

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 993-1001.DOI: 10.6048/j.issn.1001-4330.2025.04.024
孟晨1(
), 曾亚琦1,2, 王建文1,2, 姚新奎1,2, 罗鹏辉3, 解晓钰3, 李鹏程1, 刘晓晓1, 王川坤1, 孟军1,2(
)
收稿日期:2024-08-11
出版日期:2025-04-20
发布日期:2025-06-20
通信作者:
孟军(1986-),男,教授,博士,硕士生导师,研究方向为动物生产学,(E-mail)junm86@qq.com作者简介:孟晨(1998-),男,硕士研究生,研究方向为动物生产学,(E-mail)2900974511@qq.com
基金资助:
MENG Chen1(
), ZENG Yaqi1,2, WANG Jianwen1,2, YAO Xinkui1,2, LUO Penghui3, XIE Xiaoyu3, LI Pengcheng1, LIU Xiaoxiao1, WANG Chuankun1, MENG Jun1,2(
)
Received:2024-08-11
Published:2025-04-20
Online:2025-06-20
Supported by:摘要:
【目的】对哈萨克马颈静脉血液进行全基因组重测序,确定调控哈萨克马泌乳量差异的候选基因,为选育乳用性能的哈萨克马提供数据支撑。【方法】根据试验马匹30~105 d泌乳量数据,选取12匹年龄、胎次、体况相近,饲养一致的健康哈萨克马,高泌乳量组(HW)6匹,低泌乳量组(LW)6匹,对12匹哈萨克马颈静脉采血,共采集到48份血样,选择HW组泌乳量大于2.26 kg血样6份和LW组泌乳量小于1.05 kg血样6份进行全基因组重测序,共得到20 234 241个突变位点;去除带接头序列、低质量序列后得到9 804 918个有效位点。选择Top前0.000 01的位点,确定阈值为0.000 147 8,共88个突变位点,位于40个候选基因。对候选基因进行GO和KEGG通路富集分析,并对显著富集通路进行浓缩分类,定位影响哈萨克马高低泌乳量的生物学过程;绘制通路富集弦图,确定哈萨克马泌乳量相关的基因。【结果】GO和KEGG富集分析发现其中细胞发育、增殖、分化、粘附相关和中枢神经系统、内分泌系统发育富集通路数量最多,细胞粘附分子结合、分化的细胞形态发生、细胞成分形态发生、细胞发育、PI3K-Akt信号通路、Axon引导、ECM受体相互作用等通路影响泌乳量。【结论】确定KIT、EPHA4、PDGFRA、MYH3、ITGA1、COL4A1可能是影响哈萨克马泌乳量的候选基因。
中图分类号:
孟晨, 曾亚琦, 王建文, 姚新奎, 罗鹏辉, 解晓钰, 李鹏程, 刘晓晓, 王川坤, 孟军. 全基因组重测序筛选哈萨克马泌乳量候选基因[J]. 新疆农业科学, 2025, 62(4): 993-1001.
MENG Chen, ZENG Yaqi, WANG Jianwen, YAO Xinkui, LUO Penghui, XIE Xiaoyu, LI Pengcheng, LIU Xiaoxiao, WANG Chuankun, MENG Jun. Whole genome resequencing screening of candidate genes for lactation yield in Kazakh horses[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 993-1001.
