新疆农业科学 ›› 2024, Vol. 61 ›› Issue (9): 2132-2139.DOI: 10.6048/j.issn.1001-4330.2024.09.007
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
王超1(), 徐文修1(
), 李鹏程2, 郑苍松2, 孙淼2, 冯卫娜2, 邵晶晶2, 董合林2,3(
)
收稿日期:
2024-03-15
出版日期:
2024-09-20
发布日期:
2024-10-09
通信作者:
董合林(1964-),男,河南内黄人,研究员,硕士生导师,研究方向为棉花营养生理与高效施肥技术,(E-mail)donghl668@sina.com;作者简介:
王超(1996-),男,云南人,硕士研究生,研究方向为棉花高产栽培,(E-mail)1078697960@qq.com
基金资助:
WANG Chao1(), XU Wenxiu1(
), LI Pengcheng2, ZHENG Cangsong2, SUN Miao2, FENG Weina2, SHAO Jingjing2, DONG Helin2,3(
)
Received:
2024-03-15
Published:
2024-09-20
Online:
2024-10-09
Supported by:
摘要:
【目的】研究棉花苗期主要生长发育性状对土壤速效钾水平的响应,为筛选棉田土壤速效钾评价指标提供依据。【方法】以中棉所100为供试品种,采用长0.8 m、宽0.58 m、深0.44 m的塑料箱,每箱装土240 kg,通过添加钾肥设置68.1、77.4、93.3、104.2、122.9、130.9、142.4和171.1 mg/kg 8个速效钾水平土壤处理(分别以K1、K2、K3、K4、K5、K6、K7和K8表示)。在棉花一叶期、三叶期、五叶期、七叶期和现蕾期5个时期取样,测定棉株农艺性状、干物重、全钾含量、光合指标等。【结果】棉花一叶期,不同土壤速效钾水平间棉花株高、茎粗无显著差异;三叶期、五叶期、七叶期和现蕾期,棉花株高和茎粗均呈随土壤速效钾水平提高而增加的趋势;土壤速效钾分别达到K4和K5处理水平时,棉花株高和茎粗基本趋于稳定。K5处理及以上处理的叶面积、干物重显著高于其他处理,但这些处理之间无显著差异。蕾期各处理棉株功能叶片的E、Ci、Gs、SPAD等值对土壤钾水平无显著响应。K7处理 Pn显著优于K2与K3处理。【结论】当土壤速效钾水平高于123 mg/kg时,可促进棉株苗期养分吸收和干物质积累,促进棉株茎秆生长,叶面积增大,使棉花苗期的生长发育进程加快,有利于棉花从营养生长向生殖生长转化。
中图分类号:
王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139.
WANG Chao, XU Wenxiu, LI Pengcheng, ZHENG Cangsong, SUN Miao, FENG Weina, SHAO Jingjing, DONG Helin. Response of cotton seedling growth and development to soil available potassium levels[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2132-2139.
