新疆农业科学 ›› 2024, Vol. 61 ›› Issue (8): 1993-2003.DOI: 10.6048/j.issn.1001-4330.2024.08.020
收稿日期:
2024-01-25
出版日期:
2024-08-20
发布日期:
2024-09-19
通信作者:
高杰(1963-),男,天津人,教授,博士,硕士生/博士生导师,研究方向为蔬菜栽培与生理,(E-mail)13899825018@163.com作者简介:
阿热孜姑·吐逊(1997-),女,新疆图木舒克人,硕士研究生,研究方向为蔬菜栽培与生理,(E-mail)3398929418@qq.com
基金资助:
Arezigu Tuxun(), JIA Kai, GAO Jie(
)
Received:
2024-01-25
Published:
2024-08-20
Online:
2024-09-19
Correspondence author:
GAO Jie(1963 - ), male, from Tianjin, professor, doctor, doctoral supervisor, research direction: vegetable cultivation and physiology, (E-mail) 13899825018@163.comSupported by:
摘要:
【目的】研究不同栽培基质与播种密度对洋葱小鳞茎产出个数的影响,为实现洋葱的机械化定植奠定理论和技术基础。【方法】以洋葱品种白雪为材料,采用平底育苗盘播种方法,设计5种栽培基质和4种播种密度共15个处理,分析洋葱小鳞茎生长变化。【结果】羊粪:园林土=1:3、密度2.5 cm×2.5 cm处理的洋葱幼苗株高最高,为25.95 cm,假茎粗最粗,为2.27 mm;草炭:珍珠岩=1:2、密度2.5 cm×2.5 cm处理的洋葱叶片数最多,为4.20片;草炭:珍珠岩=1:2、密度2.5 cm×2.5 cm处理的过氧化物酶(POD)活性显著高于其他处理,羊粪:园林土=1:3、密度1.5 cm×1.5 cm处理的过氧化氢酶(CAT)活性显著高于其他处理。珍珠岩:蛭石=1:3的所有密度处理间超氧化物歧化酶(SOD)差异不显著,但高于其他处理。蛭石:珍珠岩=1:2、密度2 cm×2 cm处理的丙二醛(MDA)含量值最高。草炭:珍珠岩=1:2、密度1.5 cm×1.5 cm的处理产出鳞茎个数最多,为35.55个/dm2。【结论】草炭:珍珠岩=1:2、密度2 cm×2 cm的处理排名第一,该处理发芽率为91.33%,株高为18.01 cm,假茎粗为2.14 mm,叶片数为3.89片叶,鳞茎产出个数排名第三,综合表现良好,叶片数与假茎粗之间呈显著正相关(r=0.623,P<0.05);鳞茎产出个数与株高之间呈显著负相关(r=-0.518,P<0.05),在密度与基质二者的交互作用下鳞茎产出个数差异极显著。
中图分类号:
阿热孜姑·吐逊, 贾凯, 高杰. 不同基质和播种密度对洋葱小鳞茎产出个数的影响[J]. 新疆农业科学, 2024, 61(8): 1993-2003.
Arezigu Tuxun, JIA Kai, GAO Jie. Effects of different substrates and planting densities on onion bulblet yield[J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1993-2003.
处理 Treatments | 培养土 Compost | 草炭 Peat | 珍珠岩 Perlite | 蛭石 Vermiculite | 羊粪 Goat manure | 园林土 Landscape soil | 播种密度 Seed population (cm) |
---|---|---|---|---|---|---|---|
T1 | 1 | - | - | - | - | - | 1.5×1.5 |
T2 | 1 | - | - | - | - | - | 2×2 |
T3 | 1 | - | - | - | - | - | 2.5×2.5 |
T4 | - | 1 | 2 | - | - | - | 1.5×1.5 |
T5 | - | 1 | 2 | - | - | - | 2×2 |
T6 | - | 1 | 2 | - | - | - | 2.5×2.5 |
T7 | - | - | - | - | 1 | 3 | 1.5×1.5 |
T8 | - | - | - | - | 1 | 3 | 2×2 |
T9 | - | - | - | - | 1 | 3 | 2.5×2.5 |
T10 | - | - | 1 | 2 | - | - | 2×2 |
T11 | - | - | 1 | 2 | - | - | 2.5×2.5 |
T12 | - | - | 1 | 2 | - | - | 3×3 |
T13 | - | - | 1 | 3 | - | - | 2×2 |
T14 | - | - | 1 | 3 | - | - | 2.5×2.5 |
T15 | - | - | 1 | 3 | - | - | 3×3 |
表1 不同基质配比(体积比)和不同播种密度处理
Tab.1 Different matrix ratio ( volume ratio ) and different sowing density combination
处理 Treatments | 培养土 Compost | 草炭 Peat | 珍珠岩 Perlite | 蛭石 Vermiculite | 羊粪 Goat manure | 园林土 Landscape soil | 播种密度 Seed population (cm) |
---|---|---|---|---|---|---|---|
T1 | 1 | - | - | - | - | - | 1.5×1.5 |
T2 | 1 | - | - | - | - | - | 2×2 |
T3 | 1 | - | - | - | - | - | 2.5×2.5 |
T4 | - | 1 | 2 | - | - | - | 1.5×1.5 |
T5 | - | 1 | 2 | - | - | - | 2×2 |
T6 | - | 1 | 2 | - | - | - | 2.5×2.5 |
T7 | - | - | - | - | 1 | 3 | 1.5×1.5 |
T8 | - | - | - | - | 1 | 3 | 2×2 |
T9 | - | - | - | - | 1 | 3 | 2.5×2.5 |
T10 | - | - | 1 | 2 | - | - | 2×2 |
T11 | - | - | 1 | 2 | - | - | 2.5×2.5 |
