新疆农业科学 ›› 2025, Vol. 62 ›› Issue (1): 129-136.DOI: 10.6048/j.issn.1001-4330.2025.01.016
• 耕作栽培·生理生化·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
弓兆星(), 韩鹏程, 李泽森, 李桂真(
), 王玉祥, 张博
收稿日期:
2024-07-05
出版日期:
2025-01-20
发布日期:
2025-03-11
通信作者:
李桂真(1983-),女,河南夏邑人,讲师,博士,研究方向为草地生态与植物营养,(E-mail)515291171@qq.com作者简介:
弓兆星(1998-),男,河南郑州人,硕士研究生,研究方向为草种质资源与育种,(E-mail)1006235406@qq.com
基金资助:
GONG Zhaoxing(), HAN Pengcheng, LI Zesen, LI Guizhen(
), WANG Yuxiang, ZHANG Bo
Received:
2024-07-05
Published:
2025-01-20
Online:
2025-03-11
Supported by:
摘要:
【目的】 研究野生无芒雀麦分别接种2种不同的AM真菌,探究盐胁迫下接种AM真菌对野生无芒雀麦生理的影响。【方法】 在NaCl浓度分别为0%、0.4%、0.6%和0.8%盐胁迫条件下,分析接种AM菌种的植株与不接种AM真菌的野生无芒雀麦的耐盐性。【结果】 接种AM真菌均能提高野生无芒雀麦的株高、茎粗、地下部分干重无地上部分干重;接种AM真菌可显著地提高野生无芒雀麦的抗氧化酶(SOD、POD、CAT)活性,并可提高可溶性糖和脯氨酸的含量;随着盐浓度的上升,接种AM真菌MDA的含量明显小于不接种AM真菌的含量。【结论】 接种2种AM真菌均能促进野生无芒雀麦的生长,提高野生无芒雀麦的耐盐性。
中图分类号:
弓兆星, 韩鹏程, 李泽森, 李桂真, 王玉祥, 张博. 盐胁迫下接种AM真菌对野生无芒雀麦生理的影响[J]. 新疆农业科学, 2025, 62(1): 129-136.
GONG Zhaoxing, HAN Pengcheng, LI Zesen, LI Guizhen, WANG Yuxiang, ZHANG Bo. The physiological effects of inoculation with AM fungi under salt stress on wild smooth[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 129-136.
图1 盐胁迫下AM真菌下野生无芒雀麦生长的变化 注:小写字母表示在盐浓度不变的情况下,不接菌种或接种不同菌种带来的显著性变化;大写字母表示在是否接种菌种或菌种不变的情况下,盐浓度的显著性变化。不同大写小写字母表示在P<0.05水平下的差异,下同
Fig.1 Changes of AM fungi on the growth of Bromus inermiss wheat under salt stress Notes:Lowercase Letters indicate that the salt concentration remains unchanged,Significant changes in the non-vaccinated or vaccinated with no inquiru about the strain;capital letters indicate whether vaccination or strain remains unchanged,significant changes in salt concentration.lowercase shows significantly different at P<0.05,the same as below
[1] | Pan C C, Liu C G, Zhao H L, et al. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization[J]. European Journal of Soil Biology, 2013, 55: 13-19. |
[2] | 王娜, 何俐蓉. 盐渍化土壤的成因及改良材料的应用[J]. 南方农机, 2021, 52(5): 72-73. |
WANG Na, HE Lirong. Causes of salinized soil and application of improved materials[J]. China Southern Agricultural Machinery, 2021, 52(5): 72-73. | |
[3] | 张晓婷, 王雪松, 贾文飞, 等. 植物在盐处理下的研究进展[J]. 北方园艺, 2021,(6): 137-143. |
ZHANG Xiaoting, WANG Xuesong, JIA Wenfei, et al. Research progress of plants under salt treatment[J]. Northern Horticulture, 2021,(6): 137-143. | |
[4] | 张辉, 宋琳, 陈晓琳, 等. 土壤退化的原因与修复作用研究[J]. 海洋科学, 2020, 44(8): 147-161. |
ZHANG Hui, SONG Lin, CHEN Xiaolin, et al. Study on the causes and remediation of soil degradation[J]. Marine Sciences, 2020, 44(8): 147-161. | |
[5] |
杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J]. 草业学报, 2014, 23(4): 195-203.
