新疆农业科学 ›› 2024, Vol. 61 ›› Issue (9): 2211-2222.DOI: 10.6048/j.issn.1001-4330.2024.09.016
收稿日期:
2024-02-13
出版日期:
2024-09-20
发布日期:
2024-10-09
通信作者:
高杰(1963-),男,天津人,教授,博士,硕士生/博士生导师,研究方向为蔬菜栽培与生理、种质资源与育种,(E-mail)13899825018@163.com作者简介:
阿热孜姑·吐逊(1997-),女,新疆人,硕士研究生,研究方向为蔬菜栽培与生理,(E-mail)3398929418@qq.com
基金资助:
Received:
2024-02-13
Published:
2024-09-20
Online:
2024-10-09
Supported by:
摘要:
【目的】研究干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响,为实现洋葱的机械化定植奠定理论和技术基础。【方法】以洋葱品种白雪为材料,采用平底育苗盘播种,设计3种播种密度处理:1.5 cm×1.5 cm(A1)、2 cm×2 cm(A2)和2.5 cm×2.5 cm(A3);3种干旱胁迫:田间持水量8%(B1)、田间持水量13%(B2)和自然干旱(B3)。【结果】随着干旱胁迫时长的增加,洋葱幼苗株高和假茎粗呈先增加后降低的趋势。适当干旱胁迫能促进地下部洋葱小鳞茎横径的生长。(2 cm×2 cm)*自然干旱(T6)处理的洋葱可溶性固形物含量最大,为20.17%。(2 cm×2 cm)*田间持水量的8%(T4)处理的可溶性糖含量最大,为6.73%。随着播种密度的增加,可溶性蛋白含量和CAT活性呈增加趋势,但是差异不显著。(2 cm×2 cm)*自然干旱(T6)处理的POD活性最高,为23.6 U/(g·min);(1.5 cm×1.5 cm)*自然干旱(T3)处理的SOD活性最高,为7.560 U/(g·h)。(1.5 cm×1.5 cm)*3个干旱(T1~T3)处理的小鳞茎个数显著多于其他处理的小鳞茎个数,产出鳞茎个数分别为36.13、35.05和35.48个/dm2。干旱前后育苗基质的容重、总孔隙度、持水孔隙度及EC值均在理想范围内。主成分综合评价值由高到低为T9>T8>T7>T1>T6>T4>T5>T2>T3。【结论】(2.5 cm×2.5 cm)*自然干旱(T9)处理的综合表现良好,排名第1,可作为培育洋葱小鳞茎的组合。
中图分类号:
阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222.
Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222.
处理 Treatments | 播种密度 Density of crop (cm) | 干旱程度 Drought degree |
---|---|---|
T1(A1B1) | 1.5×1.5 | 田间持水量的8% |
T2(A1B2) | 1.5×1.5 | 田间持水量的13% |
T3(A1B3) | 1.5×1.5 | 自然干旱 |
T4(A2B1) | 2.0×2.0 | 田间持水量的8% |
T5(A2B2) | 2.0×2.0 | 田间持水量的13% |
T6(A2B3) | 2.0×2.0 | 自然干旱 |
T7(A3B1) | 2.5×2.5 | 田间持水量的8% |
T8(A3B2) | 2.5×2.5 | 田间持水量的13% |
T9(A3B3) | 2.5×2.5 | 自然干旱 |
表1 不同播种密度和不同干旱胁迫组合
Tab.1 Different sowing density and different combinations of drought stress
处理 Treatments | 播种密度 Density of crop (cm) | 干旱程度 Drought degree |
---|---|---|
T1(A1B1) | 1.5×1.5 | 田间持水量的8% |
T2(A1B2) | 1.5×1.5 | 田间持水量的13% |
T3(A1B3) | 1.5×1.5 | 自然干旱 |
T4(A2B1) | 2.0×2.0 | 田间持水量的8% |
T5(A2B2) | 2.0×2.0 | 田间持水量的13% |
T6(A2B3) | 2.0×2.0 | 自然干旱 |
T7(A3B1) | 2.5×2.5 | 田间持水量的8% |
T8(A3B2) | 2.5×2.5 | 田间持水量的13% |
T9(A3B3) | 2.5×2.5 | 自然干旱 |
容重 Bulk density (g/cm3) | 总孔隙度 Total porosity (%) | 通气孔隙度 Aeration porosity (%) | 持水孔隙度 Water holding porosity (%) | 气水比 Air-water ratio | pH值 pH value | EC (mS/cm) |
---|---|---|---|---|---|---|
0.11±0.01a | 62.07±0.86a | 8.93±0.21a | 53.14±0.65a | 0.17±0a | 7.78±0.06a | 0.04±0.01a |
0.11±0.01a | 62.23±1.74a | 9.11±2.03a | 53.12±0.29a | 0.17±0.04a | 7.8±0.02a | 0.04±0.01a |
0.12±0a | 61.24±2.79a | 8.11±0.92a | 53.14±3.71a | 0.15±0.03a | 7.78±0.06a | 0.03±0a |
表2 干旱前基质的理化性质变化
Tab.2 Changes of physicochemical properties of matrix before drought
