新疆农业科学 ›› 2025, Vol. 62 ›› Issue (1): 137-145.DOI: 10.6048/j.issn.1001-4330.2025.01.017
• 耕作栽培·生理生化·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
程贯富(), 卢国强, 崔永祥, 侯奥成, 张国帅, 梁春燕, 雷建峰, 路伟, 代培红, 李月(
)
收稿日期:
2024-08-11
出版日期:
2025-01-20
发布日期:
2025-03-11
通信作者:
李月(1984-),女,河南许昌人,副教授,博士,研究方向为棉花逆境分子生物学,(E-mail)liyue6905@126.com作者简介:
程贯富(1998-),男,山东济南人,硕士研究生,研究方向为棉花逆境分子生物学,(E-mail)cgfyouxi@163.com
基金资助:
CHENG Guanfu(), LU Guoqiang, CUI Yongxiang, HOU Aocheng, ZHANG Guoshuai, LIANG Chunyan, LEI Jianfeng, LU Wei, DAI Peihong, LI yue(
)
Received:
2024-08-11
Published:
2025-01-20
Online:
2025-03-11
Supported by:
摘要:
【目的】 探究陆地棉C2H2型锌指蛋白基因GhZFP8在棉花抗黄萎病反应中的功能,为挖掘棉花抗病基因奠定理论基础。【方法】 通过同源克隆方法得到一个陆地棉C2H2型锌指蛋白基因GhZFP8,利用生物信息学方法分析该基因的理化性质,构建该基因病毒诱导的基因沉默(VIGS)载体,通过农杆菌介导法转化棉花,检验GhZFP8的抗病功能。【结果】 GhZFP8开放阅读框(ORF)为789 bp、编码为262个氨基酸,相对分子量为28.12 kD、等电点为8.16、脂肪指数为59.31和平均疏水性为-0.718,为亲水性、碱性的非跨膜蛋白。GhZFP8蛋白具有2个ZnF-C2H2结构域,含有6个α-螺旋和4个β-折叠,属于C2H2型锌指蛋白。GhZFP8基因沉默植株对黄萎病菌的抗性相对减弱。【结论】 GhZFP8基因在棉花抗黄萎病过程中发挥正调控作用。
中图分类号:
程贯富, 卢国强, 崔永祥, 侯奥成, 张国帅, 梁春燕, 雷建峰, 路伟, 代培红, 李月. 陆地棉锌指蛋白基因GhZFP8黄萎病的抗性功能验证[J]. 新疆农业科学, 2025, 62(1): 137-145.
CHENG Guanfu, LU Guoqiang, CUI Yongxiang, HOU Aocheng, ZHANG Guoshuai, LIANG Chunyan, LEI Jianfeng, LU Wei, DAI Peihong, LI yue. Functional analysis of a C2H2 zinc protein GhZFP8 gene in Gossypium hirsutum resistance to Verticillium wilt[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 137-145.