DOI |
YANG Haixia, LIU Runjin, GUO Shaoxia. Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions[J]. Acta Prataculturae Sinica, 2014, 23(4): 195-203.
DOI |
|
[6] | 曾广萍, 张霞, 刘红玲, 等. 盐胁迫下AM真菌对红花耐盐性的影响[J]. 植物生理学报, 2011, 47(11): 1069-1074. |
ZENG Guangping, ZHANG Xia, LIU Hongling, et al. Effect of AM fungi on salt tolerance of Carthamus tinctorius L. under salt stress[J]. Plant Physiology Journal, 2011, 47(11): 1069-1074. | |
[7] | 王发园, 林先贵, 周健民. 中国AM真菌的生物多样性[J]. 生态学杂志, 2004, 23(6): 149-154. |
WANG Fayuan, LIN Xiangui, ZHOU Jianmin. Biodiversity of AM fungi in China[J]. Chinese Journal of Ecology, 2004, 23(6): 149-154. | |
[8] | 冯曾威. 目前最全的从枝菌根真菌基因组(8个菌种)[DB/OL]. https://www.jianshu.com/p/2cbccOed76e8, 2021-06-16/2022-03-01. |
FENG Zengwei. The most complete genome of mycomycorrhizal fungi (8 species)[DB/OL]. https://www.jianshu.com/p/2cbccOed76e8, 2021-06-16/2022-03-01. | |
[9] | 王发园, 刘润进. 黄河三角洲盐碱地的丛枝菌根真菌[J]. 菌物系统, 2002, 21(2): 196-202. |
WANG Fayuan, LIU Runjin. Arbuscular mycorrhizal fungi in saline-alkaline soils of Yellow River Delta[J]. Mycosystema, 2002, 21(2): 196-202. | |
[10] | 王发园, 林先贵, 周健民. 丛枝菌根真菌分类最新进展[J]. 微生物学杂志, 2005, 25(3): 41-45. |
WANG Fayuan, LIN Xiangui, ZHOU Jianmin. Latest advances in the classification of arbuscular mycorrhizal fungi[J]. Journal of Microbiology, 2005, 25(3): 41-45. | |
[11] | Aliasgharzad N, Ali Bolandnazar S, Neyshabouri M R, et al. Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa)[J]. Biologia, 2009, 64(3): 512-515. |
[12] | Hamilton C E, Bever J D, Labbé J, et al. Mitigating climate change through managing constructed-microbial communities in agriculture[J]. Agriculture, Ecosystems & Environment, 2016, 216: 304-308. |
[13] | Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. The New Phytologist, 2006, 171(1): 41-53. |
[14] | Wu N, Li Z, Liu H G, et al. Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress[J]. Acta Physiologiae Plantarum, 2015, 37(9): 183. |
[15] | 王玉祥, 杜雨, 陈映霞, 等. 盐胁迫对无芒雀麦种子萌发及苗期生理指标的影响[J]. 干旱区资源与环境, 2022, 36(5): 139-145. |
WANG Yuxiang, DU Yu, CHEN Yingxia, et al. Effects of salt stress on seed germination and seedling physiological indexes of Bromus inermis Leyss[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 139-145. | |
[16] | 田小霞, 毛培春, 孟林, 等. 无芒雀麦苗期耐盐指标筛选及耐盐性综合评价[J]. 干旱区资源与环境, 2017, 31(10): 156-161. |
TIAN Xiaoxia, MAO Peichun, MENG Lin, et al. Determination of indicators for salt-tolerant evaluation and comprehensive evaluation of salt-tolerant at the seedlings of Bromus inermis[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 156-161. | |
[17] |
孙铭, 王思琪, 艾尔肯·达吾提, 等. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响[J]. 草业学报, 2019, 28(11): 105-113.
DOI |
SUN Ming, WANG Siqi, Aierken Dawuti, et al. Effects of antioxidant priming on germination and seedling growth of aged seeds of smooth bromegrass[J]. Acta Prataculturae Sinica, 2019, 28(11): 105-113.