容重 Bulk density (g/cm3) | 总孔隙度 Total porosity (%) | 通气孔隙度 Aeration porosity (%) | 持水孔隙度 Water holding porosity (%) | 气水比 Air-water ratio | pH值 pH value | EC (mS/cm) |
---|---|---|---|---|---|---|
0.11±0.01a | 62.07±0.86a | 8.93±0.21a | 53.14±0.65a | 0.17±0a | 7.78±0.06a | 0.04±0.01a |
0.11±0.01a | 62.23±1.74a | 9.11±2.03a | 53.12±0.29a | 0.17±0.04a | 7.8±0.02a | 0.04±0.01a |
0.12±0a | 61.24±2.79a | 8.11±0.92a | 53.14±3.71a | 0.15±0.03a | 7.78±0.06a | 0.03±0a |
处理 Treatments | 容重 Bulk density (g/cm3) | 总孔隙度 Total porosity (%) | 通气孔隙度 Aeration porosity (%) | 持水孔隙度 Water holding porosity (%) | 气水比 Air-water ratio | pH值 pH value | EC (mS/cm) |
---|---|---|---|---|---|---|---|
T1 | 0.12±0ab | 66.55±1.11bc | 21±6.96a | 45.55±5.88a | 0.48±0.2a | 7.57±0.17bc | 0.11±0.02cd |
T2 | 0.12±0.02abc | 66.68±0.56bc | 14.95±5.68a | 51.73±5.86a | 0.3±0.14a | 7.86±0.15bc | 0.13±0.04abcd |
T3 | 0.11±0bc | 70.86±0.73a | 13.23±3.77a | 57.63±4.18a | 0.23±0.08a | 7.95±0.04abc | 0.17±0.01ab |
T4 | 0.14±0.02a | 67.33±1.18bc | 16.8±5.73a | 50.53±5.97a | 0.34±0.14a | 8.22±0.13ab | 0.16±0.01abc |
T5 | 0.11±0.01bc | 65.54±2.12bc | 13.84±4.13a | 51.7±3.97a | 0.27±0.09a | 7.76±0.24bc | 0.18±0.05a |
T6 | 0.1±0.01c | 66.52±1.98bc | 16.17±6.49a | 50.35±8.36a | 0.34±0.2a | 8.68±1.17a | 0.15±0.03abc |
T7 | 0.11±0.01bc | 67.94±0.9b | 19.32±1.55a | 48.61±2.33a | 0.4±0.05a | 7.86±0.07bc | 0.14±0.03abc |
T8 | 0.11±0.01abc | 66.67±3.42bc | 15.78±8.6a | 50.88±10.88a | 0.34±0.23a | 7.35±0.21c | 0.12±0.03bcd |
T9 | 0.12±0ab | 64.22±0.67c | 19.82±9.56a | 44.4±9.32a | 0.49±0.28a | 7.75±0.06bc | 0.08±0.01d |
表3 干旱后基质的理化性质
Tab.3 Physicochemical properties of matrix after drought
处理 Treatments | 容重 Bulk density (g/cm3) | 总孔隙度 Total porosity (%) | 通气孔隙度 Aeration porosity (%) | 持水孔隙度 Water holding porosity (%) | 气水比 Air-water ratio | pH值 pH value | EC (mS/cm) |
---|---|---|---|---|---|---|---|
T1 | 0.12±0ab | 66.55±1.11bc | 21±6.96a | 45.55±5.88a | 0.48±0.2a | 7.57±0.17bc | 0.11±0.02cd |
T2 | 0.12±0.02abc | 66.68±0.56bc | 14.95±5.68a | 51.73±5.86a | 0.3±0.14a | 7.86±0.15bc | 0.13±0.04abcd |
T3 | 0.11±0bc | 70.86±0.73a | 13.23±3.77a | 57.63±4.18a | 0.23±0.08a | 7.95±0.04abc | 0.17±0.01ab |
T4 | 0.14±0.02a | 67.33±1.18bc | 16.8±5.73a | 50.53±5.97a | 0.34±0.14a | 8.22±0.13ab | 0.16±0.01abc |
T5 | 0.11±0.01bc | 65.54±2.12bc | 13.84±4.13a | 51.7±3.97a | 0.27±0.09a | 7.76±0.24bc | 0.18±0.05a |
T6 | 0.1±0.01c | 66.52±1.98bc | 16.17±6.49a | 50.35±8.36a | 0.34±0.2a | 8.68±1.17a | 0.15±0.03abc |
T7 | 0.11±0.01bc | 67.94±0.9b | 19.32±1.55a | 48.61±2.33a | 0.4±0.05a | 7.86±0.07bc | 0.14±0.03abc |