T12 | - | - | 1 | 2 | - | - | 3×3 |
T13 | - | - | 1 | 3 | - | - | 2×2 |
T14 | - | - | 1 | 3 | - | - | 2.5×2.5 |
T15 | - | - | 1 | 3 | - | - | 3×3 |
处理 Treatments | 容重 Bulk density (g/cm3) | 总孔隙度 Total porosity (%) | 通气孔隙度 Aeration porosity (%) | 持水孔隙度 Water holding porosity (%) | 气水比 Air-water ratio | pH值 pH value | 电导率EC (mS/cm) |
---|---|---|---|---|---|---|---|
T1 | 0.86±0.01d | 55±0.01c | 3.62±0.01g | 51.38±0.01cd | 0.07±0.01f | 7.65±0.18f | 1.37±0.15a |
T2 | 0.85±0.01de | 54.93±0.01c | 3.89±0.01g | 51.04±0.01cd | 0.08±0.02ef | 8±0.11def | 1.3±0.06a |
T3 | 0.83±0.01e | 55.46±0.01c | 3.48±0g | 51.98±0.01bcd | 0.07±0.01f | 8.15±0.06def | 1.36±0.01a |
T4 | 0.12±0.01i | 68.03±0.02a | 16.39±0.04ab | 51.64±0.06bcd | 0.34±0.13ab | 7.79±0.2ef | 0.14±0.03ef |
T5 | 0.11±0.02i | 66.47±0.01ab | 15.6±0.02abc | 50.86±0.01cd | 0.32±0.04abc | 8.22±0.46cde | 0.16±0.02def |
T6 | 0.11±0.01i | 66.27±0.02ab | 18.31±0.02a | 47.96±0.03d | 0.41±0.07a | 7.65±0.27f | 0.12±0.03f |
T7 | 1.03±0.02c | 46.86±0.01d | 5.8±0.01fg | 41.06±0.01e | 0.14±0.01def | 8.73±0.18bc | 0.39±0.07c |
T8 | 1.13±0.01a | 45.19±0.01d | 6.49±0efg | 38.69±0.01e | 0.17±0.01def | 8.86±0.07b | 0.37±0.04c |
T9 | 1.09±0.02b | 46.42±0.01d | 6.48±0efg | 39.94±0.01e | 0.16±0.01def | 8.41±0.39bcd | 0.5±0.1b |
T10 | 0.19±0.01gh | 65.72±0.02ab | 10.17±0.06def | 55.55±0.04abc | 0.2±0.13de | 9.56±0.68a | 0.2±0.01def |
T11 | 0.19±0gh | 65.24±0.01b | 12.63±0.02bcd | 52.61±0.02bcd | 0.25±0.05cd | 9.62±0.2a | 0.2±0.03def |
T12 | 0.19±0.02h | 65.08±0.02b | 9.64±0.01def | 55.44±0.02abc | 0.18±0.02def | 9.7±0.33a | 0.22±0.05def |
T13 | 0.21±0.01fg | 67.87±0.01a | 9.42±0.02def | 58.45±0.03a | 0.17±0.05def | 9.98±0.16a | 0.25±0.01d |
T14 | 0.23±0f | 66.9±0ab | 9.76±0.01def | 57.14±0.02ab | 0.18±0.03def | 10.07±0.19a | 0.24±0.01de |
T15 | 0.22±0.03fg | 66.36±0.01ab | 11.13±0.05cde | 55.23±0.06abc | 0.22±0.12cd | 9.87±0.33a | 0.26±0.03d |
表2 不同基质的理化性质的比较
Tab.2 Comparisons of physicochemical properties of different substrates
处理 Treatments | 容重 Bulk density (g/cm3) | 总孔隙度 Total porosity (%) | 通气孔隙度 Aeration porosity (%) | 持水孔隙度 Water holding porosity (%) | 气水比 Air-water ratio | pH值 pH value | 电导率EC (mS/cm) |
---|---|---|---|---|---|---|---|
T1 | 0.86±0.01d | 55±0.01c | 3.62±0.01g | 51.38±0.01cd | 0.07±0.01f | 7.65±0.18f | 1.37±0.15a |
T2 | 0.85±0.01de | 54.93±0.01c | 3.89±0.01g | 51.04±0.01cd | 0.08±0.02ef | 8±0.11def | 1.3±0.06a |
T3 | 0.83±0.01e | 55.46±0.01c | 3.48±0g | 51.98±0.01bcd | 0.07±0.01f | 8.15±0.06def | 1.36±0.01a |
T4 | 0.12±0.01i | 68.03±0.02a | 16.39±0.04ab | 51.64±0.06bcd | 0.34±0.13ab | 7.79±0.2ef | 0.14±0.03ef |
T5 | 0.11±0.02i | 66.47±0.01ab | 15.6±0.02abc | 50.86±0.01cd | 0.32±0.04abc | 8.22±0.46cde | 0.16±0.02def |
T6 | 0.11±0.01i | 66.27±0.02ab | 18.31±0.02a | 47.96±0.03d | 0.41±0.07a | 7.65±0.27f | 0.12±0.03f |
T7 | 1.03±0.02c | 46.86±0.01d | 5.8±0.01fg | 41.06±0.01e | 0.14±0.01def | 8.73±0.18bc | 0.39±0.07c |
T8 | 1.13±0.01a | 45.19±0.01d | 6.49±0efg | 38.69±0.01e | 0.17±0.01def | 8.86±0.07b | 0.37±0.04c |