DOI |
|
[18] | 郭孝, 郭良兴, 刘党标. 无芒雀麦在单播及混播下牧草产量和品质的分析[J]. 中国草食动物科学, 2018, 38(5): 62-65. |
GUO Xiao, GUO Liangxing, LIU Dangbiao. Analysis of forage yield and quality of Bromus inermis under unicast and mixed sowing[J]. China Herbivore Science, 2018, 38(5): 62-65. | |
[19] | 马玉宝, 闫伟红, 姜超, 等. 雀麦属野生牧草资源的搜集与评价[J]. 中国野生植物资源, 2015, 34(5): 41-45. |
MA Yubao, YAN Weihong, JIANG Chao, et al. Resources collection and evaluation of wild Bromus forage[J]. Chinese Wild Plant Resources, 2015, 34(5): 41-45. | |
[20] | 宫珂, 靳瑰丽, 隋晓青, 等. 我国无芒雀麦种质资源分布、育种及利用现状分析[J]. 黑龙江畜牧兽医, 2019,(21): 29-32, 36. |
GONG Ke, JIN Guili, SUI Xiaoqing, et al. Analysis on the distribution, breeding and utilization of Bromus inermis germplasm resources in China[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019,(21): 29-32, 36. | |
[21] | He Z Q, He C X, Zhang Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 128-133. |
[22] | 柳洁, 肖斌, 王丽霞, 等. 丛枝菌根真菌对茶树耐盐性的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(3): 220-225, 234. |
LIU Jie, XIAO Bin, WANG Lixia, et al. Influence of AMF on salt tolerance of tea[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(3): 220-225, 234. | |
[23] | 冯希环, 刘维信, 李敏. 盐胁迫下丛枝菌根真菌对生菜生长和生理特性的影响[J]. 青岛农业大学学报(自然科学版), 2016, 33(4): 242-246. |
FENG Xihuan, LIU Weixin, LI Min. Effects of arbuscular mycorrhizal fungi on growth and physiological indices of lettuce under salt stress[J]. Journal of Qingdao Agricultural University (Natural Science), 2016, 33(4): 242-246. | |
[24] | 王娜, 陈飞, 岳英男, 等. 松嫩盐碱草地2种优势丛枝菌根真菌对紫花苜蓿耐盐性的影响[J]. 江苏农业科学, 2017, 45(24): 146-148. |
WANG Na, CHEN Fei, YUE Yingnan, et al. Effects of two dominant arbuscular mycorrhizal fungi on salt tolerance of alfalfa in Songnen saline-alkali grassland[J]. Jiangsu Agricultural Sciences, 2017, 45(24): 146-148. | |
[25] | 王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响[J]. 生态学报, 2018, 38(6): 2187-2194. |
WANG Yingnan, TAO Shuang, HUA Xiaoyu, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkali stress[J]. Acta Ecologica Sinica, 2018, 38(6): 2187-2194. | |
[26] | 陆爽, 郭欢, 王绍明, 等. 盐胁迫下AM真菌对紫花苜蓿生长及生理特征的影响[J]. 水土保持学报, 2011, 25(2): 227-231. |
LU Shuang, GUO Huan, WANG Shaoming, et al. Effects of AM fungi on growth and physiological characters of Medicago sativa L. under NaCl stress[J]. Journal of Soil and Water Conservation, 2011, 25(2): 227-231. | |
[27] | 周晓莹. 菌根真菌对盐胁迫下黑松幼苗生长及生理指标的影响[D]. 泰安: 山东农业大学, 2019. |
ZHOU Xiaoying. Effects of mycorrhizal fungi on growth and physiological indexes of Pinus thunbergii seedlings under salt stress[D]. Taian: Shandong Agricultural University, 2019. | |
[28] | 陈强, 刘微, 徐小兵, 等. 4个蓝莓品种果实发育期叶片矿质营养动态及其相关性[J]. 经济林研究, 2020, 38(1): 184-189. |
CHEN Qiang, LIU Wei, XU Xiaobing, et al. Dynamics of mineral nutrients in leaves of four Vaccinium spp. cultivars during fruit development period and their correlations[J]. Non-wood Forest Research, 2020, 38(1): 184-189. | |