| 分组 Group | 24 h平均泌乳量 24 h average lactation(kg) | 马匹 Horses | 每匹马24 h 泌乳量 Lactation of per horse in 24 h(kg) | 10:00泌乳量 10:00 Lactation (kg) | 13:00泌乳量 13:00 Lactation (kg) | 16:00泌乳量 16:00 Lactation (kg) | 19:00泌乳量 19:00 Lactation (kg) |
|---|---|---|---|---|---|---|---|
| 高泌乳 量组 HW | 15.84±1.13 | HW1 | 16.80 | 2.20 | 2.32* | 2.08 | 1.80 |
| HW2 | 16.96 | 2.48* | 2.00 | 2.10 | 1.90 | ||
| HW3 | 15.94 | 2.25* | 2.00 | 1.92 | 1.80 | ||
| HW4 | 16.40 | 2.30 | 2.66* | 1.73 | 1.51 | ||
| HW5 | 14.78 | 2.26* | 1.87 | 1.60 | 1.66 | ||
| HW6 | 14.18 | 2.26* | 1.50 | 1.74 | 1.59 | ||
| 低泌乳 量组 LW | 9.06±2.16 | LW1 | 11.26 | 1.51 | 1.63 | 1.44 | 1.05* |
| LW2 | 10.46 | 1.96 | 1.42 | 0.75* | 1.10 | ||
| LW3 | 9.40 | 1.74 | 1.00 | 1.06 | 0.90* | ||
| LW4 | 10.06 | 1.57 | 1.30 | 1.31 | 0.85* | ||
| LW5 | 7.84 | 1.24 | 0.90 | 1.12 | 0.66* | ||
| LW6 | 5.32 | 0.75 | 0.52* | 0.79 | 0.6 |
表1 马匹样品采集
Tab.1 Horse sample collection form
| 分组 Group | 24 h平均泌乳量 24 h average lactation(kg) | 马匹 Horses | 每匹马24 h 泌乳量 Lactation of per horse in 24 h(kg) | 10:00泌乳量 10:00 Lactation (kg) | 13:00泌乳量 13:00 Lactation (kg) | 16:00泌乳量 16:00 Lactation (kg) | 19:00泌乳量 19:00 Lactation (kg) |
|---|---|---|---|---|---|---|---|
| 高泌乳 量组 HW | 15.84±1.13 | HW1 | 16.80 | 2.20 | 2.32* | 2.08 | 1.80 |
| HW2 | 16.96 | 2.48* | 2.00 | 2.10 | 1.90 | ||
| HW3 | 15.94 | 2.25* | 2.00 | 1.92 | 1.80 | ||
| HW4 | 16.40 | 2.30 | 2.66* | 1.73 | 1.51 | ||
| HW5 | 14.78 | 2.26* | 1.87 | 1.60 | 1.66 | ||
| HW6 | 14.18 | 2.26* | 1.50 | 1.74 | 1.59 | ||
| 低泌乳 量组 LW | 9.06±2.16 | LW1 | 11.26 | 1.51 | 1.63 | 1.44 | 1.05* |
| LW2 | 10.46 | 1.96 | 1.42 | 0.75* | 1.10 | ||
| LW3 | 9.40 | 1.74 | 1.00 | 1.06 | 0.90* | ||
| LW4 | 10.06 | 1.57 | 1.30 | 1.31 | 0.85* | ||
| LW5 | 7.84 | 1.24 | 0.90 | 1.12 | 0.66* | ||
| LW6 | 5.32 | 0.75 | 0.52* | 0.79 | 0.6 |
| 条件 Prerequisite | 位点数(个) Number of bits (pcs) |
|---|---|
| 位点总数 Locus amount | 20 234 241 |
| 性染色体及非 SNP 位点 Sex chromosomes and non-SNP loci | 2 895 788 |
| 位点缺失率>10%位点 Sites with a deletion rate>10% | 671 958 |
| 最小等位基因频率<0.05 的位点 Loci with a minor allete frequency<0.05 | 6 861 577 |
| 质控后位点 Post-quality control loci | 9 804 918 |
表2 全基因组测序数据质量
Tab.2 Quality analysis of whole genome sequencing data
| 条件 Prerequisite | 位点数(个) Number of bits (pcs) |
|---|---|
| 位点总数 Locus amount | 20 234 241 |
| 性染色体及非 SNP 位点 Sex chromosomes and non-SNP loci | 2 895 788 |
| 位点缺失率>10%位点 Sites with a deletion rate>10% | 671 958 |
| 最小等位基因频率<0.05 的位点 Loci with a minor allete frequency<0.05 | 6 861 577 |