用量 Dosage | 处理Treatments | |||||||
---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | |
K2O (mg/kg) | 0 | 13.86 | 37.95 | 62.05 | 86.14 | 11.024 | 134.34 | 158.43 |
硫酸钾 Potassium sulphate (g/区) | 0 | 6.52 | 17.86 | 29.20 | 40.54 | 51.88 | 63.22 | 74.56 |
表1 各处理补充钾肥用量
Tab.1 Supplementary potassium fertilizer consumption for each treatment
用量 Dosage | 处理Treatments | |||||||
---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | |
K2O (mg/kg) | 0 | 13.86 | 37.95 | 62.05 | 86.14 | 11.024 | 134.34 | 158.43 |
硫酸钾 Potassium sulphate (g/区) | 0 | 6.52 | 17.86 | 29.20 | 40.54 | 51.88 | 63.22 | 74.56 |
处理 Treat- ments | 全氮 Totalni- trogen (g/kg) | 速效磷 Quick- acting phosphorus (mg/kg) | 速效钾 Quick- acting potassium (mg/kg) | 有机质 Organic matter (g/kg) | pH值 pH value |
---|---|---|---|---|---|
K1 | 0.24 | 11.5 | 68.1 | 4.7 | 7.9 |
K2 | 0.26 | 14.2 | 77.4 | 4.1 | 8.0 |
K3 | 0.22 | 12.3 | 93.3 | 3.9 | 7.7 |
K4 | 0.20 | 13.1 | 104.2 | 3.8 | 7.8 |
K5 | 0.21 | 13.2 | 122.9 | 4.0 | 8.0 |
K6 | 0.20 | 12.2 | 130.9 | 4.5 | 7.9 |
K7 | 0.22 | 11.3 | 142.4 | 4.2 | 7.9 |
K8 | 0.24 | 11.9 | 171.1 | 4.6 | 7.8 |
表2 供试土壤基础理化性质
Tab.2 Physical and chemical properties of the sampled soil
处理 Treat- ments | 全氮 Totalni- trogen (g/kg) | 速效磷 Quick- acting phosphorus (mg/kg) | 速效钾 Quick- acting potassium (mg/kg) | 有机质 Organic matter (g/kg) | pH值 pH value |
---|---|---|---|---|---|
K1 | 0.24 | 11.5 | 68.1 | 4.7 | 7.9 |
K2 | 0.26 | 14.2 | 77.4 | 4.1 | 8.0 |
K3 | 0.22 | 12.3 | 93.3 | 3.9 | 7.7 |
K4 | 0.20 | 13.1 | 104.2 | 3.8 | 7.8 |
K5 | 0.21 | 13.2 | 122.9 | 4.0 | 8.0 |
K6 | 0.20 | 12.2 | 130.9 | 4.5 | 7.9 |
K7 | 0.22 | 11.3 | 142.4 | 4.2 | 7.9 |
K8 | 0.24 | 11.9 | 171.1 | 4.6 | 7.8 |
肥料 Fertilizer | 尿素 Urea (N 46%) | 磷酸一铵 Monoammonium phosphate (N 11%、P2O5 44%) |
---|---|---|
基施 Basic application (g/区) | 6.81 | 9.49 |
追施 Pursuing and giving (g/区) | 9.08 |
表3 微区施肥方案
Tab.3 Microarea fertilization scheme
肥料 Fertilizer | 尿素 Urea (N 46%) | 磷酸一铵 Monoammonium phosphate (N 11%、P2O5 44%) |
---|---|---|
基施 Basic application (g/区) | 6.81 | 9.49 |
追施 Pursuing and giving (g/区) | 9.08 |
处理 Treat- ments | 一叶期 One-leaf stage (cm) | 三叶期 Trilobal stage (cm) | 五叶期 Pentap- hyllous stage (cm) | 七叶期 Seven- leaf stage (cm) | 现蕾期 Bud stage (cm) |
---|---|---|---|---|---|
K1 | 1.3a | 4.1c | 7.5c | 16.6b | 20.7d |
K2 | 1.3a | 4.4bc | 7.9bc | 16.8b | 23.2bc |
K3 | 1.4a | 4.5bc | 8.2b | 17.0b | 22.6c |
K4 | 1.5a | 4.5bc | 8.4b | 16.9b | 23.3bc |
K5 | 1.5a | 5.3ab | 8.7ab | 17.8ab | 24.9a |
K6 | 1.5a | 5.4ab | 8.7ab | 17.5ab | 24.6ab |
K7 | 1.5a | 5.4ab | 9.1ab | 17.6ab | 25.1a |
K8 | 1.6a | 5.7a | 9.3a | 18.1a | 25.1a |
表4 各时期棉花株高的变化
Tab.4 Plant height changes in different periods of cotton