T9 | 1.09±0.02b | 46.42±0.01d | 6.48±0efg | 39.94±0.01e | 0.16±0.01def | 8.41±0.39bcd | 0.5±0.1b |
T10 | 0.19±0.01gh | 65.72±0.02ab | 10.17±0.06def | 55.55±0.04abc | 0.2±0.13de | 9.56±0.68a | 0.2±0.01def |
T11 | 0.19±0gh | 65.24±0.01b | 12.63±0.02bcd | 52.61±0.02bcd | 0.25±0.05cd | 9.62±0.2a | 0.2±0.03def |
T12 | 0.19±0.02h | 65.08±0.02b | 9.64±0.01def | 55.44±0.02abc | 0.18±0.02def | 9.7±0.33a | 0.22±0.05def |
T13 | 0.21±0.01fg | 67.87±0.01a | 9.42±0.02def | 58.45±0.03a | 0.17±0.05def | 9.98±0.16a | 0.25±0.01d |
T14 | 0.23±0f | 66.9±0ab | 9.76±0.01def | 57.14±0.02ab | 0.18±0.03def | 10.07±0.19a | 0.24±0.01de |
T15 | 0.22±0.03fg | 66.36±0.01ab | 11.13±0.05cde | 55.23±0.06abc | 0.22±0.12cd | 9.87±0.33a | 0.26±0.03d |
处理 Treatments | POD过氧化物酶活性 Peroxidase (U/(g·min)) | CAT过氧化氢酶活性 Catalase (U/(g·min)) | SOD超氧化物歧化酶活性 Superoxidedismutas (U/(g·h)) | MDA丙二醛含量 Malondialdehyde (nmol/g) |
---|---|---|---|---|
T1 | 3.09±2c | 3.56±0.47def | 4.42±1.43fg | 17.41±1.91ab |
T2 | 3.09±0.8c | 3.93±0.29cdef | 3.61±0.92g | 20.7±4.88ab |
T3 | 1.93±0.4c | 3.69±0.87def | 4.08±0.84g | 20.73±4.76ab |
T4 | 10.56±7.9abc | 2.07±0.7f | 7.56±0.87bcd | 12.9±4.22ab |
T5 | 23.6±20.06abc | 2.6±0.99ef | 6.72±0.87bcd | 26.63±16.27a |
T6 | 33.4±37.58a | 3.96±1.74cdef | 4.6±1.43efg | 16.17±1.6ab |
T7 | 28.31±10.67ab | 6.47±0.24a | 6.14±0.79cde | 21.76±3.29ab |
T8 | 12.71±3.72abc | 5.18±2.13abcd | 5.98±1.15def | 11.49±1.53ab |
T9 | 19.04±9.8abc | 4.64±0.71abcde | 7.8±0.26bc | 26.39±21.15a |
T10 | 13.2±3.06abc | 3.93±0.93cdef | 9.93±0.32a | 29.02±22.37a |
T11 | 6.56±1.52bc | 4.42±1.56bcde | 8.01±0.38b | 4.98±3.42b |
T12 | 7.27±1.56bc | 4.53±1.11abcde | 7.83±0.65bc | 6.2±2.97b |
T13 | 6.96±1.73bc | 4.49±1.04abcde | 10.31±1.43a | 15.49±1.39ab |
T14 | 8.96±5.21bc | 5.87±0.24abc | 11.23±0.4a | 17.72±8.42ab |
T15 | 14.49±1.06abc | 6.07±0.55ab | 10.36±0.95a | 22.7±5.58ab |
表3 不同处理下抗氧化酶活性及丙二醛含量的变化
Tab.3 Changes of different treatments on antioxidase activity and malondialdehyde content
处理 Treatments | POD过氧化物酶活性 Peroxidase (U/(g·min)) | CAT过氧化氢酶活性 Catalase (U/(g·min)) | SOD超氧化物歧化酶活性 Superoxidedismutas (U/(g·h)) | MDA丙二醛含量 Malondialdehyde (nmol/g) |
---|---|---|---|---|
T1 | 3.09±2c | 3.56±0.47def | 4.42±1.43fg | 17.41±1.91ab |
T2 | 3.09±0.8c | 3.93±0.29cdef | 3.61±0.92g | 20.7±4.88ab |
T3 | 1.93±0.4c | 3.69±0.87def | 4.08±0.84g | 20.73±4.76ab |
T4 | 10.56±7.9abc | 2.07±0.7f | 7.56±0.87bcd | 12.9±4.22ab |
T5 | 23.6±20.06abc | 2.6±0.99ef | 6.72±0.87bcd | 26.63±16.27a |
T6 | 33.4±37.58a | 3.96±1.74cdef | 4.6±1.43efg | 16.17±1.6ab |
T7 | 28.31±10.67ab | 6.47±0.24a | 6.14±0.79cde | 21.76±3.29ab |
T8 | 12.71±3.72abc | 5.18±2.13abcd | 5.98±1.15def | 11.49±1.53ab |
T9 | 19.04±9.8abc | 4.64±0.71abcde | 7.8±0.26bc | 26.39±21.15a |
T10 | 13.2±3.06abc | 3.93±0.93cdef | 9.93±0.32a | 29.02±22.37a |
T11 | 6.56±1.52bc | 4.42±1.56bcde | 8.01±0.38b | 4.98±3.42b |
T12 | 7.27±1.56bc | 4.53±1.11abcde | 7.83±0.65bc | 6.2±2.97b |