T8 | 0.11±0.01abc | 66.67±3.42bc | 15.78±8.6a | 50.88±10.88a | 0.34±0.23a | 7.35±0.21c | 0.12±0.03bcd |
T9 | 0.12±0ab | 64.22±0.67c | 19.82±9.56a | 44.4±9.32a | 0.49±0.28a | 7.75±0.06bc | 0.08±0.01d |
来源 Sources | 平方和 Sum of squares | 自由度 Degree of freedom | 均方和 Mean square | F值 F-value | 显著性 Significance | |
---|---|---|---|---|---|---|
干旱胁迫 Drought stress | 假茎粗 | 0.171 | 2 | 0.086 | 4.892 | 0.02 |
鳞茎横径 | 2.406 | 2 | 1.203 | 7.225 | 0.005 | |
株高 | 46.829 | 2 | 23.414 | 10.894 | 0.001 | |
产出个数 | 0.149 | 2 | 0.074 | 0.018 | 0.982 | |
播种密度 Density of crop | 假茎粗 | 1.443 | 2 | 0.721 | 41.28 | 0 |
鳞茎横径 | 10.49 | 2 | 5.245 | 31.504 | 0 | |
株高 | 7.868 | 2 | 3.934 | 1.83 | 0.189 | |
产出个数 | 2 384.978 | 2 | 1 192.489 | 293.537 | 0 | |
干旱胁迫* 播种密度 Drought stress * Density of crop | 假茎粗 | 0.106 | 4 | 0.026 | 1.516 | 0.24 |
鳞茎横径 | 0.399 | 4 | 0.1 | 0.6 | 0.668 | |
株高 | 4.254 | 4 | 1.064 | 0.495 | 0.74 | |
产出个数 | 8.286 | 4 | 2.072 | 0.51 | 0.729 |
表4 干旱胁迫和播种密度与生长指标的方差
Tab.4 Drought stress and sowing density and growth index of variance analysis table
来源 Sources | 平方和 Sum of squares | 自由度 Degree of freedom | 均方和 Mean square | F值 F-value | 显著性 Significance | |
---|---|---|---|---|---|---|
干旱胁迫 Drought stress | 假茎粗 | 0.171 | 2 | 0.086 | 4.892 | 0.02 |
鳞茎横径 | 2.406 | 2 | 1.203 | 7.225 | 0.005 | |
株高 | 46.829 | 2 | 23.414 | 10.894 | 0.001 | |
产出个数 | 0.149 | 2 | 0.074 | 0.018 | 0.982 | |
播种密度 Density of crop | 假茎粗 | 1.443 | 2 | 0.721 | 41.28 | 0 |
鳞茎横径 | 10.49 | 2 | 5.245 | 31.504 | 0 | |
株高 | 7.868 | 2 | 3.934 | 1.83 | 0.189 | |
产出个数 | 2 384.978 | 2 | 1 192.489 | 293.537 | 0 | |
干旱胁迫* 播种密度 Drought stress * Density of crop | 假茎粗 | 0.106 | 4 | 0.026 | 1.516 | 0.24 |
鳞茎横径 | 0.399 | 4 | 0.1 | 0.6 | 0.668 | |
株高 | 4.254 | 4 | 1.064 | 0.495 | 0.74 | |
产出个数 | 8.286 | 4 | 2.072 | 0.51 | 0.729 |
相关系数 Correlation coefficient | 株高 Plant hight | 假茎粗 Pseudostem diameter | 鳞茎横径 Bulb diameter | 可溶性 固形物含量 Soluble solids content | 可溶性糖含量 Soluble carbohydrate content | 可溶性 蛋白含量 Soluble protein | 容重 Bulk density | 总孔隙度 Total porosity | 通气孔隙度 Aeration porosity | 持水孔隙度 Water holding | 气水比 Air-water ratio | pH值 pH value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
假茎粗 Pseudostem diameter | 0.001 | 1 | ||||||||||
鳞茎横径 Bulb diameter | -0.013 | 0.935** | 1 | |||||||||
可溶性固形物含量 Soluble solids content | 0.582 | 0.062 | 0.218 | 1 | ||||||||
可溶性糖含量 Soluble carbohydrate content | 0.076 | 0.218 | 0.161 | -0.017 | 1 | |||||||
可溶性蛋白含量 Soluble protein | 0.354 | 0.686* | 0.769* | 0.338 | 0.058 | 1 | ||||||