处理 Treat- ments | 一叶期 One-leaf stage (cm) | 三叶期 Trilobal stage (cm) | 五叶期 Pentap- hyllous stage (cm) | 七叶期 Seven- leaf stage (cm) | 现蕾期 Bud stage (cm) |
---|---|---|---|---|---|
K1 | 1.3a | 4.1c | 7.5c | 16.6b | 20.7d |
K2 | 1.3a | 4.4bc | 7.9bc | 16.8b | 23.2bc |
K3 | 1.4a | 4.5bc | 8.2b | 17.0b | 22.6c |
K4 | 1.5a | 4.5bc | 8.4b | 16.9b | 23.3bc |
K5 | 1.5a | 5.3ab | 8.7ab | 17.8ab | 24.9a |
K6 | 1.5a | 5.4ab | 8.7ab | 17.5ab | 24.6ab |
K7 | 1.5a | 5.4ab | 9.1ab | 17.6ab | 25.1a |
K8 | 1.6a | 5.7a | 9.3a | 18.1a | 25.1a |
处理 Treat- ments | 一叶期 One-leaf stage (mm) | 三叶期 Trilobal stage (mm) | 五叶期 Pentap- hyllous stage (mm) | 七叶期 Seven- leaf stage (mm) | 现蕾期 Bud stage (mm) |
---|---|---|---|---|---|
K1 | 1.1a | 2.0c | 2.2c | 3.2bc | 3.9c |
K2 | 1.1a | 2.1c | 2.2c | 3.2bc | 4.0c |
K3 | 1.2a | 2.0c | 2.3c | 3.3b | 4.0c |
K4 | 1.2a | 2.1c | 2.3bc | 3.3b | 4.1bc |
K5 | 1.3a | 2.2ab | 2.5ab | 3.5ab | 4.4a |
K6 | 1.3a | 2.2ab | 2.5ab | 3.5ab | 4.5a |
K7 | 1.3a | 2.3a | 2.6a | 3.5ab | 4.6a |
K8 | 1.3a | 2.2ab | 2.6a | 3.7a | 4.6a |
表5 各时期棉花茎粗的变化
Tab.5 Changes of stem diameter in different periods of cotton
处理 Treat- ments | 一叶期 One-leaf stage (mm) | 三叶期 Trilobal stage (mm) | 五叶期 Pentap- hyllous stage (mm) | 七叶期 Seven- leaf stage (mm) | 现蕾期 Bud stage (mm) |
---|---|---|---|---|---|
K1 | 1.1a | 2.0c | 2.2c | 3.2bc | 3.9c |
K2 | 1.1a | 2.1c | 2.2c | 3.2bc | 4.0c |
K3 | 1.2a | 2.0c | 2.3c | 3.3b | 4.0c |
K4 | 1.2a | 2.1c | 2.3bc | 3.3b | 4.1bc |
K5 | 1.3a | 2.2ab | 2.5ab | 3.5ab | 4.4a |
K6 | 1.3a | 2.2ab | 2.5ab | 3.5ab | 4.5a |
K7 | 1.3a | 2.3a | 2.6a | 3.5ab | 4.6a |
K8 | 1.3a | 2.2ab | 2.6a | 3.7a | 4.6a |
处理 Treat- ments | 一叶期 One-leaf stage (cm2) | 三叶期 Trilobal stage (cm2) | 五叶期 Pentap- hyllous stage (cm2) | 七叶期 Seven- leaf stage (cm2) | 现蕾期 Bud stage (cm2) |
---|---|---|---|---|---|
K1 | 14.2a | 23.5b | 68.41d | 128.8c | 304.9c |
K2 | 14.3a | 24.5b | 71.4c | 142.9c | 344.6bc |
K3 | 14.5a | 24.6b | 77.4c | 152.2bc | 341.3bc |
K4 | 15.3a | 25.9b | 75.8c | 160.2b | 344.4b |
K5 | 16.3a | 26.7ab | 90.2b | 190.8a | 358.4ab |
K6 | 16.2a | 29.4ab | 96.8ab | 193.9a | 353.7ab |
K7 | 15.9a | 27.6ab | 94.5ab | 209.8a | 369.9a |
K8 | 16.4a | 31.3a | 101.6a | 204.5a | 351.1ab |
表6 各时期棉花单株叶面积的变化
Tab.6 Change of leaf area coefficient per plant in different periods of cotton
处理 Treat- ments | 一叶期 One-leaf stage (cm2) | 三叶期 Trilobal stage (cm2) | 五叶期 Pentap- hyllous stage (cm2) | 七叶期 Seven- leaf stage (cm2) | 现蕾期 Bud stage (cm2) |
---|---|---|---|---|---|
K1 | 14.2a | 23.5b | 68.41d | 128.8c | 304.9c |
K2 | 14.3a | 24.5b | 71.4c | 142.9c | 344.6bc |
K3 | 14.5a | 24.6b | 77.4c | 152.2bc | 341.3bc |
K4 | 15.3a | 25.9b | 75.8c | 160.2b | 344.4b |