T13 | 6.96±1.73bc | 4.49±1.04abcde | 10.31±1.43a | 15.49±1.39ab |
T14 | 8.96±5.21bc | 5.87±0.24abc | 11.23±0.4a | 17.72±8.42ab |
T15 | 14.49±1.06abc | 6.07±0.55ab | 10.36±0.95a | 22.7±5.58ab |
相关系数 Correlation coefficient | 株高 Plant hight | 假茎粗 Pseudostem diameter | 叶片数 Leaf number | 鳞茎产 出个数 Number of bulblets produced | 容重 Bulk density | 总孔隙度 Total porosity | 通气 孔隙度 Aeration porosity | 持水 孔隙度 Water holding | 气水比 Air-water ratio | pH值 pH value | 电导率EC |
---|---|---|---|---|---|---|---|---|---|---|---|
假茎粗 Pseudostem diameter | 0.001 | 1.000 | |||||||||
叶片数 Leaf number | 0.043 | 0.623* | 1.000 | ||||||||
鳞茎产出个数 Number of bulblets produced | -0.518* | -0.297 | -0.351 | 1.000 | |||||||
容重 Bulk density | 0.555* | -0.517* | -0.666** | -0.068 | 1.000 | ||||||
总孔隙度 Total porosity | -0.557* | 0.473 | 0.555* | 0.123 | -0.980** | 1.000 | |||||
通气孔隙度 Aeration porosity | -0.491 | 0.650** | 0.732** | 0.127 | -0.808** | 0.712** | 1.000 | ||||
持水孔隙度 Water holding | -0.399 | 0.162 | 0.213 | 0.074 | -0.745** | 0.845** | 0.227 | 1.000 | |||
气水比 Air-water ratio | -0.433 | 0.659** | 0.701** | 0.108 | -0.680** | 0.564* | 0.980** | 0.037 | 1.000 | ||
pH值 pH value | 0.314 | -0.007 | 0.554* | -0.502 | -0.354 | 0.342 | 0.017 | 0.462 | -0.094 | 1.000 | |
电导率EC | 0.050 | -0.418 | -0.907** | 0.153 | 0.614* | -0.475 | -0.773** | -0.071 | -0.761** | -0.480 | 1.000 |
表4 不同基质的理化性质与生长指标之间的Pearson相关性
Tab.4 Pearson correlation analysis between physical and chemical properties of different substrates and growth indexes
相关系数 Correlation coefficient | 株高 Plant hight | 假茎粗 Pseudostem diameter | 叶片数 Leaf number | 鳞茎产 出个数 Number of bulblets produced | 容重 Bulk density | 总孔隙度 Total porosity | 通气 孔隙度 Aeration porosity | 持水 孔隙度 Water holding | 气水比 Air-water ratio | pH值 pH value | 电导率EC |
---|---|---|---|---|---|---|---|---|---|---|---|
假茎粗 Pseudostem diameter | 0.001 | 1.000 | |||||||||
叶片数 Leaf number | 0.043 | 0.623* | 1.000 | ||||||||
鳞茎产出个数 Number of bulblets produced | -0.518* | -0.297 | -0.351 | 1.000 | |||||||
容重 Bulk density | 0.555* | -0.517* | -0.666** | -0.068 | 1.000 | ||||||
总孔隙度 Total porosity | -0.557* | 0.473 | 0.555* | 0.123 | -0.980** | 1.000 | |||||
通气孔隙度 Aeration porosity | -0.491 | 0.650** | 0.732** | 0.127 | -0.808** | 0.712** | 1.000 | ||||
持水孔隙度 Water holding | -0.399 | 0.162 | 0.213 | 0.074 | -0.745** | 0.845** | 0.227 | 1.000 | |||
气水比 Air-water ratio | -0.433 | 0.659** | 0.701** | 0.108 | -0.680** | 0.564* | 0.980** | 0.037 | 1.000 | ||
pH值 pH value | 0.314 | -0.007 | 0.554* | -0.502 | -0.354 | 0.342 | 0.017 | 0.462 | -0.094 | 1.000 | |
电导率EC | 0.050 | -0.418 | -0.907** | 0.153 | 0.614* | -0.475 | -0.773** | -0.071 | -0.761** | -0.480 | 1.000 |
来源 Source | 项目 Items | 平方和 Sum of squares | 自由度 Degree of freedom | 均方和 Mean square | F值 F-value | 显著性 Significance |
---|---|---|---|---|---|---|
基质 Matrix | 株高 | 177.829 | 4 | 44.457 | 19.857 | 0.000 |
叶片数 | 0.919 | 4 | 0.230 | 19.151 | 0.000 | |
假茎粗 | 10.222 | 4 | 2.555 | 233.093 | 0.000 | |
