.frenquent tillage in almond orchards in semiarid conditions:Effects on soil quality[J]. Applied Soil Ecology, 2010,44:6-14. |
[32] | Odjugo P A O. The effect of tillage systems and mulching on soil microclimate, growth and yield of yellow yam (Dioscorea cayenensis) in Midwestern Nigeria[J]. African Journal of Biotecndogy, 2008,7(24):4500-4507. |
[33] | Huang Y, Chen L, Fu B, et al. The wheat yields and water-use efficiency in theLoess Plateau:straw mulch and irrigation effects[J]. Agricultural Water Management, 2007,72(3):209-222. |
[34] | 官情, 王俊, 宋淑亚, 等. 黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响[J]. 应用生态学报, 2011,22(6):1471-1476. |
Official sentiment, WANG Jun, SONG Shuya, et al. Effects of different mulching measures on soil respiration in winter wheat fields in loess tableland[J]. Journal of applied ecology, 2011,22(6):1471-1476. | |
[35] | Wu J Y, Chen M G, Dong C Y, et al. Effects of land cover on soil temperature, humidity and moisture in Phoebe bournei forest[J]. Agricultural Science & Technology, 2015,16(12):2725-2729. |
[36] | 李艳丽, 赵化兵, 谢凯, 等. 不同土壤管理方式对梨园土壤微生物及养分含量的影响[J]. 土壤, 2012,44(5):788-793. |
LI Yanli, ZHAO Huabing, XIE Kai, et al. Effects of different soil management methods on soil microorganism and nutrient content in pear orchard[J]. Soil, 2012,44(5):788-793. | |
[37] | Pande K K, Dimri D C, Kambo J P. Effect of various mulcheson growth, yield and quality attributes of apple[J]. Indian Journal ofHorticulture, 2005,62(2):145-147. |
[38] | Szewczuk A, Gudarowska E. The effect of soil mulching andirrigation on yielding of apple trees in ridge planting[J]. Journal ofFruit and Ornamental Plant Research, 2004,12:139-145. |
[39] | 赵长增, 陆璐, 陈佰鸿. 干旱荒漠地区苹果园地膜及秸秆覆盖的农业生态效应研究[J]. 中国生态农业学报, 2004,(1):160-163. |
ZHAO Changzeng, LU Lu, CHEN Baihong. Agricultural ecological effects of mulching and straw mulching in Apple orchards in arid Desert region[J]. Chinese Journal of Ecological Agriculture, 2004,(1):160-163. | |
40 | [ 40 Hipps N A, Davies M J, Johnson D S. Effects of differentground vegetation management systems on soil quality[J]. Growth andFruit Quality of Culinary Apple Trees, 2004,79(4):610-618. |
[41] | 高登涛, 郭景南, 魏志峰, 等. 果园地面覆盖对土壤质量和苹果生长发育的影响[J]. 果树学报, 2010,27(5):770-777. |
GAO Dengtao, GUO Jingnan, WEI Zhifeng, et al. Effects of ground cover on soil quality and apple growth and development in orchards[J]. Acta fruticae sinica, 2010,27(5):770-777. | |
[42] | 董海强, 李丙智, 王金锋, 等. 不同覆盖方式对苹果树体生长及土壤理化特性的影响. 西北农业学报, 2015,24(8):101-109. |
DONG Haiqiang, LI Bingzhi, WANG Jinfeng, et al. Effects of different mulch on growth and soil physical and chemical properties of Apple trees. Journal of northwest agriculture, 2015,24(8):101-109. | |
[43] | 孙文泰, 赵明新, 尹晓宁, 等. 陇东旱地果园地表覆盖方式对苹果光合特性的影响. 干旱地区农业研究, 2013,31(3):19-25. |
SUN Wentai, ZHAO Mingxin, YIN Xiaoning, et al. Effects of surface cover on photosynthetic characteristics of Apple in Longdong arid orchard. Agricultural research in arid regions, 2013,31(3):19-25. | |
[44] | 袁锦. 桔园套种藿香蓟综合效应研究[J].湖北农业科学, 1988(3):33-35. |
YUAN Jing. Comprehensive effect of Huoxiang Thistle intercropping in Orange Groves[J]. Hubei Agricultural Sciences, 1988(3):33-35. | |
[45] | 史进, 李文胜, 张俊苗. 生草对树冠不同部位果实产量和品质的影响[J]. 北方园艺, 2016, (19) : 22-27. |
SHI Jin, LI Wensheng, ZHANG Junmiao. Effect of raw grass on fruit yield and quality in different parts of tree crown[J]. Northern Horticulture, 2016 ,(19) : 22-27. | |
[46] | 方敏彦, 梁慧敏, 鲍荣静, 等. 果园生草覆盖研究动态及发展方向[J]. 浙江农业科学, 2012, (12):1655-1659. |
FANG Minyan, LIANG Huimin, BAO Rongjing, et al. Research Trend and Development Direction of Raw grass mulch in Orchards[J]. Zhejiang Agricultural Sciences, 2012 ,(12):1655-1659. | |
[47] | Butijn J, Schuurman J. Soil management at the ex-perimental field at Hoofddorp-The effect of vari- ous soil management practices on soil propertiesand on yield and roof growth of apple trees[J]. Versl. Landbounk.Onderz, 1957,63:16. |