| 质控后位点 Post-quality control loci | 9 804 918 |
| 染色体 编号 Chromosome number | 质控前位点(个) Pre-QC loci (number) | 质控后位点(个) Post-quality control loci (number) | 平均距离 Average distance (Kb) |
|---|---|---|---|
| 1 | 1 462 880 | 748 461 | 0.25 |
| 2 | 985 566 | 508 520 | 0.24 |
| 3 | 946 815 | 503 233 | 0.24 |
| 4 | 896 098 | 460 337 | 0.24 |
| 5 | 733 838 | 385 880 | 0.25 |
| 6 | 697 438 | 370 810 | 0.24 |
| 7 | 779 343 | 395 355 | 0.25 |
| 8 | 821 100 | 424 122 | 0.23 |
| 9 | 643 990 | 343 877 | 0.25 |
| 10 | 694 774 | 368 645 | 0.23 |
| 11 | 447 018 | 231 209 | 0.27 |
| 12 | 442 869 | 239 911 | 0.15 |
| 13 | 382 072 | 197 433 | 0.22 |
| 14 | 715 036 | 381 070 | 0.25 |
| 15 | 720 299 | 370 146 | 0.25 |
| 16 | 693 328 | 360 684 | 0.25 |
| 17 | 677 670 | 365 359 | 0.22 |
| 18 | 695 958 | 359 903 | 0.23 |
| 19 | 535 407 | 288 647 | 0.22 |
| 20 | 736 066 | 381 982 | 0.17 |
| 21 | 504 413 | 268 591 | 0.22 |
| 22 | 401 656 | 214 858 | 0.24 |
| 23 | 425 658 | 224 460 | 0.25 |
| 24 | 388 865 | 209 018 | 0.23 |
| 25 | 313 103 | 154 574 | 0.26 |
| 26 | 396 719 | 200 791 | 0.21 |
| 27 | 378 333 | 205 677 | 0.2 |
| 28 | 381 997 | 191 961 | 0.25 |
| 29 | 326 277 | 177 428 | 0.2 |
| 30 | 276 662 | 145 491 | 0.22 |
| 31 | 231 274 | 126 485 | 0.21 |
表3 SNP 密度及分布汇总
Tab.3 Summary of SNP density and distribution
| 染色体 编号 Chromosome number | 质控前位点(个) Pre-QC loci (number) | 质控后位点(个) Post-quality control loci (number) | 平均距离 Average distance (Kb) |
|---|---|---|---|
| 1 | 1 462 880 | 748 461 | 0.25 |
| 2 | 985 566 | 508 520 | 0.24 |
| 3 | 946 815 | 503 233 | 0.24 |
| 4 | 896 098 | 460 337 | 0.24 |
| 5 | 733 838 | 385 880 | 0.25 |
| 6 | 697 438 | 370 810 | 0.24 |
| 7 | 779 343 | 395 355 | 0.25 |
| 8 | 821 100 | 424 122 | 0.23 |
| 9 | 643 990 | 343 877 | 0.25 |
| 10 | 694 774 | 368 645 | 0.23 |
| 11 | 447 018 | 231 209 | 0.27 |
| 12 | 442 869 | 239 911 | 0.15 |
| 13 | 382 072 | 197 433 | 0.22 |
| 14 | 715 036 | 381 070 | 0.25 |
| 15 | 720 299 | 370 146 | 0.25 |
| 16 | 693 328 | 360 684 | 0.25 |
| 17 | 677 670 | 365 359 | 0.22 |
| 18 | 695 958 | 359 903 | 0.23 |
| 19 | 535 407 | 288 647 | 0.22 |
| 20 | 736 066 | 381 982 | 0.17 |
| 21 | 504 413 | 268 591 | 0.22 |
| 22 | 401 656 | 214 858 | 0.24 |
| 23 | 425 658 | 224 460 | 0.25 |
| 24 | 388 865 | 209 018 | 0.23 |
| 25 | 313 103 | 154 574 | 0.26 |
| 26 | 396 719 | 200 791 | 0.21 |
| 27 | 378 333 | 205 677 | 0.2 |
| 28 | 381 997 | 191 961 | 0.25 |
| 29 | 326 277 | 177 428 | 0.2 |
| 30 | 276 662 | 145 491 | 0.22 |