容重Bulk density | -0.319 | 0.11 | 0.024 | -0.634 | 0.484 | -0.181 | 1 | |||||
总孔隙度 Total porosity | 0.146 | -0.433 | -0.58 | -0.181 | -0.28 | -0.637 | -0.246 | 1 | ||||
通气孔隙度 Aeration porosity | -0.024 | 0.206 | 0.067 | -0.414 | 0.468 | 0.378 | 0.392 | -0.408 | 1 | |||
持水孔隙度 Water holding | 0.086 | -0.351 | -0.322 | 0.208 | -0.464 | -0.569 | -0.394 | 0.762* | -0.902** | 1 | ||
气水比 Air-water ratio | 0.006 | 0.256 | 0.182 | -0.307 | 0.476 | 0.506 | 0.409 | -0.561 | 0.972** | -0.954** | 1 | |
pH值 pH value | 0.616 | -0.43 | -0.373 | 0.435 | 0.117 | -0.135 | -0.297 | 0.153 | -0.188 | 0.206 | -0.226 | 1 |
EC值 EC value | 0.084 | -0.201 | -0.255 | 0.347 | -0.114 | -0.581 | -0.367 | 0.565 | -0.734* | 0.788* | -0.836** | 0.402 |
表5 各指标之间的Pearson相关性
Tab.5 Pearson correlation analysis of each index
相关系数 Correlation coefficient | 株高 Plant hight | 假茎粗 Pseudostem diameter | 鳞茎横径 Bulb diameter | 可溶性 固形物含量 Soluble solids content | 可溶性糖含量 Soluble carbohydrate content | 可溶性 蛋白含量 Soluble protein | 容重 Bulk density | 总孔隙度 Total porosity | 通气孔隙度 Aeration porosity | 持水孔隙度 Water holding | 气水比 Air-water ratio | pH值 pH value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
假茎粗 Pseudostem diameter | 0.001 | 1 | ||||||||||
鳞茎横径 Bulb diameter | -0.013 | 0.935** | 1 | |||||||||
可溶性固形物含量 Soluble solids content | 0.582 | 0.062 | 0.218 | 1 | ||||||||
可溶性糖含量 Soluble carbohydrate content | 0.076 | 0.218 | 0.161 | -0.017 | 1 | |||||||
可溶性蛋白含量 Soluble protein | 0.354 | 0.686* | 0.769* | 0.338 | 0.058 | 1 | ||||||
容重Bulk density | -0.319 | 0.11 | 0.024 | -0.634 | 0.484 | -0.181 | 1 | |||||
总孔隙度 Total porosity | 0.146 | -0.433 | -0.58 | -0.181 | -0.28 | -0.637 | -0.246 | 1 | ||||
通气孔隙度 Aeration porosity | -0.024 | 0.206 | 0.067 | -0.414 | 0.468 | 0.378 | 0.392 | -0.408 | 1 | |||
持水孔隙度 Water holding | 0.086 | -0.351 | -0.322 | 0.208 | -0.464 | -0.569 | -0.394 | 0.762* | -0.902** | 1 | ||
气水比 Air-water ratio | 0.006 | 0.256 | 0.182 | -0.307 | 0.476 | 0.506 | 0.409 | -0.561 | 0.972** | -0.954** | 1 | |
pH值 pH value | 0.616 | -0.43 | -0.373 | 0.435 | 0.117 | -0.135 | -0.297 | 0.153 | -0.188 | 0.206 | -0.226 | 1 |
EC值 EC value | 0.084 | -0.201 | -0.255 | 0.347 | -0.114 | -0.581 | -0.367 | 0.565 | -0.734* | 0.788* | -0.836** | 0.402 |
主成分 Principal component | 初始平方载荷值Initial square load value | 提取平方载荷值Extracting squared load values | ||||||
---|---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 方差贡献率 Variance contribution rate(%) | 累计贡献率 Cumulative contribution rate(%) | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate(%) | 累计贡献率 Cumulative contribution rate(%) | |||