[48] | Johnson D S. Effect of soil management on mineralcomposition and storage quality of ap-ple[J]. Sci.Food Agri, 1973,24:227-247. |
[49] | Raese J T. Response of young“d”Anjou pear treeto triazine and triazole herbicides and nitrogen[J]. Hort.Sci., 1977,102:215-218. |
[50] | Pande K K, Dimri D C, Singh S C. Effect of mulching on soil and leaf nutrient status of apple Malus domestica borkh[J]. Progressive Horticulture, 2006,38(1):91-95. |
[51] | 李欢, 李建贵, 秦韵婷, 等. 微气候因子对南疆‘灰枣’坐果和果实品质的影响[J]. 果树学报, 2015,32(6):1161-1169. |
LI Huan, LI Jiangui, QIN Yunting, et al. Effects of microclimatic factors on fruit setting and fruit quality of 'Jujube' in Southern Xinjiang[J]. Acta Fruticae Sinica, 2015,32(6):1161-1169. | |
[52] | 浦俊, 徐福利, 王渭玲. 保墒措施对临猗梨枣叶片矿质元素含量和产量的影响[J]. 林业科学, 2014,50(7):8-16. |
PU Jun, XU Fu, WANG Weiling. Effects of conservation measures on the content and yield of mineral elements in leaves of Linyi Pear[J]. Science of Forestry, 2014,50(7):8-16. | |
[53] | 李传友, 熊波, 张莉, 等. 果园残枝粉碎覆盖对土壤理化性状及果实品质的影响[J]. 中国农业大学学报, 2016,21(11):84-92. |
LI Chuanyou, XIONG Bo, ZHANG Li, et al. Effects of orchard residual branch crushing mulch on soil physical and chemical properties and fruit quality[J]. Journal of China agricultural university, 2016,21(11):84-92. |
[1] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[2] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[3] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[4] | HUANG Boxuan, LI Pengcheng, ZHENG Cangsong, SUN Miao, SHAO Jingjing, FENG Weina, PANG Chaoyou, XU Wenxiu, DONG Helin. Effects of different nitrogen inhibitors on growth, nitrogen utilization and yield of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2122-2131. |
[5] | ZHANG Niao, WANG Hui, FENG Guojun, Zaituniguli Kuerban. Study on the agronomic traits and quality differences of grain sorghum in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2160-2167. |
[6] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[7] | ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L. [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830. |
[8] | HOU Lili, WANG Wei, CUI Xinju, ZHOU Dawei. Effects of organic and inorganic combined application on yield, soil nutrients and enzyme activities of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1845-1852. |
[9] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[10] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[11] | NIU Tingting, MA Mingsheng, ZHANG Jungao. Effects of straw returning and plastic film mulching on soil physical and chemical properties and spring maize yield in rain-fed upland farmland [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1896-1906. |
[12] | ZHAO Minhua, SONG Bingxi, ZHANG Yupeng, GAO Zhihong, ZHU Yongyong, CHEN Xiaoyuan. Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial factor productivity under dry farming conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1907-1915. |
[13] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
[14] | YANG Mei, ZHAO Hongmei, Dilireba Xiamixiding, YANG Weijun, ZHANG Jinshan, HUI Chao. Effects of nitrogen fertilizer reduction and biochar application on population structure, photosynthetic characteristics and yield of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1582-1589. |
[15] | LU Weidan, ZHOU Yuanhang, MA Xiaolong, GAO Jianglong, FAN Xiaoqin, GUO Jianfu, LI Jianqiang, LIN Ming. Effects of replacing chemical fertilizer with organic fertilizer in different proportions and plant nutrients and sugar beet yield [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1631-1639. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1045
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||