[29] | Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24(1): 23-58. |
[30] | 杨海霞, 李士美, 郭绍霞. 丛枝菌根真菌对紫薇耐盐性的影响[J]. 植物生理学报, 2014, 50(9): 1379-1386. |
YANG Haixia, LI Shimei, GUO Shaoxia. Effects of arbuscular mycorrhizal fungi on salinity tolerance of Lagerstroemia indica[J]. Plant Physiology Journal, 2014, 50(9): 1379-1386. | |
[31] | Demiral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance[J]. Environmental and Experimental Botany, 2005, 53(3): 247-257. |
[32] | 梁芳, 黄秋伟, 於艳萍, 等. 濒危半红树植物玉蕊对盐胁迫的生理响应及其相关性分析[J]. 中南林业科技大学学报, 2019, 39(10): 12-18. |
LIANG Fang, HUANG Qiuwei, YU Yanping, et al. Physiological response of endangered semi-mangrove Barringtonia racemosa to salt stress and its correlation analysis[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 12-18. | |
[33] | 张勇, 韩多红, 晋玲, 等. 不同盐碱胁迫对红芪种子萌发和幼苗生理特性的影响[J]. 中国中药杂志, 2012, 37(20): 3036-3040. |
ZHANG Yong, HAN Duohong, JIN Ling, et al. Effects of different salt-alkaline stress on seed germination and physiological characteristics of Hedysarum polybotrys[J]. China Journal of Chinese Materia Medica, 2012, 37(20): 3036-3040. | |
[34] | 祝文婷, 陈为京, 陈建爱, 等. 丛枝菌根真菌提高植物抗盐碱胁迫能力的研究进展[J]. 安徽农业科学, 2013, 41(5): 2061-2062, 2221. |
ZHU Wenting, CHEN Weijing, CHEN Jian’ai, et al. Research progress of arbuscular mycorrhizal fungi improving plant salt tolerance ability[J]. Journal of Anhui Agricultural Sciences, 2013, 41(5): 2061-2062, 2221. | |
[35] | 张秋芳. 盐胁迫对盐生植物叶片SOD及光合特性的效应[D]. 济南: 山东师范大学, 2002. |
ZHANG Qiufang. Effects of salt stress on SOD and photosynthetic characteristics of halophyte leaves[D]. Jinan: Shandong Normal University, 2002. |
[1] | 孙彩琴, 吴佳, 黄海, 郭家鑫, 闵伟, 郭慧娟. 不同盐碱胁迫对棉花根系蛋白质组的影响[J]. 新疆农业科学, 2025, 62(1): 146-160. |
[2] | 张妍婷, 张永强, 雷钧杰, 陈慧, 陈传信, 徐其江, 聂石辉, 徐文修. 不同施磷方式对干播湿出冬小麦光合生理特性及产量的影响[J]. 新疆农业科学, 2025, 62(1): 29-36. |
[3] | 张景灿, 徐其江, 张永强, 雷钧杰, 吕晓庆, 陈传信, 聂石辉, 徐文修. 不同调节剂及喷施次数对滴灌冬小麦茎秆特征和抗倒伏性的影响[J]. 新疆农业科学, 2025, 62(1): 37-44. |
[4] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[5] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[6] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[7] | 阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222. |
[8] | 李金瑶, 徐贵青, 王立生, 吕平, 石东方, 郑伟华. 氮肥对头状沙拐枣幼苗抗旱性的影响[J]. 新疆农业科学, 2024, 61(9): 2330-2340. |
[9] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[10] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[11] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[12] | 奚瑞, 陈怡佳, 李宁, 余庆辉, 王强, 秦勇. 外源2, 4-表芸苔素内酯对盐胁迫下不同盐敏感型番茄种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1983-1992. |
[13] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[14] | 姚庆, 王杰花, 西尔娜依·阿不都拉, 地力木拉提·吐拉洪, 崔宏亮. 低温胁迫下不同藜麦品种苗期的生理响应[J]. 新疆农业科学, 2024, 61(7): 1597-1604. |
[15] | 马百幻, 赵强, 谢佳, 徐开玥, 任若飞, 宋兴虎. 生物药剂复配对棉花黄萎病防治及生长发育的影响[J]. 新疆农业科学, 2024, 61(7): 1748-1756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||