| 31 | 231 274 | 126 485 | 0.21 |
| 泌乳量 Lactation | |
|---|---|
| 总样本数(nbr.val) | 12 |
| 样本空值数(nbr.null) | 0 |
| 样本缺失数 (nbr.na) | 0 |
| 最小值(min) | 1 |
| 最大值(max) | 2 |
| 范围(range) | 3 |
| 总和(sum) | 1 |
| 中位数(median) | 18 |
| 平均值(mean) | 1.5 |
| 标准误 (SE.mean) | 1.5 |
| 95%置信区间(CI.mean.0.95) | 0.331 810 998 |
| 方差(var) | 0.272 727 273 |
| 标准差(std.dev) | 0.522 232 968 |
| 变异系数(coef.var) | 0.348 155 312 |
表4 泌乳表型正态分布统计汇总
Tab.4 Summary statistics of normal distribution of lactation phenotypes
| 泌乳量 Lactation | |
|---|---|
| 总样本数(nbr.val) | 12 |
| 样本空值数(nbr.null) | 0 |
| 样本缺失数 (nbr.na) | 0 |
| 最小值(min) | 1 |
| 最大值(max) | 2 |
| 范围(range) | 3 |
| 总和(sum) | 1 |
| 中位数(median) | 18 |
| 平均值(mean) | 1.5 |
| 标准误 (SE.mean) | 1.5 |
| 95%置信区间(CI.mean.0.95) | 0.331 810 998 |
| 方差(var) | 0.272 727 273 |
| 标准差(std.dev) | 0.522 232 968 |
| 变异系数(coef.var) | 0.348 155 312 |
| 序号 Serial number | 功能区域 Functional area | 基因 Genetics | 染色体 Chromosomes | 物理位置 Physical location |
|---|---|---|---|---|
| 1 | intronic | ENTPD1 | 1 | 33528597 |
| 2 | intronic | HECTD2 | 1 | 37498809 |
| 3 | intergenic | ADGRL3 | 3 | 74573413 |
| 4 | intergenic | KIT,PDGFRA | 3 | 79652994 |
| 5 | intronic | CORIN | 3 | 82952198 |
| 6 | intergenic | PCDH7 | 3 | 94837131 |
| 7 | intergenic | LOC102147406 | 4 | 5869853 |
| 8 | intergenic | ATXN7L1 | 4 | 5869971 |
| 9 | intronic | LOC102149526 | 4 | 9504887 |
| 10 | intergenic | SLC4A3 | 6 | 9942952 |
| 11 | intergenic | EPHA2 | 6 | 9944478 |
| 12 | intronic | ARNTL2 | 6 | 53590565 |
| 13 | intergenic | CPNE8,KIF21A | 6 | 59445139 |
| 14 | intergenic | CTDSP2 | 6 | 76335925 |
| 15 | intergenic | ATP23 | 6 | 76336075 |
| 16 | intronic | GRIP1 | 6 | 83402935 |
| 17 | intronic | RAB3IP | 6 | 85764329 |
| 18 | intronic | RMDN1 | 9 | 2493008 |
| 19 | intergenic | NKAIN3,ASPH | 9 | 23193863 |
| 20 | intergenic | UBE2G1,SPNS3 | 11 | 48167086 |
| 21 | intronic | MYBBP1A | 11 | 48304960 |
| 22 | intergenic | MYH3 | 11 | 53491154 |
| 23 | intronic | LOC100073084 | 11 | 53503520 |
| 24 | intronic | ADPRM | 11 | 53507824 |
| 25 | intergenic | LOC102149895 | 12 | 3158022 |
| 26 | intergenic | LRRC4C | 12 | 3642716 |
| 27 | intergenic | LRRC4C | 12 | 5244667 |
| 28 | intergenic | API5 | 12 | 7220509 |
| 29 | intergenic | NR2C2 | 12 | 7220563 |
| 30 | intronic | TDGF1 | 16 | 5223745 |
| 31 | intergenic | OLFM4 | 17 | 31189044 |
| 32 | intergenic | COL4A1 | 17 | 31190347 |
| 33 | intronic | RNF144B,ID4 | 17 | 77524685 |
| 34 | intergenic | ITGA1,ISL1 | 20 | 18074903 |