K5 | 16.3a | 26.7ab | 90.2b | 190.8a | 358.4ab |
K6 | 16.2a | 29.4ab | 96.8ab | 193.9a | 353.7ab |
K7 | 15.9a | 27.6ab | 94.5ab | 209.8a | 369.9a |
K8 | 16.4a | 31.3a | 101.6a | 204.5a | 351.1ab |
处理 Treatments | 蒸腾速率 E (mmol/(m2·s)) | 胞间二氧化碳浓度 Ci (umol/mol) | 气孔导度 Gs (mol/(m2·s)) | 净光合速率 Pn (umol/(m2·s)) | SPAD值 |
---|---|---|---|---|---|
K1 | 8.60a | 309.91a | 0.62a | 28.71abc | 47.07a |
K2 | 9.18a | 305.24a | 0.62a | 28.53bc | 45.70a |
K3 | 8.85a | 309.79a | 0.63a | 28.33bc | 44.43a |
K4 | 9.50a | 296.98ab | 0.60a | 30.57abc | 45.23a |
K5 | 8.73a | 295.34ab | 0.58a | 30.98ab | 46.18a |
K6 | 8.48a | 309.93a | 0.74a | 30.50abc | 45.29a |
K7 | 8.41a | 301.12a | 0.67a | 31.97a | 44.84a |
K8 | 8.54a | 306.08a | 0.76a | 31.56ab | 46.11a |
表7 各处理棉花现蕾期棉花光合特征
Tab.7 Photosynthetic characteristics of each treatment of cotton
处理 Treatments | 蒸腾速率 E (mmol/(m2·s)) | 胞间二氧化碳浓度 Ci (umol/mol) | 气孔导度 Gs (mol/(m2·s)) | 净光合速率 Pn (umol/(m2·s)) | SPAD值 |
---|---|---|---|---|---|
K1 | 8.60a | 309.91a | 0.62a | 28.71abc | 47.07a |
K2 | 9.18a | 305.24a | 0.62a | 28.53bc | 45.70a |
K3 | 8.85a | 309.79a | 0.63a | 28.33bc | 44.43a |
K4 | 9.50a | 296.98ab | 0.60a | 30.57abc | 45.23a |
K5 | 8.73a | 295.34ab | 0.58a | 30.98ab | 46.18a |
K6 | 8.48a | 309.93a | 0.74a | 30.50abc | 45.29a |
K7 | 8.41a | 301.12a | 0.67a | 31.97a | 44.84a |
K8 | 8.54a | 306.08a | 0.76a | 31.56ab | 46.11a |
[1] | 宋玉兰, 钱坤. 中国棉花价格分析与预测[J]. 价格月刊, 2023,(6): 29-35. |
SONG Yulan, QIAN Kun. Analysis and prediction of China’s cotton price[J]. Prices Monthly, 2023,(6): 29-35. | |
[2] | 李伟. 新时代10年我国棉花产业政策环境概析[J]. 中国棉花, 2023, 50(1): 1-12. |
LI Wei. Brief analysis of the policy environment of China’s cotton industry in the New Era Decade[J]. China Cotton, 2023, 50(1): 1-12. | |
[3] | Basak B B, Sarkar B, Biswas D R, et al. Bio-intervention of naturally occurring silicate minerals for alternative source of potassium[M]// Advances in Agronomy. Amsterdam: Elsevier, 2017: 115-145. |
[4] | 杨天军. 土壤肥料在农业可持续发展中的作用与使用策略[J]. 农业工程技术, 2020, 40(29): 41-42. |
YANG Tianjun. The role of soil fertilizer in the sustainable development of agriculture and its application strategy[J]. Agricultural Engineering Technology, 2020, 40(29): 41-42. | |
[5] | 张素菲, 龚光炎, 黑志平, 等. 棉田钾肥肥效临界值的研究[J]. 土壤通报, 1991, 22(2): 79-81. |
ZHANG Sufei, GONG Guangyan, HEI Zhiping, et al. Study on effective critical value of potassium fertilizer in cotton field[J]. Chinese Journal of Soil Science, 1991, 22(2): 79-81. | |
[6] | 闫慧峰, 石屹, 李乃会, 等. 烟草钾素营养研究进展[J]. 中国农业科技导报, 2013, 15(1): 123-129. |
YAN Huifeng, SHI Yi, LI Naihui, et al. Progress in tobacco potassium nutrition[J]. Journal of Agricultural Science and Technology, 2013, 15(1): 123-129. | |