鳞茎产出个数 | 64 233.746 | 4 | 16 058.437 | 53.346 | 0.000 | |
密度 Density of crop | 株高 | 27.775 | 3 | 9.258 | 4.135 | 0.014 |
叶片数 | 0.451 | 3 | 0.150 | 12.524 | 0.000 | |
假茎粗 | 0.462 | 3 | 0.154 | 14.047 | 0.000 | |
鳞茎产出个数 | 143 262.097 | 3 | 47 754.032 | 158.638 | 0.000 | |
基质× 密度 Matrix × density | 株高 | 20.951 | 7 | 2.993 | 1.337 | 0.268 |
叶片数 | 0.207 | 7 | 0.030 | 2.466 | 0.040 | |
假茎粗 | 0.128 | 7 | 0.018 | 1.663 | 0.156 | |
鳞茎产出个数 | 27 581.658 | 7 | 3 940.237 | 13.089 | 0.000 |
表5 基质、密度与生长指标及鳞茎产出个数的方差
Tab.5 Variance analysis table of matrix, density and growth index and number of bulbs output
来源 Source | 项目 Items | 平方和 Sum of squares | 自由度 Degree of freedom | 均方和 Mean square | F值 F-value | 显著性 Significance |
---|---|---|---|---|---|---|
基质 Matrix | 株高 | 177.829 | 4 | 44.457 | 19.857 | 0.000 |
叶片数 | 0.919 | 4 | 0.230 | 19.151 | 0.000 | |
假茎粗 | 10.222 | 4 | 2.555 | 233.093 | 0.000 | |
鳞茎产出个数 | 64 233.746 | 4 | 16 058.437 | 53.346 | 0.000 | |
密度 Density of crop | 株高 | 27.775 | 3 | 9.258 | 4.135 | 0.014 |
叶片数 | 0.451 | 3 | 0.150 | 12.524 | 0.000 | |
假茎粗 | 0.462 | 3 | 0.154 | 14.047 | 0.000 | |
鳞茎产出个数 | 143 262.097 | 3 | 47 754.032 | 158.638 | 0.000 | |
基质× 密度 Matrix × density | 株高 | 20.951 | 7 | 2.993 | 1.337 | 0.268 |
叶片数 | 0.207 | 7 | 0.030 | 2.466 | 0.040 | |
假茎粗 | 0.128 | 7 | 0.018 | 1.663 | 0.156 | |
鳞茎产出个数 | 27 581.658 | 7 | 3 940.237 | 13.089 | 0.000 |
处理 Treatments | 株高 Plant hight | 假茎粗 Pseudostem diameter | 叶片数 Leaf number | 小鳞茎产出个数 Number of bulblets produced | 平均隶属度 Average subordinative level | 综合排名 Comprehensive ranking |
---|---|---|---|---|---|---|
T1 | 0.490 | 0.411 | 0.333 | 0.648 | 0.471 | 9 |
T2 | 0.377 | 0.403 | 0.500 | 0.649 | 0.482 | 7 |
T3 | 0.533 | 0.435 | 0.485 | 0.417 | 0.467 | 10 |
T4 | 0.537 | 0.373 | 0.389 | 0.467 | 0.441 | 13 |
T5 | 0.619 | 0.560 | 0.556 | 0.667 | 0.600 | 1 |
T6 | 0.602 | 0.418 | 0.400 | 0.333 | 0.438 | 14 |
T7 | 0.391 | 0.636 | 0.444 | 0.441 | 0.478 | 8 |
T8 | 0.577 | 0.558 | 0.333 | 0.619 | 0.522 | 5 |
T9 | 0.646 | 0.542 | 0.519 | 0.600 | 0.577 | 2 |
T10 | 0.335 | 0.548 | 0.533 | 0.444 | 0.465 | 11 |
T11 | 0.662 | 0.600 | 0.333 | 0.367 | 0.491 | 6 |
T12 | 0.596 | 0.364 | 0.662 | 0.472 | 0.523 | 4 |
T13 | 0.380 | 0.417 | 0.667 | 0.356 | 0.455 | 12 |
T14 | 0.459 | 0.475 | 0.667 | 0.500 | 0.525 | 3 |
T15 | 0.485 | 0.481 | 0.333 | 0.444 | 0.436 | 15 |
表6 不同处理下洋葱幼苗生长指标及产出个数的隶属函数值变化
Tab.6 Changes of the membership function values of growth index and output number of onion seedlings under different treatments
处理 Treatments | 株高 Plant hight | 假茎粗 Pseudostem diameter | 叶片数 Leaf number | 小鳞茎产出个数 Number of bulblets produced | 平均隶属度 Average subordinative level | 综合排名 Comprehensive ranking |
---|---|---|---|---|---|---|
T1 | 0.490 | 0.411 | 0.333 | 0.648 | 0.471 | 9 |
T2 | 0.377 | 0.403 | 0.500 | 0.649 | 0.482 | 7 |
T3 | 0.533 | 0.435 | 0.485 | 0.417 | 0.467 | 10 |
T4 | 0.537 | 0.373 | 0.389 | 0.467 | 0.441 | 13 |
T5 | 0.619 | 0.560 | 0.556 | 0.667 | 0.600 | 1 |