1 | 5.398 | 41.52 | 41.52 | 5.398 | 41.52 | 41.52 | ||
2 | 2.799 | 21.532 | 63.052 | 2.799 | 21.532 | 63.052 | ||
3 | 1.968 | 15.139 | 78.192 | 1.968 | 15.139 | 78.192 | ||
4 | 1.183 | 9.101 | 87.293 | 1.183 | 9.101 | 87.293 | ||
5 | 0.737 | 5.672 | 92.965 | |||||
6 | 0.464 | 3.569 | 96.534 | |||||
7 | 0.306 | 2.355 | 98.89 | |||||
8 | 0.144 | 1.11 | 100 | |||||
9 | 8.03E-16 | 6.18E-15 | 100 | |||||
10 | 4.15E-16 | 3.20E-15 | 100 | |||||
11 | 3.54E-16 | 2.73E-15 | 100 | |||||
12 | 1.90E-16 | 1.46E-15 | 100 | |||||
13 | 3.21E-17 | 2.47E-16 | 100 |
表6 各主成分的特征值和贡献率
Tab.6 The eigenvalue and contribution rate of each principal component
主成分 Principal component | 初始平方载荷值Initial square load value | 提取平方载荷值Extracting squared load values | ||||||
---|---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 方差贡献率 Variance contribution rate(%) | 累计贡献率 Cumulative contribution rate(%) | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate(%) | 累计贡献率 Cumulative contribution rate(%) | |||
1 | 5.398 | 41.52 | 41.52 | 5.398 | 41.52 | 41.52 | ||
2 | 2.799 | 21.532 | 63.052 | 2.799 | 21.532 | 63.052 | ||
3 | 1.968 | 15.139 | 78.192 | 1.968 | 15.139 | 78.192 | ||
4 | 1.183 | 9.101 | 87.293 | 1.183 | 9.101 | 87.293 | ||
5 | 0.737 | 5.672 | 92.965 | |||||
6 | 0.464 | 3.569 | 96.534 | |||||
7 | 0.306 | 2.355 | 98.89 | |||||
8 | 0.144 | 1.11 | 100 | |||||
9 | 8.03E-16 | 6.18E-15 | 100 | |||||
10 | 4.15E-16 | 3.20E-15 | 100 | |||||
11 | 3.54E-16 | 2.73E-15 | 100 | |||||
12 | 1.90E-16 | 1.46E-15 | 100 | |||||
13 | 3.21E-17 | 2.47E-16 | 100 |
处理 Treat- ments | Y1 | Y2 | Y3 | Y4 | 综合得分 Overall ratings | 排名 Rank |
---|---|---|---|---|---|---|
T1 | 1.959 | -3.059 | 0.848 | 0.511 | 0.33 | 4 |
T2 | -1.21 | -1.387 | -1.039 | -1.261 | -1.073 | 8 |
T3 | -4.3 | -0.369 | 0.261 | -1.306 | -1.944 | 9 |
T4 | -0.094 | -1.323 | 0.664 | 1.784 | -0.061 | 6 |
T5 | -1.046 | 1.559 | -1.36 | -0.118 | -0.315 | 7 |
T6 | -1.2 | 2.029 | 2.384 | -0.44 | 0.259 | 5 |
T7 | 0.803 | 0.465 | -0.168 | -0.695 | 0.345 | 3 |
T8 | 1.272 | 0.66 | -2.314 | 0.745 | 0.388 | 2 |
T9 | 3.817 | 1.426 | 0.724 | 0.78 | 2.072 | 1 |
表7 各处理综合得分及排名
Tab.7 Comprehensive scores and rankings of each treatment
处理 Treat- ments | Y1 | Y2 | Y3 | Y4 | 综合得分 Overall ratings | 排名 Rank |
---|---|---|---|---|---|---|
T1 | 1.959 | -3.059 | 0.848 | 0.511 | 0.33 | 4 |
T2 | -1.21 | -1.387 | -1.039 | -1.261 | -1.073 | 8 |
T3 | -4.3 | -0.369 | 0.261 | -1.306 | -1.944 | 9 |
T4 | -0.094 | -1.323 | 0.664 | 1.784 | -0.061 | 6 |
T5 | -1.046 | 1.559 | -1.36 | -0.118 | -0.315 | 7 |
