

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 894-902.DOI: 10.6048/j.issn.1001-4330.2025.04.013
• Horticultural Special Local Products · Forestry · Agricultural Product Processing Engineering • Previous Articles Next Articles
LYU Qi1,2(
), ZHANG Xiaohui1(
), ZHANG Jinzhi1, WANG Jingjing3
Received:2024-09-19
Online:2025-04-20
Published:2025-06-20
Supported by:通讯作者:
张晓晖(1978-),女,新疆人,副教授,硕士研究生,研究方向为果树栽培与生理及相关调控,(E-mail)22515228@qq.com
作者简介:吕齐(1997-),男,新疆人,硕士研究生,助教,研究方向为果树栽培生理与水肥,(E-mail)1549993076@qq.com
基金资助:CLC Number:
LYU Qi, ZHANG Xiaohui, ZHANG Jinzhi, WANG Jingjing. Effects of increasing organicfertilizer and reducing chemical fertilizer on fruit quality of Xiahei grape in arid areas[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 894-902.
吕齐, 张晓晖, 张金枝, 王菁菁. 增施有机肥与减量滴施化肥对干旱区夏黑葡萄果实品质的影响[J]. 新疆农业科学, 2025, 62(4): 894-902.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.04.013
Fig.1 Experimental design Notes:1:Wire; 2: Crossbar; 3: Fruit branch; 4: Column; 5: Grapevine; 6: Drip tape; 8: Water and fertilizer; 9: Organic fertilizer(Cattle wastes)
| 处理 Treatments | 说明(施加时间) Description (Application time) | 基肥 Basal Fertilizer | 追肥(化肥) T0 pdressing(Chemical fertilizer) (kg/hm2) | ||
|---|---|---|---|---|---|
| 有机肥施加总量 Total amount of organic fertilizer applied(kg/hm2) | 尿素 Urea | 磷酸一铵 Monoammonium phosphate | 硫酸钾 Potassium sulfate | ||
| CK | 连续三年未施肥 (2021年-2023年) | 0 | 0 | 0 | 0 |
| T0 | 连续三年单施化肥 (2021年-2023年) | 0 | 525 | 375 | 675 |
| T1 | 有机肥+减量滴施化肥一年 (2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
| T2 | 有机肥+减量滴施化肥两年 (2022年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
| T3 | 有机肥+减量滴施化肥三年 (2021年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
Tab.1 Fertilization scheme
| 处理 Treatments | 说明(施加时间) Description (Application time) | 基肥 Basal Fertilizer | 追肥(化肥) T0 pdressing(Chemical fertilizer) (kg/hm2) | ||
|---|---|---|---|---|---|
| 有机肥施加总量 Total amount of organic fertilizer applied(kg/hm2) | 尿素 Urea | 磷酸一铵 Monoammonium phosphate | 硫酸钾 Potassium sulfate | ||
| CK | 连续三年未施肥 (2021年-2023年) | 0 | 0 | 0 | 0 |
| T0 | 连续三年单施化肥 (2021年-2023年) | 0 | 525 | 375 | 675 |
| T1 | 有机肥+减量滴施化肥一年 (2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
| T2 | 有机肥+减量滴施化肥两年 (2022年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
| T3 | 有机肥+减量滴施化肥三年 (2021年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
| 处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
| CK | 0.58±0.083b | 0.24±0.115a | 0.09±0.146b | 0.51±0.048b | 0.15±0.034c | 0.27±0.015a | 0.12±0.020b | 0.05±0.014c | 0.25±0.196a |
| T0 | 0.63±0.102b | 0.24±0.041a | 0.15±0.070ab | 0.52±0.046b | 0.31±0.024b | 0.11±0.015b | 0.10±0.006c | 0.07±0.010b | 0.27±0.199a |
| T1 | 0.62±0.041b | 0.23±0.064a | 0.15±0.068ab | 0.57±0.015a | 0.31±0.036b | 0.10±0.033b | 0.11±0.007bc | 0.09±0.008a | 0.27±0.202a |