分析工具 Analysis tools | 功能 Function | 网址 URL |
---|---|---|
ExPASy-ProtScale | 蛋白理化性质分析 | |
SignaIP | 信号肽预测 | |
TMHMM | 跨膜结构域预测 | |
SMART | 蛋白结构域预测 | |
PSIPRED | 蛋白二级结构预测 | |
SWISS-MODEL | 蛋白三级结构预测 | |
表1 生物信息学分析工具
Tab.1 Bioinformatics analysis tools
分析工具 Analysis tools | 功能 Function | 网址 URL |
---|---|---|
ExPASy-ProtScale | 蛋白理化性质分析 | |
SignaIP | 信号肽预测 | |
TMHMM | 跨膜结构域预测 | |
SMART | 蛋白结构域预测 | |
PSIPRED | 蛋白二级结构预测 | |
SWISS-MODEL | 蛋白三级结构预测 | |
基因 Gemne | 序列 Sequence(5'-3') | 用途 Application |
---|---|---|
GhZFP8 | F:TCGGAAGTATTTGATATGGCGCTTG R:GCTTTGGACCTCTTCTTCATCTGGG | 基因克隆 |
VIGS- GhZFP8 | F: GAATTCACAACGTGGCGACTCTCCT R: GGTACCAGCGTTTATGACCACCCAAG | VIGS载体构建 |
qGhZFP8 | F:ATTCGTCGGTCTTCCCCTTC R:TTTGCGGTGGCTGGCTTTAT | qRT-PCR |
qGhUBQ7 | F:GAAGGCATTCCACCTGACCAAC R:CTTGACCTTCTTCTTCTTGTGCTTG | qRT-PCR |
表2 引物及用途
Tab.2 Primer and application
基因 Gemne | 序列 Sequence(5'-3') | 用途 Application |
---|---|---|
GhZFP8 | F:TCGGAAGTATTTGATATGGCGCTTG R:GCTTTGGACCTCTTCTTCATCTGGG | 基因克隆 |
VIGS- GhZFP8 | F: GAATTCACAACGTGGCGACTCTCCT R: GGTACCAGCGTTTATGACCACCCAAG | VIGS载体构建 |
qGhZFP8 | F:ATTCGTCGGTCTTCCCCTTC R:TTTGCGGTGGCTGGCTTTAT | qRT-PCR |
qGhUBQ7 | F:GAAGGCATTCCACCTGACCAAC R:CTTGACCTTCTTCTTCTTGTGCTTG | qRT-PCR |
图4 GhZFP8蛋白的二、三级结构预测 注:A:GhZFP8 蛋白的二级结构预测;B: GhZFP8 蛋白的三级结构预测
Fig.4 The prediction secondary and tertiary structure of GhZFP8 protein Notes: A: The prediction secondary structure of GhZFP8 protein; B: The prediction tertiary structure of GhZFP8protein
图5 GhZFP8的VIGS载体构建 注:A:GhZFP8 目标片段的PCR扩增;B:TRV : GhZFP8 VIGS 载体的酶切鉴定;M:Trans 2K Plus Ⅱ DNA Marker
Fig.5 Construction of VIGS vector of GhZFP8 Notes: A:PCR amplification of target fragment of GhZFP8 ;B :identification of TRV: GhZFP8 VIGS vectors by restriction enzyme digestion.M :Trans 2K Plus Ⅱ DNA marker
图6 GhZFP8的沉默效率检测 注:A:阳性对照植株表型;B:GhCLA1基因沉默效率检测;C:GhZFP8 基因沉默效率检测;相同小写字母表示差异不显著(P>0.05),不同小写字母之间表示差异显著(P<0.05),下同
Fig.6 Detection results of silencing efficiency of GhZFP8 gene Notes:A:Phenotype of positive control plant;B:Silencing efficiency of GhCLA1 gene;C:Silencing efficiency of GhZFP8 gene; The same lowercase letter indicates no significant difference(P>0.05),and different lowercase letters indicate significant difference (P<0.05),the same as below
图7 沉默植株接种黄萎病菌后表型及病情指数 注:A:TRV:GhZFP8沉默植株表型与剖杆鉴定; B:病情指数统计; C:木质部染色切片
Fig.7 The Phenotype and disease index of silenced plants inoculated with Verticillium Notes: A: Phenotype analysis of plants after GhZFP8gene silencing and Identification by stem anatomy.B: Disease index statistics.C: the stained section of Xylem
[1] | Li F G, Fan G Y, Lu C R, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530. |
[2] | 马存, 简桂良, 郑传临. 中国棉花抗枯、黄萎病育种50年[J]. 中国农业科学, 2002, 35(5): 508-513. |
MA Cun, JIAN Guiliang, ZHENG Chuanlin. The advances in cotton breeding resistance to Fusarium and Verticillium wilts in China during past fifty years[J]. Scientia Agricultura Sinica, 2002, 35(5): 508-513. | |
[3] |
Wei Z, Yu D. Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing[J]. Archives of Microbiology, 2018, 200(4): 653-662.