| 35 | intergenic | UNC5D | 21 | 20195083 |
| 36 | intronic | ENTPD1 | 27 | 9520032 |
表5 部分显著SNPs描述汇总
Tab.5 Summary of descriptions of some significant SNPs
| 序号 Serial number | 功能区域 Functional area | 基因 Genetics | 染色体 Chromosomes | 物理位置 Physical location |
|---|---|---|---|---|
| 1 | intronic | ENTPD1 | 1 | 33528597 |
| 2 | intronic | HECTD2 | 1 | 37498809 |
| 3 | intergenic | ADGRL3 | 3 | 74573413 |
| 4 | intergenic | KIT,PDGFRA | 3 | 79652994 |
| 5 | intronic | CORIN | 3 | 82952198 |
| 6 | intergenic | PCDH7 | 3 | 94837131 |
| 7 | intergenic | LOC102147406 | 4 | 5869853 |
| 8 | intergenic | ATXN7L1 | 4 | 5869971 |
| 9 | intronic | LOC102149526 | 4 | 9504887 |
| 10 | intergenic | SLC4A3 | 6 | 9942952 |
| 11 | intergenic | EPHA2 | 6 | 9944478 |
| 12 | intronic | ARNTL2 | 6 | 53590565 |
| 13 | intergenic | CPNE8,KIF21A | 6 | 59445139 |
| 14 | intergenic | CTDSP2 | 6 | 76335925 |
| 15 | intergenic | ATP23 | 6 | 76336075 |
| 16 | intronic | GRIP1 | 6 | 83402935 |
| 17 | intronic | RAB3IP | 6 | 85764329 |
| 18 | intronic | RMDN1 | 9 | 2493008 |
| 19 | intergenic | NKAIN3,ASPH | 9 | 23193863 |
| 20 | intergenic | UBE2G1,SPNS3 | 11 | 48167086 |
| 21 | intronic | MYBBP1A | 11 | 48304960 |
| 22 | intergenic | MYH3 | 11 | 53491154 |
| 23 | intronic | LOC100073084 | 11 | 53503520 |
| 24 | intronic | ADPRM | 11 | 53507824 |
| 25 | intergenic | LOC102149895 | 12 | 3158022 |
| 26 | intergenic | LRRC4C | 12 | 3642716 |
| 27 | intergenic | LRRC4C | 12 | 5244667 |
| 28 | intergenic | API5 | 12 | 7220509 |
| 29 | intergenic | NR2C2 | 12 | 7220563 |
| 30 | intronic | TDGF1 | 16 | 5223745 |
| 31 | intergenic | OLFM4 | 17 | 31189044 |
| 32 | intergenic | COL4A1 | 17 | 31190347 |
| 33 | intronic | RNF144B,ID4 | 17 | 77524685 |
| 34 | intergenic | ITGA1,ISL1 | 20 | 18074903 |
| 35 | intergenic | UNC5D | 21 | 20195083 |
| 36 | intronic | ENTPD1 | 27 | 9520032 |
| [1] | Yan T, Yao Y, Wu D Z, et al. BnaGVD: a genomic variation database of rapeseed (Brassica napus)[J]. Plant & Cell Physiology, 2021: pcaa169. |
| [2] | Liu X X, Zhang Y L, Li Y F, et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J]. Molecular Biology and Evolution, 2019, 36(11): 2591-2603. |
| [3] | Kijas J W, Lenstra J A, Hayes B, et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection[J]. PLoS Biology, 2012, 10(2): e1001258. |
| [4] |
Chen Z Q, Narum S R. Whole genome resequencing reveals genomic regions associated with thermal adaptation in redband trout[J]. Molecular Ecology, 2021, 30(1): 162-174.