| T2 | 0.73±0.015a | 0.17±0.028b | 0.19±0.016a | 0.53±0.011b | 0.36±0.011a | 0.06±0.018c | 0.11±0.010bc | 0.08±0.015ab | 0.28±0.227a |
| T3 | 0.64±0.016b | 0.25±0.021a | 0.15±0.015ab | 0.54±0.014ab | 0.30±0.011b | 0.11±0.021b | 0.13±0.020a | 0.06±0.015c | 0.27±0.199a |
Tab.2 Changes of longitudinal enlargement rate of Xiahei grape under different treatments(mm/d)
| 处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
| CK | 0.58±0.083b | 0.24±0.115a | 0.09±0.146b | 0.51±0.048b | 0.15±0.034c | 0.27±0.015a | 0.12±0.020b | 0.05±0.014c | 0.25±0.196a |
| T0 | 0.63±0.102b | 0.24±0.041a | 0.15±0.070ab | 0.52±0.046b | 0.31±0.024b | 0.11±0.015b | 0.10±0.006c | 0.07±0.010b | 0.27±0.199a |
| T1 | 0.62±0.041b | 0.23±0.064a | 0.15±0.068ab | 0.57±0.015a | 0.31±0.036b | 0.10±0.033b | 0.11±0.007bc | 0.09±0.008a | 0.27±0.202a |
| T2 | 0.73±0.015a | 0.17±0.028b | 0.19±0.016a | 0.53±0.011b | 0.36±0.011a | 0.06±0.018c | 0.11±0.010bc | 0.08±0.015ab | 0.28±0.227a |
| T3 | 0.64±0.016b | 0.25±0.021a | 0.15±0.015ab | 0.54±0.014ab | 0.30±0.011b | 0.11±0.021b | 0.13±0.020a | 0.06±0.015c | 0.27±0.199a |
| 处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
| CK | 0.43±0.167c | 0.32±0.108a | 0.11±0.079a | 0.42±0.020c | 0.22±0.010c | 0.17±0.013a | 0.05±0.016d | 0.09±0.017a | 0.23±0.157a |
| T0 | 0.61±0.074b | 0.22±0.057b | 0.13±0.071a | 0.51±0.038b | 0.26±0.015b | 0.03±0.014d | 0.14±0.011b | 0.02±0.011c | 0.24±0.207a |
| T1 | 0.60±0.102b | 0.23±0.090b | 0.14±0.070a | 0.53±0.028ab | 0.26±0.014b | 0.06±0.009c | 0.15±0.007b | 0.02±0.010c | 0.25±0.207a |
| T2 | 0.72±0.012a | 0.14±0.016c | 0.15±0.014a | 0.56±0.034a | 0.29±0.024a | 0.08±0.020b | 0.07±0.020c | 0.06±0.016b | 0.26±0.235a |
| T3 | 0.62±0.013b | 0.22±0.016b | 0.14±0.012a | 0.53±0.150ab | 0.26±0.020b | 0.07±0.012bc | 0.17±0.014a | 0.05±0.023b | 0.26±0.199a |
Tab.3 Changes of transverse diameter enlargement rate of Xiabei grape under different treatments (mm/d)
| 处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
| CK | 0.43±0.167c | 0.32±0.108a | 0.11±0.079a | 0.42±0.020c | 0.22±0.010c | 0.17±0.013a | 0.05±0.016d | 0.09±0.017a | 0.23±0.157a |
| T0 | 0.61±0.074b | 0.22±0.057b | 0.13±0.071a | 0.51±0.038b | 0.26±0.015b | 0.03±0.014d | 0.14±0.011b | 0.02±0.011c | 0.24±0.207a |
| T1 | 0.60±0.102b | 0.23±0.090b | 0.14±0.070a | 0.53±0.028ab | 0.26±0.014b | 0.06±0.009c | 0.15±0.007b | 0.02±0.010c | 0.25±0.207a |
| T2 | 0.72±0.012a | 0.14±0.016c | 0.15±0.014a | 0.56±0.034a | 0.29±0.024a | 0.08±0.020b | 0.07±0.020c | 0.06±0.016b | 0.26±0.235a |
| T3 | 0.62±0.013b | 0.22±0.016b | 0.14±0.012a | 0.53±0.150ab | 0.26±0.020b | 0.07±0.012bc | 0.17±0.014a | 0.05±0.023b | 0.26±0.199a |
| 纵径测定时间 Time for longitudinal diameter measurement(d) | 横径测定时间 Time for transverse diameter measurement | |||||||