DOI PMID |
[4] |
Mohamed H I, Akladious S A. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants[J]. Pesticide Biochemistry and Physiology, 2017, 142: 117-122.
DOI PMID |
[5] |
Zhang Z B, Li X L, Yu R, et al. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family[J]. Molecular Genetics and Genomics, 2015, 290(5): 1849-1858.
DOI PMID |
[6] | Yu Y H, Wan Y T, Jiao Z L, et al. Functional characterization of resistance to powdery mildew of VvTIFY9 from Vitis vinifera[J]. International Journal of Molecular Sciences, 2019, 20(17): 4286. |
[7] | Zang Z Y, Lv Y, Liu S, et al. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum[J]. Frontiers in Plant Science, 2020, 11: 850. |
[8] | Liu Y H, Khan A R, Gan Y B. C2H2 zinc finger proteins response to abiotic stress in plants[J]. International Journal of Molecular Sciences, 2022, 23(5): 2730. |
[9] |
Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252): 1081-1085.
DOI PMID |
[10] | Zheng F Y, Cui L, Li C X, et al. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato[J]. Journal of Experimental Botany, 2022, 73(1): 228-244. |
[11] | Mittler R, Kim Y, Song L H, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress[J]. FEBS Letters, 2006, 580(28/29): 6537-6542. |
[12] |
Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis[J]. Plant Physiology, 2005, 139(2): 847-856.
DOI PMID |
[13] |
Kim J C, Jeong J C, Park H C, et al. Cold accumulation of SCOF-1 transcripts is associated with transcriptional activation and mRNA stability[J]. Molecules and Cells, 2001, 12(2): 204-208.
PMID |
[14] |
Tian Z D, Zhang Y, Liu J, et al. Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance[J]. Plant Biology, 2010, 12(5): 689-697.
DOI PMID |
[15] |
Uehara Y, Takahashi Y, Berberich T, et al. Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway[J]. Plant Molecular Biology, 2005, 59(3): 435-448.
DOI PMID |
[16] |
Li W T, Zhu Z W, Chern M, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell, 2017, 170(1): 114-126.
DOI PMID |
[17] |
王亚, 王越涛, 申关望, 等. 聚合R基因Pigm和非R基因bsr-d1改良水稻稻瘟病抗性[J]. 华北农学报, 2022, 37(5): 157-165.
DOI |
WANG Ya, WANG Yuetao, SHEN Guanwang, et al. Improvement of rice blast resistance by pyramiding the R gene pigm and the non-R gene bsr-d1[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5): 157-165. | |
[18] | Gu Z H, Liu T L, Ding B, et al. Two lysin-motif receptor kinases, gh-LYK1 and gh-LYK2, contribute to resistance against Verticillium wilt in upland cotton[J]. Frontiers in Plant Science, 2017, 8: 2133. |
[19] | Wang G L, Xu J, Li L C, et al. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways[J]. Plant Biotechnology Journal, 2020, 18(1): 222-238. |
[20] |
Wang P, Zhou L, Jamieson P, et al. The cotton wall-associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors[J]. The Plant Cell, 2020, 32(12): 3978-4001.