T6 | -1.2 | 2.029 | 2.384 | -0.44 | 0.259 | 5 |
T7 | 0.803 | 0.465 | -0.168 | -0.695 | 0.345 | 3 |
T8 | 1.272 | 0.66 | -2.314 | 0.745 | 0.388 | 2 |
T9 | 3.817 | 1.426 | 0.724 | 0.78 | 2.072 | 1 |
[1] | 弓志青, 靳琼, 陈相艳, 等. 不同品种洋葱粉营养成分分析[J]. 食品科学技术学报, 2014, 32(5): 46-49. |
GONG Zhiqing, JIN Qiong, CHEN Xiangyan, et al. Nutrient analysis of different cultivars of onion powder[J]. Journal of Food Science and Technology, 2014, 32(5): 46-49. | |
[2] | 付东青, 王彦超, 宋磊, 等. 施氮量和种植密度对石河子复播早熟饲用燕麦生产性能的影响[J]. 草地学报, 2021, 29(10): 2364-2371. |
FU Dongqing, WANG Yanchao, SONG Lei, et al. Effects of nitrogen application rate and planting density on production performance of early maturing forage oat in Shihezi, Xinjiang[J]. Acta Agrestia Sinica, 2021, 29(10): 2364-2371. | |
[3] | 胡俊杰, 宁显宝, 建德锋. 不同育苗模式对北方洋葱育苗效果的影响[J]. 北方园艺, 2005, (5): 58-59. |
HU Junjie, NING Xianbao, JIAN Defeng. Effect of different seeding model on the seeding effect of north Allium cepa L[J]. Northern Horticulture, 2005, (5): 58-59. | |
[4] | 胡俊杰, 金伊洙, 郭树义. 育苗措施对北方洋葱育苗效果的影响[J]. 安徽农业科学, 2010, 38(21): 11106-11107. |
HU Junjie, JIN Yizhu, GUO Shuyi. Effects of countermeasures on culture seedling effects of north onion[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11106-11107. | |
[5] | 刘鑫, 付丽娟, 于静, 等. 5种外源物质对干旱胁迫下笔筒树幼苗生长的缓解效应[J]. 西北植物学报, 2022, 42(7): 1169-1179. |
LIU Xin, FU Lijuan, YU Jing, et al. Alleviation effect of five exogenous substances on Sphaeropteris lepifera seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(7): 1169-1179. | |
[6] | 程智慧. 蔬菜栽培学各论(2版)[M]. 北京: 科学出版社, 2021. |
CHENG Zhihui. Various theories on vegetable cultivation (2nd ed.)[M]. Beijing: Science Press, 2021. | |
[7] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
GAO Junfeng. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006. | |
[8] | 石连旋, 颜宏. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2013. |
SHI Lianxuan, YAN Hong. Experimental instruction of plant physiology[M]. Beijing: Higher Education Press, 2013. | |
[9] | 郭世荣, 孙锦. 无土栽培学(3版)[M]. 北京: 中国农业出版社, 2018. |
GUO Shirong, SUN Jin. Soilless culture(3rd ed)[M]. Beijing: China Agriculture Press, 2018. | |
[10] | 李阳, 齐曼·尤努斯, 祝燕. 水分胁迫对大果沙枣光合特性及生物量分配的影响[J]. 西北植物学报, 2006, 26(12): 2493-2499. |
Li Yang, Qiman Younusi, Zhu Yan. Effects of water stress on photosynthetic characteristics and biomass partition of Elaeagnus moorcroftii[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2493-2499. | |
[11] | 刘硕, 樊仙, 全怡吉, 等. 干旱胁迫对甘蔗光合生理特性的影响[J]. 西南农业学报, 2022, 35(8): 1776-1785. |
