[1] 王磊, 崔乃然, 张汉斐. 新疆野核桃的研究[J]. 干旱区研究, 1997,(1):17-27. WANG Lei, CUI Nairan, ZHANG Hanfei. Study on Wild walnut in Xinjiang[J]. Arid Zone Research, 1997, (1):17-27. [2] Xing C J, Wang S W, Zhang C F, et al. Effects of leaf scorch on chlorophyll fluorescence characteristics of walnut leaves[J]. Journal of Plant Diseases and Protection, 2023, 130(1):115-124. [3] Wang S W, Xing C J, Zhang C F, et al. Photosynthetic performance of walnut leaves during the occurrence of leaf scorch[J]. Photosynthetica, 2023, 61(1):24-35. [4] 张计峰, 梁智, 邹耀湘, 等. 新疆南疆核桃叶缘焦枯病成因分析研究[J]. 新疆农业科学, 2012, 49(7):1261-1265. ZHANG Jifeng, LIANG Zhi, ZOU Yaoxiang, et al. Study on Causation of Walnut Withered Leaf Symptom in Southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2012, 49(7):1261-1265. [5] 牛欣益, 马瑞. 红砂幼苗叶片生理特性对干旱胁迫的响应[J]. 草业科学, 2023, 40(10):2483-2492. NIU Xinyi, MA Rui. Effects of drought stress on leaf physiology of Reaumuria soongorica seedlings during the growing season[J]. Pratacultural Science, 2023, 40(10):2483-2492. [6] 朱广龙, 武启迪, 钱寅森, 等. 盐分胁迫对高粱生长与生理特征的影响及耐盐调控机理研究进展[J]. 江苏农业科学, 2023, 51(14):49-57. ZHU Guanglong, WU Qidi, Qian Yinsen, et al. Effects of salt stress on growth and physiological characteristics of sorghum and the regulation mechanism of salt tolerance[J]. Jiangsu Agricultural Sciences, 2023, 51(14):49-57. [7] 蒋时姣. 核桃黑斑病抗性评价及抗病机理研究[D]. 雅安:四川农业大学, 2019. JIANG Shijiao. Sensitivity Evaluation and disease resistance mechanism to walnut blight[D]. Ya 'an:Sichuan Agricultural University, 2019. [8] 张茜. 核桃抗细菌性黑斑病生理机制初步研究[D]. 杨凌:西北农林科技大学, 2022. ZHANG Xi. Study on the Physiological Resistance Mechanism of Walnut (Juglans regia) to Bacterial Blight[D]. Yangling:Northwest A&F University, 2022. [9] 王宏, 马娜, 蔺经, 等. 4个早熟梨品种叶片对黑斑病的抗病性评价及与抗氧化酶的关系[J]. 江苏农业科学, 2019, 47(2):80-82. WANG Hong, MA Na, Lin Jing, et al. Evaluation of leaf resistance to black spot disease of four early ripening pear varieties and its relationship with antioxidant enzymes[J]. Jiangsu Agricultural Sciences, 2019, 47(2):80-82. [10] Magné C, Larher F. High sugar content of extracts interferes with colorimetric determination of amino acids and free proline[J]. Analytical biochemistry, 1992, 200(1):115-118. [11] Ebell L F. Variation in total soluble sugars of conifer tissues with method of analysis[J]. Phytochemistry, 1969, 8(1):227-233. [12] Lotfi N, Vahdati K, Hassani D, et al. Peroxidase, guaiacol peroxidase and ascorbate peroxidase activity accumulation in leaves and roots of walnut trees in response to drought stress[C] International Walnut Symposium, 861. 2009:309-316. [13] Chen C N, Pan S M. Assay of superoxide dismutase activity by combining electrophoresis and densitometry[J]. Botanical Bulletin of Academia Sinica, 1996,(37):107-111. [14] Nouman W, Siddiqui M T, Basra S M A, et al. Response of Moringa oleifera to saline conditions[J]. International Journal of Agriculture and Biology, 2012, 14(5):757-762. [15] Ortega-García F, Blanco S, Peinado M Á, et al. Phenylalanine ammonia-lyase and phenolic compounds in leaves and fruits of Olea europaea L. cv. Picual during ripening[J]. Journal of the Science of Food and Agriculture, 2009, 89(3):398-406. [16] Agarwal S, Sairam R K, Srivastava G C, et al. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes[J]. Biologia plantarum, 2005, 49:541-550. [17] Lester G E, Lewers K S, Medina M B, et al. Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin- Ciocalteu:Assay interference by ascorbic acid[J]. Journal of Food Composition and Analysis, 2012, 27(1):102-107. [18] Hasanuzzaman M, Hossain M A, Fujita M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems[J]. Biological Trace Element Research, 2012, 149:248-261. [19] 李学庆, 冯国军, 刘大军, 等. 细菌性疫病对菜豆光合特性和生理指标的影响[J]. 中国农学通报, 2024, 40(4):132-139. LI Xueqing, FENG Guojun, LIU Dajun, et al. Effect of Bacterial Blight on Photosynthetic Characteristics and Physiological Indicators of Common Bean[J]. Chinese Agricultural Science Bulletin, 2024, 40(4):132-139. [20] 王浩田, 蒋景龙, 王倩, 等. R2R3-MYB转录因子响应植物抗逆机制研究进展[J]. 分子植物育种, 2024,(6):1-26. WANG Haotian, JIANG Jinglong, WANG Qian, et al. Research Progress on the Mechanism of R2R3-MYB TranscriptionFactors in Response to Plant Stress Tolerance[J]. Molecular Plant Breeding, 2024,(6):1-26. [21] 李君亮, 王士博, 李亚军, 等. CO2浓度升高对干旱胁迫下谷子细胞结构和抗逆生理的影响[J]. 应用生态学报, 2023, 34(5):1281-1289. LI Junliang, WANG Shibo, LI Yajun, et al. Effects of elevated CO2 concentration on cell structure and stress resistance physiology of Setaria italicaunder drought stress[J]. Chinese Journal of Applied Ecology, 2023, 34(5):1281-1289. [22] 马福林, 马玉花. 干旱胁迫对植物的影响及植物的响应机制[J]. 宁夏大学学报(自然科学版), 2022, 43(4):391-399. MA Fulin, MA Yuhua. Effects of drought stress on plants and their response mechanisms[J]. Journal of Ningxia University (Natural Science Edition), 2022, 43(4):391-399. [23] 冯芳芳, 魏清江, 苏受婷, 等. 干旱胁迫对2种柑橘幼苗生长形态、渗透调节物质含量和抗氧化酶活性的影响[J]. 浙江农业学报, 2017, 29(9):1515-1523. FENG Fangfang, WEI Qingjiang, SU Shouting, et al. Effect of drought on growth morphology,osmolyte content and antioxidant enzyme activity of two citrus seedlings[J]. Acta Agriculturae Zhejiangensis, 2017, 29(9):1515-1523. [24] 储凤丽, 刘亚军, 王文静, 等. 干旱胁迫对甘薯活性氧代谢、渗透调节物质、SPAD值及叶绿素荧光特性的影响[J]. 中国农学通报, 2019, 35(26):29-34. CHU Fengli, LIU Yajun, WANG Wenjing, et al. Effects of Drought Stress on Active Oxygen Metabolism, Osmotic Regulators, SPAD and Chlorophyll Fluorescence Characteristics of Sweet Potato[J]. Chinese Agricultural Science Bulletin, 2019, 35(26):29-34. [25] De Gara L, de Pinto M C, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction[J]. Plant Physiology and Biochemistry, 2003, 41(10):863-870. [26] 何九军. 半夏茎腐病原菌对西和半夏种子萌发及幼苗生长的影响[J]. 重庆文理学院学报, 2015, 34(5):109-112. HE Jiujun. Effects of stem rot pathogens on seed germination and seedling growth of Pinellia sinensis[J]. Journal of Chongqing University of Arts and Sciences, 2015, 34(5):109-112. [27] 武欣怡, 陈顺钰, 朱晨璐, 等. 酸胁迫对马尾松种子萌发不同时期体内渗透调节物质和酶活性的影响[J]. 江苏农业科学, 2022, 50(19):156-163. WU Xinyi, CHENG Shunyu, ZHU Chenlu, et al. Effects of acid stress on the activities of osmoregulatory substances and enzymes in vivo at different stages of Seed germination of Masson Pine[J]. Jiangsu Agricultural Sciences, 2022, 50(19):156-163. [28] 杜梦甜, 王博一, 李京航, 等. 落叶松不同根序细根可溶性糖和淀粉浓度的差异和季节动态[J]. 植物研究, 2021, 41(4):491-495. DU Mengtian, WANG Boyi, LI Jinghang, et al. Differences and Seasonal Dynamics of Soluble Sugar and StarchConcentrations in Fine Roots with Different Root Orders of Larix gmelinii[J]. Bulletin of Botanical Research, 2021, 41(4):491-495. [29] Lapie C, Leglize P, Paris C, et al. Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress[J]. Environmental Science and Pollution Research, 2019, 26:17520-17534. [30] Mitchell P J, O'Grady A P, Tissue D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. New Phytol, 2013, 197:862-872. [31] Bueno P, Rio L D. Purification and properties of glyoxysomal cuprozinc superoxide dismutase from watermelon cotyledons (Citrullus vulgaris Schrad)[J]. Plant Physiology, 1992, 98(1):331-336. [32] Cheng Y, Song C. Hydrogen peroxide homeostasis and signaling in plant cells[J]. Science in China. Series C, Life sciences, 2006, 49(1):1-11. [33] Hossain M A, Bhattacharjee S, Armin S M, et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:insights from ROS detoxification and scavenging[J]. Frontiers in plant science, 2015, 6:420. [34] Feierabend J. Catalases in plants:molecular and functional properties and role in stress defence[J]. Antioxidants and reactive oxygen species in plants, 2005,(4):101-140. [35] Scandalios J G. Oxidative stress:molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian journal of medical and biological research, 2005,(38):995-1014. [36] Yadav V, Wang Z, Guo Y, et al. Comparative transcriptome profiling reveals the role of phytohormones and phenylpropanoid pathway in early-stage resistance against powdery mildew in watermelon (Citrullus lanatus L.)[J]. Frontiers in Plant Science, 2022,(13):1016822. [37] Karak P. Biological activities of flavonoids:An overview[J]. Int. J. Pharm. Sci. Res, 2019, 10(4):1567-1574. [38] 裴志超, 周继华, 徐向东, 等. 干旱处理对不同玉米品种叶片光合速率和抗氧化特性及产量的影响[J]. 作物杂志, 2021, (5):95-100. PEI Zhichao, ZHOU Jihua, XU Xiangdong, et al. Effects of drought treatment on photosynthetic rate, antioxidant characteristics and yield of leaves of different Maize varieties[J]. Crop Journal, 2021,(5):95-100. [39] 田鑫, 钟程, 韩珊. 2种大豆对炭疽病抗性生理的研究[J]. 现代园艺, 2024, 47(1):45-68, 53. TIAN Xing, ZHONG Cheng, Han Shan. Study on physiology of resistance of two kinds of soybean to anthracnose[J]. Modern Horticulture, 2024, 47(1):45-68, 53. [40] 张宝柱, 张蓉蓉, 范满良, 等. 霜霉病对甜瓜生理生化及相关基因的影响[J/OL]. 分子植物育种, 2024,:(3)1-18. http://kns.cnki.net/kcms/detail/46.1068.S.20231019.1341.006.html. ZHANG Baozhu, ZHANG Rongrong, FAN Manliang, et al. Effect of Downy Mildew Infestation on the Physiology,Biochemistry and Related Genes of Melon[J/OL]. Molecular Plant Breeding, 2024,(3)1-18.http://kns.cnki.net/kcms/detail/46.1068.S.20231019.1341.006.html. [41] 史普酉, 贾孟, 杨成翠, 等. 不同黑胫病发病程度烟株生理特性的比较分析[J]. 江西农业学报, 2020, 32(1):19-26. SHI Puyou, JIA Meng, YANG Chengcui, et al. Research on Physiological Characteristics of Different Degree Black Shank Disease of Flue-cured Tobacco[J]. Acta Agriculturae Jiangxi, 2020, 32(1):19-26. [42] 马光恕, 姜博, 廉华, 等. 棘孢木霉对向日葵幼苗抗氧化酶活性及菌核病防效的影响[J]. 干旱地区农业研究, 2023, 41(5):246-255, 263. MA Guangshu, JIANG Bo, LIAN Hua, et al. Effects of Trichoderma asperellum on antioxidant enzyme activity of sunflower seedlings and control of Sclerotinia sclerotiorum[J]. Agricultural Research in the Arid Areas, 2023, 41(5):246-255, 263. [43] 王浩铭. 镉胁迫下苘麻生理响应与转录组学研究[D]. 兰州:兰州交通大学, 2023. WANG Haoming. Physiological response and transcriptomics of Abutilon theophrastiunder cadmium stress[D]. Lanzhou:Lanzhou Jiaotong University, 2023. [44] 王海宾. 铜镉胁迫对茶树抗坏血酸-谷胱甘肽循环系统的影响[D]. 南京:南京农业大学, 2020. WANG Haibin. Effects of Copper and Cadmium Stress on the AsA-GSH cyclein Tea Plants[D]. Nanjing:Nanjing Agricultural University, 2020. [45] 单长卷, 韩蕊莲, 梁宗锁. 黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应[J]. 植物生态学报, 2011, 35(6):653-662. SHAN Changquan, HAN Ruilian, LIANG Zongsuo. Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the Loess Plateau of China[J]. Chinese Journal of Plant Ecology, 2011, 35(6):653-662. [46] Andersson I, Backlund A. Structure and function of Rubisco[J]. Plant Physiology and Biochemistry, 2008, 46(3):275-291. |