DOI PMID |
| [5] | Wang K, Liu X F, Qi T, et al. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus)[J]. Genomics, 2021, 113(1): 142-150. |
| [6] | Li C Y, Liu K P, Dai J H, et al. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep[J]. Gene, 2022, 809: 146020. |
| [7] | Lan D L, Ji W H, Xiong X R, et al. Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait[J]. Integrative Zoology, 2021, 16(5): 685-695. |
| [8] | Li W T, Zhang M M, Li Q G, et al. Whole-genome resequencing reveals candidate mutations for pig prolificacy[J]. Proceedings Biological Sciences, 2017, 284(1869): 20172437. |
| [9] |
Amiri Ghanatsaman Z, Wang G D, Asadollahpour Nanaei H, et al. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication[J]. BMC Genomics, 2020, 21(1): 207.
DOI PMID |
| [10] |
Lawal R A, Al-Atiyat R M, Aljumaah R S, et al. Whole-genome resequencing of red junglefowl and indigenous village chicken reveal new insights on the genome dynamics of the species[J]. Frontiers in Genetics, 2018, 9: 264.
DOI PMID |
| [11] | Li X L, Yuan L F, Wang W M, et al. Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep[J]. Frontiers in Veterinary Science, 2022, 9: 1034211. |
| [12] | Heldin C H. Targeting the PDGF signaling pathway in tumor treatment[J]. Cell Communication and Signaling, 2013, 11: 97. |
| [13] | Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Genes & Development, 2008, 22(10): 1276-1312. |
| [14] |
Hoch R V, Soriano P. Roles of PDGF in animal development[J]. Development, 2003, 130(20): 4769-4784.
PMID |
| [15] |
Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J]. Cell, 2011, 146(5): 761-771.
DOI PMID |
| [16] | Lee Y H, Petkova A P, Mottillo E P, et al. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding[J]. Cell Metabolism, 2012, 15(4): 480-491. |
| [17] |
Berry R, Rodeheffer M S. Characterization of the adipocyte cellular lineage in vivo[J]. Nature Cell Biology, 2013, 15(3): 302-308.
DOI PMID |
| [18] | Jechlinger M, Sommer A, Moriggl R, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis[J]. The Journal of Clinical Investigation, 2006, 116(6): 1561-1570. |
| [19] | Joshi P A, Waterhouse P D, Kasaian K, et al. PDGFRα(+) stromal adipocyte progenitors transition into epithelial cells during lobulo-alveologenesis in the murine mammary gland[J]. Nature Communications, 2019, 10(1): 1760. |
| [20] |
Nilson L A, DiMaio D. Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein[J]. Molecular and Cellular Biology, 1993, 13(7): 4137-4145.
DOI PMID |
| [21] |
Camorani S, Esposito C L, Rienzo A, et al. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer[J]. Molecular Therapy, 2014, 22(4): 828-841.
DOI PMID |
| [22] | Xuan R, Wang J M, Zhao X D, et al. Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution[J]. International Journal of Molecular Sciences, 2022, 23(22): 14424. |
| [23] | Slepicka P F, Somasundara A V H, dos Santos C O. The molecular basis of mammary gland development and epithelial differentiation[J]. Seminars in Cell & Developmental Biology, 2021, 114: 93-112. |
| [24] | Liu S J, Cao H R, Guo D, et al. Pou2F3 silencing enhanced the proliferation of mammary epithelial cells in dairy goat via PI3K/AKT/mTOR signaling pathway[J]. Animal Biotechnology, 2022, 33(2): 321-329. |
| [25] | Frey R S, Singletary K W. Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells[J]. The Journal of Nutrition, 2003, 133(1): 226-231. |
| [26] |
Alex A, Bhandary E, McGuire K P. Anatomy and physiology of the breast during pregnancy and lactation[J]. Advances in Experimental Medicine and Biology, 2020, 1252: 3-7.
DOI PMID |
| [27] | Biswas S K, Banerjee S, Baker G W, et al. The mammary gland: basic structure and molecular signaling during development[J]. International Journal of Molecular Sciences, 2022, 23(7): 3883. |
| [28] |
Ieguchi K, Maru Y. Eph/ephrin signaling in the tumor microenvironment[J]. Advances in Experimental Medicine and Biology, 2021, 1270: 45-56.