LIU Shuo, FAN Xian, QUAN Yiji, et al. Effects of drought stress on photosynthetic and physiological characteristics of sugarcane[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(8): 1776-1785. | |
[12] | 王雪梅, 闫帮国, 史亮涛, 等. 水分和种植密度对干热河谷车桑子生长性状及种内相互关系的影响[J]. 生态学报, 2020, 40(21): 7767-7776. |
WANG Xuemei, YAN Bangguo, SHI Liangtao, et al. Effects of water and planting density on the growth characteristics and intraspecific relationships of Dodonaea viscosa in a dry-hot valley[J]. Acta Ecologica Sinica, 2020, 40(21): 7767-7776. | |
[13] | Huang Y X, Zhao X Y, Zhang H X, et al. Allometric effects of Agriophyllum squarrosum in response to soil nutrients, water, and population density in the horqin sandy land of China[J]. Journal of Plant Biology, 2009, 52(3): 210-219. |
[14] | 安慧, 上官周平. 密度对刺槐幼苗生物量及异速生长模式的影响[J]. 林业科学, 2008, 44(3): 151-155. |
AN Hui, SHANGGUAN Zhouping. Effects of density on biomass and allometric pattern of Robinia pseudoacacia seedling[J]. Scientia Silvae Sinicae, 2008, 44(3): 151-155. | |
[15] | 邵惠芳, 陈征, 许嘉阳, 等. 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较[J]. 植物生理学报, 2016, 52(12): 1861-1871. |
SHAO Huifang, CHEN Zheng, XU Jiayang, et al. Physiological responses of two tobacco cultivar leaves to different drought stresses during seedling stage[J]. Plant Physiology Journal, 2016, 52(12): 1861-1871. | |
[16] | 李晓青, 荆月婷, 冯全福, 等. PEG模拟干旱胁迫对不同烤烟品种生理特性的影响[J]. 中国烟草科学, 2016, 37(3): 15-21. |
LI Xiaoqing, JING Yueting, FENG Quanfu, et al. Effects of drought stress simulated by PEG on physiological characteristics in different flue-cured tobacco cultivars[J]. Chinese Tobacco Science, 2016, 37(3): 15-21. | |
[17] | 余叔文, 汤章城. 植物生理与分子生物学(2版)[M]. 北京: 科学出版社, 1998. |
YU Shuwen, TANG Zhangcheng. Plant physiology and molecular biology(2nd ed.)[M]. Beijing: Science Press, 1998. | |
[18] | 魏良民. 几种旱生植物碳水化合物和蛋白质变化的研究[J]. 干旱区研究, 1991, (4):38-41. |
WEI Liangming. A Study on Carbohydrate and Protein of Several Xerophytes[J]. Arid Zone Research, 1991, (4):38-41. | |
[19] | 吕朝燕, 高智席, 徐兴线, 等. 干旱胁迫及复水对桫椤生理特性的影响[J]. 林业资源管理, 2022, (5): 160-168. |
LYU Zhaoyan, GAO Zhixi, XU Xingxian, et al. Effects of drought stress and rehydration on the physiological characteristics of Alsophila spinulosa[J]. Forest Resources Management, 2022, (5): 160-168. | |
[20] | Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. |
[21] | 王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应[J]. 生态学杂志, 2017, 36(6): 1495-1502. |
WANG Zhuomin, ZHENG Xinying, XUE Li. Physiological responses of Cinnamomum camphora seedlings to drought stress and planting density[J]. Chinese Journal of Ecology, 2017, 36(6): 1495-1502. | |