[7] | 夏颖, 姜存仓, 陈防, 等. 棉花钾营养与钾肥施用的研究进展[J]. 华中农业大学学报, 2010, 29(5): 658-663. |
XIA Ying, JIANG Cuncang, CHEN Fang, et al. Review on potassium nutrient and potassium fertilizer application of cotton[J]. Journal of Huazhong Agricultural University, 2010, 29(5): 658-663. | |
[8] | Battie-Laclau P, Laclau J P, Beri C, et al. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment[J]. Plant, Cell & Environment, 2014, 37(1): 70-81. |
[9] | Erel R, Yermiyahu U, Ben-Gal A, et al. Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees[J]. Journal of Plant Physiology, 2015, (177): 1-10. |
[10] | Fontana J E, Wang G, Sun R R, et al. Impact of potassium deficiency on cotton growth, development and potential microRNA-mediated mechanism[J]. Plant Physiology and Biochemistry: PPB, 2020, (153): 72-80. |
[11] | 刘伟华, 詹学武, 向凤玲, 等. 光照和施钾对棉苗生长发育和钾效率的影响[J]. 棉花科学, 2015, 37(4): 12-16. |
LIU Weihua, ZHAN Xuewu, Xiang Fengling, et al. Effect on the grown of cotton seedlings and efficiency of potassium under different levels of light and applying potassium[J]. Cotton Sciences, 2015, 37(4): 12-16. | |
[12] | 中国农学会棉花分会. 中国农学会棉花分会2012年年会暨第八次会员代表大会会议纪要[J]. 中国棉花, 2012, 39(9): 37. |
Cotton branch of China agricultural society. Minutes of the 2012 annual meeting of cotton branch of China agricultural society and the eighth member congress[J]. China Cotton, 2012, 39(9): 37. | |
[13] | 朱波. 不同钾肥水平对油菜抗旱性的影响及其机理研究[D]. 重庆: 西南大学, 2020. |
ZHU Bo. Effects of Different Potassium Levels on Drought Tolerance and Its Mechanism in Brassica Napus[D]. Chongqing: Southwest University, 2020. | |
[14] | 李鹏程, 郑苍松, 孙淼, 等. 土壤速效钾含量和追施不同形态氮肥对棉花产量的影响[J]. 中国土壤与肥料, 2022,(7): 23-28. |
LI Pengcheng, ZHENG Cangsong, SUN Miao, et al. Effects of topdressing different nitrogen forms of nitrogen fertilizer on seed cotton yield under different available potassium contents of soil[J]. Soil and Fertilizer Sciences in China, 2022,(7): 23-28. | |
[15] | Pettigrew W T. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton[J]. Agronomy Journal, 1999, 91(6): 962-968. |
[16] | Pettigrew W T. Relationships between insufficient potassium and crop maturity in cotton[J]. Agronomy Journal, 2003, 95(5): 1323-1329. |
[17] | 李小梅. 钾素水平对油茶林养分积累、果实产量和含油量的影响[D]. 南昌: 江西农业大学, 2014. |
LI Xiaomei. Effects of Potassium Levels on Nutrient Accumulation, Fruit Yield and Oil Content of Camellia Oleifera[D]. Nanchang: Jiangxi Agricultural University, 2014. | |
[18] | 付小勤, 原保忠, 刘燕, 等. 钾肥施用量和施用方式对棉花生长及产量和品质的影响[J]. 农学学报, 2013, 3(2): 6-11,16. |
FU Xiaoqin, YUAN Baozhong, LIU Yan, et al. The effect of potassium fertilizer application amount and method on cotton growth, yield, and quality[J]. Journal of Agriculture, 2013, 3(2): 6-11,16. | |