T6 | 0.602 | 0.418 | 0.400 | 0.333 | 0.438 | 14 |
T7 | 0.391 | 0.636 | 0.444 | 0.441 | 0.478 | 8 |
T8 | 0.577 | 0.558 | 0.333 | 0.619 | 0.522 | 5 |
T9 | 0.646 | 0.542 | 0.519 | 0.600 | 0.577 | 2 |
T10 | 0.335 | 0.548 | 0.533 | 0.444 | 0.465 | 11 |
T11 | 0.662 | 0.600 | 0.333 | 0.367 | 0.491 | 6 |
T12 | 0.596 | 0.364 | 0.662 | 0.472 | 0.523 | 4 |
T13 | 0.380 | 0.417 | 0.667 | 0.356 | 0.455 | 12 |
T14 | 0.459 | 0.475 | 0.667 | 0.500 | 0.525 | 3 |
T15 | 0.485 | 0.481 | 0.333 | 0.444 | 0.436 | 15 |
[1] | Zhao X X, Lin F J, Li H, et al. Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.)[J]. Frontiers in Nutrition, 2021, (8): 669-805. |
[2] | 宋银行, 徐立功, 陈霞, 等. 山东省出口洋葱高产栽培技术[J]. 蔬菜, 2012,(3): 11-13. |
SONG Yinhang, XU Ligong, CHEN Xia, et al. High-yield cultivation techniques of export Onions in Shandong Province[J]. Vegetables, 2012,(3): 11-13. | |
[3] | 张宏, 朱海山, 杨荣萍, 等. 洋葱的小鳞茎栽培技术[J]. 云南农业, 2003,(3): 6. |
ZHANG Hong, ZHU Haishan, YANG Rongping, et al. Cultivation techniques of onion bulbs[J]. Yunnan Agriculture, 2003,(3): 6. | |
[4] | 潘耀平, 赵亚夫. 洋葱小球秋栽冬收技术[J]. 长江蔬菜, 1991,(2): 14. |
PAN Yaoping, ZHAO Yafu. Techniques of autumn planting and winter harvest of onion pellets[J]. Journal of Changjiang Vegetables, 1991,(2): 14. | |
[5] | 郭世荣, 孙锦. 无土栽培学(3版)[M]. 北京: 中国农业出版社, 2018. |
GUO Shirong, SUN Jin. Soilless culture(3rd ed)[M]. Beijing: China Agriculture Press, 2018. | |
[6] | 王学奎, 黄见良. 植物生理生化实验原理与技术(3版)[M]. 北京: 高等教育出版社, 2015. |
WANG Xuekui, HUANG Jianliang. Principles and techniques of plant physiological biochemical experiment(3rd ed)[M]. Beijing: Higher Education Press, 2015. | |
[7] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[8] | 周磊. 有机酸结合物理方法钝化多酚氧化酶机理及其应用[D]. 南昌: 南昌大学, 2018. |
ZHOU Lei. Mechanism and application of organic acid combined with physical method to passivate polyphenol oxidase[D]. Nanchang: Nanchang University, 2018. | |
[9] | 张有林, 张润光. 石榴贮期果皮褐变机理的研究[J]. 中国农业科学, 2007, 40(3): 573-581. |
ZHANG Youlin, ZHANG Runguang. Study on the mechanism of browning of pomegranate peel in different storage conditions[J]. Scientia Agricultura Sinica, 2007, 40(3): 573-581. | |
[10] | Aquino-Bolaños E N, Mercado-Silva E. Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama[J]. Postharvest Biology and Technology, 2004, 33(3): 275-283. |
[11] | 郝丹, 张璐, 孙向阳, 等. 园林废弃物堆肥和牛粪有机肥用于金盏菊育苗的研究[J]. 西北林学院学报, 2019, 34(4): 150-155. |
HAO Dan, ZHANG Lu, SUN Xiangyang, et al. Effects of green waste compost and cow manure organic fertilizer on the emergence rate of Calendula officinalis[J]. Journal of Northwest Forestry University, 2019, 34(4): 150-155. | |
[12] | 胡亚利, 孙向阳, 龚小强, 等. 混合改良剂改善园林废弃物堆肥基质品质提高育苗效果[J]. 农业工程学报, 2014, 30(18): 198-204. |
HU Yali, SUN Xiangyang, GONG Xiaoqiang, et al. Mix-ameliorant improving substrates quality of waste compost from garden and seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 198-204. | |
[13] | 姜生秀, 李昌龙, 李得禄. 衰败梭梭林下土壤结皮发育过程中水分补给对黄花补血草种子萌发的影响[J]. 西北林学院学报, 2021, 36(3): 115-120. |