DOI PMID |
| [29] |
Fonseca P A S, Suárez-Vega A, Esteban-Blanco C, et al. Epigenetic regulation of functional candidate genes for milk production traits in dairy sheep subjected to protein restriction in the prepubertal stage[J]. BMC Genomics, 2023, 24(1): 511.
DOI PMID |
| [30] |
Feigman M J, Moss M A, Chen C, et al. Pregnancy reprograms the epigenome of mammary epithelial cells and blocks the development of premalignant lesions[J]. Nature Communications, 2020, 11(1): 2649.
DOI PMID |
| [31] | Bussell K N. Regulation and functional analysis of EphA2 in normal and Ras-transformed mammary epithelium[D]. London, UK: University of London, University College London, 2001. |
| [32] |
Vaught D, Chen J, Brantley-Sieders D M. Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase[J]. Molecular Biology of the Cell, 2009, 20(10): 2572-2581.
DOI PMID |
| [33] | Salem A F, Gambini L, Billet S, et al. Prostate cancer metastases are strongly inhibited by agonistic Epha2 ligands in an orthotopic mouse model[J]. Cancers, 2020, 12(10): 2854. |
| [34] |
Brieher W M, Yap A S. Cadherin junctions and their cytoskeleton(s)[J]. Current Opinion in Cell Biology, 2013, 25(1): 39-46.
DOI PMID |
| [35] | Sand J M B, Madsen S F, Karsdal M A. Type IV collagen[M]// Biochemistry of collagens, laminins and elastin. Academic Press, 2024: 37-53. |
| [36] | Song X Y, Zhao M, Cao Q Q, et al. Transcriptome provides insights into bovine mammary regulatory mechanisms during the lactation cycle[J]. Journal of Applied Animal Research, 2022, 50(1): 275-288. |
| [37] | Wu X Y, Zhou X L, Xiong L, et al. Transcriptome analysis reveals the potential role of long non-coding RNAs in mammary gland of yak during lactation and dry period[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 579708. |
| [38] |
Chen W H, Lv X Y, Wang Y, et al. Transcriptional profiles of long non-coding RNA and mRNA in sheep mammary gland during lactation period[J]. Frontiers in Genetics, 2020, 11: 946.
DOI PMID |
| [1] | 赖成霞, 杨延龙, 汪鹏龙, 朱梦宇, 杨栋, 李春平, 葛风伟, 玛依拉·玉素音, 阳妮, 马君. 新疆北疆部分棉区落叶型棉花黄萎病菌落形态特征及致病力鉴定[J]. 新疆农业科学, 2025, 62(1): 174-181. |
| [2] | 陈开旭, 郭翠洁, 杨帆, 任斐儿, 李晓斌, 刘武军. 基于全基因组重测序分析新疆细毛羊遗传多样性[J]. 新疆农业科学, 2023, 60(5): 1292-1300. |
| [3] | 李晓斌;杨菊清;赵芳;何雪曼;杨开伦. 补喂硫酸盐、微量元素及其组合对哈萨克马妊娠期消化代谢的影响[J]. , 2016, 53(4): 752-763. |
| [4] | 何良军;廖秋萍;邓海峰;董红;毋状元;田方;陈静波. 哈萨克马不同发育阶段睾丸组织学研究[J]. , 2016, 53(2): 376-382. |
| [5] | 何良军;廖秋萍;邓海峰;董红;毋状元;田方;陈静波. 哈萨克马不同发育阶段睾丸组织学观察与分析[J]. , 2015, 52(8): 1541-1546. |
| [6] | 努尔江·买迪尔;王建文;刘志安;姚新奎;吐尔逊江·吾木尔艾力;达尼亚尔;迪木拉提;帕丽达. 哈萨克马主要体尺指标与屠宰指标相关性研究[J]. , 2013, 50(8): 1549-1553. |
| [7] | 谭小海;潘晓东;孟军;姚新奎;闫斌斌;把洪涛;马江飞;奴尔巴哈提;团勇. 补饲及补饲并添加果寡糖对伊犁母马泌乳量及血清生化指标的影响[J]. , 2010, 47(2): 392-396. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||