DOI PMID |
[21] | Feng H J, Li C, Zhou J L, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae[J]. International Journal of Biological Macromolecules, 2021, 167: 633-643. |
[22] | 胡子曜, 武晓玉, 雷建峰, 等. 陆地棉小GTP结合蛋白基因GhROP1和GhROP8的克隆及表达分析[J]. 中国农业大学学报, 2023, 28(4): 13-25. |
HU Ziyao, WU Xiaoyu, LEI Jianfeng, et al. Molecular cloning and expression analysis of small GTP-binding protein genes GhROP1 and GhROP8 in cotton (Gossypium hirsutum L.)[J]. Journal of China Agricultural University, 2023, 28(4): 13-25. | |
[23] | 李秀青, 李月, 刘超, 等. 棉花黄萎病相关基因GhAAT的克隆与功能鉴定[J]. 分子植物育种, 2020, 18(4): 1048-1053. |
LI Xiuqing, LI Yue, LIU Chao, et al. Cloning and functional identification of cotton Verticillium wilt related gene GhAAT[J]. Molecular Plant Breeding, 2020, 18(4): 1048-1053. | |
[24] | Hou T Z, Huang M Z, Liao Y, et al. Virus-induced gene silencing (VIGS) for functional analysis of genes involved in the regulation of anthocyanin biosynthesis in the perianth of Phalaenopsis-type Dendrobium hybrids[J]. Scientia Horticulturae, 2023, 307: 111485. |
[25] |
袁伟, 万红建, 杨悦俭. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报, 2012, 47(4): 427-436.
DOI |
YUAN Wei, WAN Hongjian, YANG Yuejian. Characterization and selection of reference genes for real-time quantitative RT-PCR of plants[J]. Chinese Bulletin of Botany, 2012, 47(4): 427-436. | |
[26] | 王倩, 章超, 代培红, 等. 陆地棉GhMAPKKKK3基因的克隆及其表达分析[J]. 分子植物育种, 2024, 22(3): 697-703. |
WANG Qian, ZHANG Chao, DAI Peihong, et al. Cloning and expression analysis of GhMAPKKKK3 gene in Gossypium hirsutum L[J]. Molecular Plant Breeding, 2024, 22(3): 697-703. | |
[27] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method[J]. Methods, 2001, 25(4): 402-408.
DOI PMID |
[28] | Li Y, Zhou Y J, Dai P H, et al. Cotton Bsr-k1 modulates lignin deposition participating in plant resistance against Verticillium dahliae and Fusarium oxysporum[J]. Plant Growth Regulation, 2021, 95(2): 283-292. |
[29] | Dong Q, Magwanga R O, Cai X Y, et al. Rna-sequencing, physiological and RNAi analyses provide insights into the response mechanism of the ABC-mediated resistance to Verticillium dahliae infection in cotton[J]. Genes, 2019, 10(2): 110. |
[30] | Qin T, Liu S M, Zhang Z N, et al. GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17[J]. Plant Molecular Biology, 2019, 99(4/5): 379-393. |
[31] |
Han L B, Li Y B, Wang F X, et al. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae[J]. The Plant Cell, 2019, 31(2): 520-536.
DOI PMID |
[32] | Gong Q, Yang Z E, Chen E Y, et al. A phi-class glutathione S-transferase gene for Verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study[J]. Plant & Cell Physiology, 2018, 59(2): 275-289. |
[33] | He X, Wang T Y, Zhu W, et al. GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae[J]. International Journal of Molecular Sciences, 2018, 19(12): 3997. |
[34] | Zhang H J, Zhao T Y, Zhuang P T, et al. NbCZF1, a novel C2H2-type zinc finger protein, as a new regulator of SsCut-induced plant immunity in Nicotiana benthamiana[J]. Plant & Cell Physiology, 2016, 57(12): 2472-2484. |
[35] |
Noman A, Liu Z Q, Yang S, et al. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity[J]. Microbial Pathogenesis, 2018, 118: 336-346.