JIANG Shengxiu, LI Changlong, LI Delu. Effects of soil crust and water supply on seed germination of Limonium aureum under decayed Haloxylon ammodendron forest[J]. Journal of Northwest Forestry University, 2021, 36(3): 115-120. | |
[14] | 吴涛, 晋艳, 杨宇虹, 等. 烤烟漂浮育苗基质理化性状与出苗率的相关性[J]. 烟草科技, 2007, 40(8): 43-47, 51. |
WU Tao, JIN Yan, YANG Yuhong, et al. Correlation between germination rate of flue-cured tobacco seed and physical and chemical properties of matrix in floating system[J]. Tobacco Science & Technology, 2007, 40(8): 43-47, 51. | |
[15] | 李建设, 高艳明, 冯艳. 蛭石和珍珠岩基质引发对洋葱种子发芽率影响[J]. 北方园艺, 2006,(6): 16-17. |
LI Jianshe, GAO Yanming, FENG Yan. Effect of solid medium priming on onion seed’s germination rate[J]. Northern Horticulture, 2006,(6): 16-17. | |
[16] | Ge M H, Chen G, Hong J, et al. Screening for formulas of complex substrates for seedling cultivation of tomato and marrow squash[J]. Procedia Environmental Sciences, 2012, (16): 606-615. |
[17] | 郭世荣. 固体栽培基质研究、开发现状及发展趋势[J]. 农业工程学报, 2005, 21(S2): 1-4. |
GUO Shirong. Research progress, current exploitations and developing trends of solid cultivation medium[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 1-4. | |
[18] | 黄军华. 不同基质对金森女贞容器苗生长的影响[J]. 西北林学院学报, 2012, 27(4): 149-152. |
HUANG Junhua. Effects of different media on the growth of container seedlings of Ligustrum japonicum ‘howardii’[J]. Journal of Northwest Forestry University, 2012, 27(4): 149-152. | |
[19] | 杨如意, 周燕杰, 张丽宁, 等. 不同基质配方对几种阳台蔬菜生长的影响[J]. 现代农业科技, 2015,(24): 87-88, 90. |
YANG Ruyi, ZHOU Yanjie, ZHANG Lining, et al. Effects of different substrate formula on growth of several vegetables[J]. Modern Agricultural Science and Technology, 2015,(24): 87-88, 90. | |
[20] | 张雪江, 张文川, 杨文静, 等. 不同育苗基质对洋葱幼苗根系生长发育的影响[J]. 上海蔬菜, 2022,(4): 53-54. |
ZHANG Xuejiang, ZHANG Wenchuan, YANG Wenjing, et al. Effects of different seedling substrates on root growth and development of onion seedlings[J]. Shanghai Vegetables, 2022,(4): 53-54. | |
[21] | 张建. 不同育苗基质对洋葱幼苗生长的影响[J]. 长江蔬菜, 2010,(12): 64-65. |
ZHANG Jian. Effect of different nursery media on the growth of onion seedlings[J]. Journal of Changjiang Vegetables, 2010,(12): 64-65. | |
[22] | 党永花. 不同育苗基质及播种时间对洋葱出苗及幼苗生长的影响[J]. 安徽农业科学, 2011, 39(8): 4460-4461, 4463. |
DANG Yonghua. Influences of different culture media and sowing times on the onion seedling emergence and growth[J]. Journal of Anhui Agricultural Sciences, 2011, 39(8): 4460-4461, 4463. | |
[23] | Liu F J, Tu K, Shao X F, et al. Effect of hot air treatment in combination with Pichia guilliermondii on postharvest anthracnose rot of loquat fruit[J]. Postharvest Biology and Technology, 2010, 58(1): 65-71. |
[24] | Zhang Z, Nakano K, Maezawa S. Comparison of the antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures[J]. Postharvest Biology and Technology, 2009, 54(2): 101-105. |
[25] | 刘增辉, 金姗姗, 徐燕. 洋葱中SOD提取纯化及其在酸奶发酵中应用[J]. 食品工业, 2019, 40(8): 93-95. |