[22] | 闫振华, 刘东尧, 贾绪存, 等. 花期高温干旱对玉米雄穗发育、生理特性和产量影响[J]. 中国农业科学, 2021, 54(17):3592-3608. |
YAN Zhenhua, LIU Dongao, JIA Xucun, et al. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage[J]. Scientia Agricultura Sinica, 2021, 54(17):3592-3608. | |
[23] | 段媛媛, 刘晓洪, 唐涛, 等. 种植密度对湖北贝母生长及品质的影响[J/OL]. 中国农业科技导报:1-10[2023-03-18]. |
DUAN Yuanyuan, LIU Xiaohong, TANG Tao, et al. Effects of Planting Density on Growth and Nutritional Quality of Fritillaria hupehensis[J/OL]. Journal of Agricultural Science and Technology: 1-10[2023-03-18]. | |
[24] | Ge M H, Chen G, Hong J, et al. Screening for formulas of complex substrates for seedling cultivation of tomato and marrow squash[J]. Procedia Environmental Sciences, 2012, 16: 606-615. |
[25] | 于秀针, 张彩虹, 姜鲁艳, 等. 不同配比椰糠与沙土对番茄育苗效果的影响[J]. 安徽农业科学, 2020, 48(6): 45-47. |
YU Xiuzhen, ZHANG Caihong, JIANG Luyan, et al. Effects of different proportions of coco coir and sandy soil on seedling raising effect of tomato seedlings[J]. Journal of Anhui Agricultural Sciences, 2020, 48(6): 45-47. |
[1] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[2] | 李金瑶, 徐贵青, 王立生, 吕平, 石东方, 郑伟华. 氮肥对头状沙拐枣幼苗抗旱性的影响[J]. 新疆农业科学, 2024, 61(9): 2330-2340. |
[3] | 阿热孜姑·吐逊, 贾凯, 高杰. 不同基质和播种密度对洋葱小鳞茎产出个数的影响[J]. 新疆农业科学, 2024, 61(8): 1993-2003. |
[4] | 姚庆, 王杰花, 西尔娜依·阿不都拉, 地力木拉提·吐拉洪, 崔宏亮. 低温胁迫下不同藜麦品种苗期的生理响应[J]. 新疆农业科学, 2024, 61(7): 1597-1604. |
[5] | 鞠乐, 齐军仓, 牛银亭, 石培春, 宋瑞娇, 宋凌宇, 阴志刚, 陈培育, 强学兰. 基于RNA-seq的大麦苗期抗旱相关基因的挖掘与分析[J]. 新疆农业科学, 2024, 61(5): 1077-1084. |
[6] | 高沐甜, 肖艳梅, 廖志杰, 黄成. 玉米-大刍草渗入系群体籽粒及品质性状的综合评价[J]. 新疆农业科学, 2024, 61(4): 885-891. |
[7] | 张伟, 杨国慧, 于辉. 2,4-表油菜素内酯对干旱胁迫下西瓜幼苗生长及相关基因表达的影响[J]. 新疆农业科学, 2024, 61(3): 615-622. |
[8] | 杨明花, 廖必勇, 刘强, 冯国瑞, 达吾来·杰克山, 布阿依夏木·那曼提, 刘琪, 艾尔居玛·吐卢汗, 彭云承. 基于主成分分析的玉米杂交组合脱水性综合评价[J]. 新疆农业科学, 2024, 61(2): 318-325. |
[9] | 刘易, 李江涛, 江应红, 杨茹薇, 孙慧, 吴燕. NaCl胁迫下外源亚精胺对马铃薯幼苗生理特征的影响[J]. 新疆农业科学, 2024, 61(2): 336-344. |
[10] | 王佳敏, 毛红艳, 岳丽, 祖力皮牙·买买提, 吕玉平, 于明. 不同品种大米淀粉功能特性及主成分分析[J]. 新疆农业科学, 2024, 61(12): 2943-2953. |
[11] | 李春雨, 谭占明, 程云霞, 高源, 马全会, 李志国, 马兴. 水肥耦合对沙培番茄叶绿素含量以及光合特性日变化的影响[J]. 新疆农业科学, 2024, 61(12): 3006-3013. |
[12] | 徐斌, 王征, 宋占腾, 玛尔哈巴·帕尔哈提, 朱靖蓉, 车凤斌, 李永海, 武凤艳, 苗福红. 11份野生沙棘种质资源果实品质分析与综合评价[J]. 新疆农业科学, 2024, 61(12): 3020-3031. |
[13] | 马钥珺, 谭占明, 程云霞, 吴慧, 张乔乔, 杜佳庚, 王琦, 崔贺伟, 马兴. 不同基质配比及砧穗组合对黄瓜生长发育的影响[J]. 新疆农业科学, 2024, 61(11): 2635-2647. |
[14] | 赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675. |
[15] | 李春雨, 谭占明, 程云霞, 束胜, 马全会, 何淼, 段轶帆, 吴慧. 不同加工番茄品种的农艺性状比较分析[J]. 新疆农业科学, 2024, 61(11): 2676-2683. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||