[19] | 方贵来, 王昊, 祁家凤. 棉花施钾效应初探[J]. 乡镇经济研究, 1998,(4): 47-48. |
FANG Guilai, WANG Hao, QI Jiafeng. Preliminary Study on the Effect of Potassium Application on Cotton[J]. Township Economic Research, 1998,(4): 47-48. | |
[20] | 宋杰, 王少祥, 李亮, 等. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551. |
SONG Jie, WANG Shaoxiang, LI Liang, et al. Effects of potassium application rate on nitrogen, phosphorus, potassium absorption and utilization, and grain yield of summer maize[J]., 2023, 49 (2): 539-551. | |
[21] | 杨阳, 张德鹏, 及利, 等. 配比施肥对紫椴播种苗生长、养分积累及根系形态的影响[J]. 中南林业科技大学学报, 2021, 41(9): 63-70. |
YANG Yang, ZHANG Depeng, JI Li, Effects of formula fertilization on growth, nutrient accumulation and root morphology of Tilia amurensis seedlings[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9):63-70. | |
[22] | 杨婷婷, 金彦龙, 蔡海辉, 等. 不同棉花品种不同生育期叶片的氮磷钾含量与作物产量之间关系的研究[J]. 农业科技与信息, 2023,(1): 116-119. |
YANG Tingting, JIN Yanlong, CAI Haihui, et al. Study on the relationship between nitrogen, phosphorus, and potassium content in leaves of different cotton varieties and crop yield at different growth stages[J]., 2023,(1): 116-119. | |
[23] | 靳一南, 董合林, 李鹏程, 等. 土壤钾水平对棉花前期生长及光合特性的影响[J]. 新疆农业科学, 2021, 58(12): 2236-2243. |
JIN Yinan, DONG Helin, LI Pengcheng, et al. The effect of soil potassium levels on the early growth and photosynthetic characteristics of cotton[J]. Xinjiang Agricultural Science, 2021, 58(12): 2236-2243. | |
[24] | 秦宇坤, 陈俊英, 王玉萍, 等. 施钾量对油后直播棉干物质分配及产量的影响[J]. 棉花科学, 2020, 42(4): 3-7. |
QIN Yukun, CHEN Junying, WANG Yuping, et al. The effect of potassium application on dry matter distribution and yield of oil treated direct seeding cotton[J]. Cotton Science, 2020, 42(4): 3-7. |
[1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[2] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[3] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[4] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
[5] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
[6] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[7] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[8] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[9] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[10] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[11] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[12] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[13] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[14] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[15] | 姚庆, 王杰花, 西尔娜依·阿不都拉, 地力木拉提·吐拉洪, 崔宏亮. 低温胁迫下不同藜麦品种苗期的生理响应[J]. 新疆农业科学, 2024, 61(7): 1597-1604. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||