LIU Zenghui, JIN Shanshan, XU Yan. Extraction and purification of SOD from Onions and their application in functional yogurt[J]. The Food Industry, 2019, 40(8): 93-95. | |
[26] | 刘洪竹, 陈双颖, 李进才. 冷热激处理对不同鲜切蔬菜衰老生理机能的影响[J]. 食品工业科技, 2013, 34(12): 316-321. |
LIU Hongzhu, CHEN Shuangying, LI Jincai. Effects of cold shock and heat shock treatments on senescence physiological of fresh-cut vegetables[J]. Science and Technology of Food Industry, 2013, 34(12): 316-321. | |
[27] | 高婷, 张杰, 马瑞红, 等. NaCl胁迫对黑籽南瓜生长和生理特性的影响[J]. 江苏农业科学, 2020, 48(6): 122-124, 137. |
GAO Ting, ZHANG Jie, MA Ruihong, et al. Effects of salt stress on growth and physiological characteristics of Cucurbita ficifolia[J]. Jiangsu Agricultural Sciences, 2020, 48(6): 122-124, 137. | |
[28] | 赵嫚, 陈仕勇, 李亚萍, 等. 外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J]. 江苏农业学报, 2021, 37(2): 310-316. |
ZHAO Man, CHEN Shiyong, LI Yaping, et al. Influence of exogenous γ-aminobutyric acid (GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 310-316. | |
[29] | 胡俊杰, 宁显宝, 建德锋. 不同育苗模式对北方洋葱育苗效果的影响[J]. 北方园艺, 2005,(5): 58-59. |
HU Junjie, NING Xianbao, JIAN Defeng. Effect of different seeding model on the seeding effect of north Allium cepa L[J]. Northern Horticulture, 2005,(5): 58-59. | |
[30] | 胡俊杰, 金伊洙, 郭树义. 育苗措施对北方洋葱育苗效果的影响[J]. 安徽农业科学, 2010, 38(21): 11106-11107. |
HU Junjie, JIN Yizhu, GUO Shuyi. Effects of countermeasures on culture seedling effects of north onion[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11106-11107. |
[1] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[2] | 阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222. |
[3] | 马钥珺, 谭占明, 程云霞, 吴慧, 张乔乔, 杜佳庚, 王琦, 崔贺伟, 马兴. 不同基质配比及砧穗组合对黄瓜生长发育的影响[J]. 新疆农业科学, 2024, 61(11): 2635-2647. |
[4] | 柏玲, 冯国郡, 胡相伟, 赵云, 石书兵. 不同谷子品种萌发期抗旱鉴定及生理变化[J]. 新疆农业科学, 2023, 60(7): 1630-1640. |
[5] | 陈丽靓, 鲁倩君, 马媛媛, 刘迎, 赵宝龙, 孙军利. 不同葡萄品种的耐盐性比较分析[J]. 新疆农业科学, 2023, 60(4): 880-888. |
[6] | 尤厚美, 杜佳, 罗勇, 张祥坤, 朱宝林, 田维亮. 蛭石基培养基质育苗性能的评价[J]. 新疆农业科学, 2023, 60(2): 399-406. |
[7] | 张力方, 李志元, 秦勇. 不同复配基质对盆栽荆芥生长及品质的影响[J]. 新疆农业科学, 2023, 60(1): 150-160. |
[8] | 郑子漂, 徐海江, 崔建平, 林涛, 郭仁松, 王亮, 张大伟, 魏鑫, 孔繁阳. 水分胁迫对陆地棉生长发育的影响[J]. 新疆农业科学, 2022, 59(8): 1821-1830. |
[9] | 古宁宁, 张蒲, 谢彦如, 唐丹, 赵志信, 董瑞芳, 崔拥民, 秦勇. 基质中化肥施入量对番茄幼苗生长的影响[J]. 新疆农业科学, 2022, 59(8): 1929-1934. |
[10] | 贾培松, 贾文捷, 罗影, 努尔孜亚·亚力买买提, 王艺华, 温切木·阿布列孜, 魏鹏. 双孢蘑菇栽培基质中线虫分离方法评价[J]. 新疆农业科学, 2022, 59(7): 1734-1740. |
[11] | 刘志刚, 任红松, 胡西旦·买买提, 王瑞华, 李海峰, 胡国智. 高温期喷施外源钙对甜瓜幼苗叶片生理特性的影响[J]. 新疆农业科学, 2022, 59(3): 588-596. |
[12] | 刘志刚, 任红松, 买买提·艾合买提, 胡西单·买买提, 努尔孜叶古丽·马合木提, 阿木提·库尔班, 王瑞华, 李海峰. 氨基酸硒叶面肥对吐鲁番秋季露地甜瓜叶片早衰生理特性的影响[J]. 新疆农业科学, 2021, 58(6): 1078-1085. |
[13] | 姚文英, 彭翠兰, 杨海俊, 杜红斌. 不同有机肥用量树叶复混基质对西葫芦的育苗效果[J]. 新疆农业科学, 2021, 58(2): 247-253. |
[14] | 乔旭, 高永红, 赛力汗·赛, 薛丽华, 张永强, 陈传信, 肖丽, 雷钧杰. NaCl胁迫下不同铵、硝配比对小麦抗氧化酶活性的影响[J]. 新疆农业科学, 2021, 58(12): 2176-2181. |
[15] | 谢彦如, 唐丹, 张蒲, 赵志信, 董瑞芳, 崔拥民, 徐有章, 桂瑞琪, 叶丽红, 李美辰, 秦勇. 基质中化肥施用量对辣椒穴盘苗生长的影响[J]. 新疆农业科学, 2020, 57(7): 1287-1294. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||