DOI PMID |
[36] | Shi H T, Wang X, Ye T T, et al. The Cysteine2/Histidine2-Type Transcription Factor zinc finger of Arabidopsis thaliana6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and c-repeat-binding factor Genes in Arabidopsis[J]. Plant Physiology, 2014, 165(3): 1367-1379. |
[1] | 赖成霞, 杨延龙, 汪鹏龙, 朱梦宇, 杨栋, 李春平, 葛风伟, 玛依拉·玉素音, 阳妮, 马君. 新疆北疆部分棉区落叶型棉花黄萎病菌落形态特征及致病力鉴定[J]. 新疆农业科学, 2025, 62(1): 174-181. |
[2] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[3] | 马百幻, 赵强, 谢佳, 徐开玥, 任若飞, 宋兴虎. 生物药剂复配对棉花黄萎病防治及生长发育的影响[J]. 新疆农业科学, 2024, 61(7): 1748-1756. |
[4] | 马尚洁, 李生梅, 杨涛, 王红刚, 赵康, 庞博, 高文伟. 陆地棉GHWAT1-35基因的克隆及亚细胞定位[J]. 新疆农业科学, 2024, 61(6): 1310-1317. |
[5] | 孟卓, 唐小雯, 张广杰, 徐安东, 颜宇, 付娆, 羌松, 蒋平安, 马德英. 虫砂复合微生物菌剂2种施用方式对棉花生长发育及防控黄萎病的影响[J]. 新疆农业科学, 2024, 61(12): 2861-2871. |
[6] | 欧阳单华, 赵康, 宋东博, 柳自清, 郭旺珍, 刘燕, 顾爱星, 阿扎提古丽·麦麦提图尔, 艾力卡尔江·艾麦尔. 35份棉花品系对黄萎病抗性鉴定及综合分析[J]. 新疆农业科学, 2024, 61(1): 9-18. |
[7] | 靳娟, 苏比娜·肖克来提, 阿布都卡尤木·阿依麦提, 杨磊, 郝庆, 樊丁宇. 灰枣扩展蛋白基因ZjEXPA8的克隆及序列分析[J]. 新疆农业科学, 2023, 60(9): 2223-2230. |
[8] | 阳妮, 玛依拉·玉素音, 杨延龙, 李春平, 张大伟, 徐海江, 赖成霞. 黄萎病枯斑型与黄化型病症棉花叶片的植物挥发物对比[J]. 新疆农业科学, 2023, 60(8): 1975-1986. |
[9] | 耿翡翡, 孟超敏, 卿桂霞, 周佳敏, 张富厚, 刘逢举. 陆地棉磷高效基因GhMYB4的克隆与表达分析[J]. 新疆农业科学, 2023, 60(6): 1406-1412. |
[10] | 程利华, 杨红兰, 马清倩, 史莹, 张大伟, Alisher A. Abdullaev, 张道远. 陆地棉种质黄萎病抗性生理鉴定分析[J]. 新疆农业科学, 2023, 60(4): 992-1002. |
[11] | 马清倩, 杨红兰, 魏鑫, 张大伟, 程利华, 张道远. 18份国外棉花种质黄萎病抗性鉴定与筛选[J]. 新疆农业科学, 2023, 60(2): 286-294. |
[12] | 娜斯拜·阿卜杜瓦哈普, 高晓娟, 坤杜孜阿依·阿布都沙拉木, 李江伟. 新疆双峰驼C3d基因cDNA的克隆与序列分析[J]. 新疆农业科学, 2023, 60(2): 493-500. |
[13] | 刘晨曦, 朱雨婷, 周强, 陈瑾, 赵文杰, 郑凯. 海岛棉β-胡萝卜素异构酶GbD27-6基因克隆及表达分析[J]. 新疆农业科学, 2023, 60(12): 2869-2877. |
[14] | 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 李兴河, 马文娜, 韩俊伟, 张香云, 张建宏. 种植密度对适宜机采棉花品系农艺和产量品质性状的影响[J]. 新疆农业科学, 2023, 60(11): 2638-2645. |
[15] | 荣华, 张卢慧, 刘龙, 郑童童, 雷斌, 郭庆元. 甜菜黄萎病菌生物学特性及16种杀菌剂的毒力比较[J]. 新疆农业科学, 2022, 59(8): 1984-1992. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||