|---|---|---|---|---|---|---|---|---|
| 15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | |
| 15~22 | 0.465** | -0.493** | 0.161 | 0.468* | 0.543** | -0.272 | -0.018 | -0.120 |
| 22~29 | 0.002 | 0.110 | -0.060 | -0.241 | -0.192 | 0.027 | 0.247 | -0.109 |
| 29~36 | 0.178 | -0.156 | -0.047 | 0.356* | 0.286 | -0.294* | 0.086 | -0.121 |
| 36~43 | 0.088 | -0.187 | 0.247 | 0.272 | 0.100 | -0.265 | 0.310* | -0.342* |
| 43~50 | 0.713** | -0.605** | 0.095 | 0.822** | 0.659** | -0.730** | 0.437** | -0.513** |
| 50~57 | -0.670** | 0.655** | -0.135 | -0.851** | -0.702** | 0.759** | -0.443** | 0.542** |
| 57~64 | -0.091 | 0.092 | -0.129 | 0.010 | -0.008 | 0.216 | 0.067 | 0.256 |
| 64~71 | 0.343* | -0.369** | 0.102 | 0.494** | 0.323* | -0.492** | 0.285 | -0.531** |
Tab.4 Correlation analysis between longitudinal diameter and transverse diameter
| 纵径测定时间 Time for longitudinal diameter measurement(d) | 横径测定时间 Time for transverse diameter measurement | |||||||
|---|---|---|---|---|---|---|---|---|
| 15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | |
| 15~22 | 0.465** | -0.493** | 0.161 | 0.468* | 0.543** | -0.272 | -0.018 | -0.120 |
| 22~29 | 0.002 | 0.110 | -0.060 | -0.241 | -0.192 | 0.027 | 0.247 | -0.109 |
| 29~36 | 0.178 | -0.156 | -0.047 | 0.356* | 0.286 | -0.294* | 0.086 | -0.121 |
| 36~43 | 0.088 | -0.187 | 0.247 | 0.272 | 0.100 | -0.265 | 0.310* | -0.342* |
| 43~50 | 0.713** | -0.605** | 0.095 | 0.822** | 0.659** | -0.730** | 0.437** | -0.513** |
| 50~57 | -0.670** | 0.655** | -0.135 | -0.851** | -0.702** | 0.759** | -0.443** | 0.542** |
| 57~64 | -0.091 | 0.092 | -0.129 | 0.010 | -0.008 | 0.216 | 0.067 | 0.256 |
| 64~71 | 0.343* | -0.369** | 0.102 | 0.494** | 0.323* | -0.492** | 0.285 | -0.531** |
| 处理 Treatments | 净光合速率Pn (μmol/(m2·s)) | 气孔导度Gs (mol/(m2·s)) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (μmol/(m2·s)) |
|---|---|---|---|---|
| CK | 18.22±1.011b | 0.37±0.020c | 269.45±3.542a | 7.13±0.529d |
| T0 | 18.73±0.705b | 0.42±0.037b | 250.00±8.175bc | 8.62±0.634bc |
| T1 | 18.82±0.942b | 0.42±0.015b | 261.47±4.745ab | 7.93±0.224cd |
| T2 | 20.98±0.967a | 0.49±0.025a | 252.20±9.479b | 9.84±0.254a |
| T3 | 21.31±1.075a | 0.50±0.015a | 238.57±8.045c | 8.90±0.620b |
Tab.5 Changes of photosynthetic parameters of Xiahei grapes during the expansion period
| 处理 Treatments | 净光合速率Pn (μmol/(m2·s)) | 气孔导度Gs (mol/(m2·s)) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (μmol/(m2·s)) |
|---|---|---|---|---|
| CK | 18.22±1.011b | 0.37±0.020c | 269.45±3.542a | 7.13±0.529d |
| T0 | 18.73±0.705b | 0.42±0.037b | 250.00±8.175bc | 8.62±0.634bc |
| T1 | 18.82±0.942b | 0.42±0.015b | 261.47±4.745ab | 7.93±0.224cd |
| T2 | 20.98±0.967a | 0.49±0.025a | 252.20±9.479b | 9.84±0.254a |
| T3 | 21.31±1.075a | 0.50±0.015a | 238.57±8.045c | 8.90±0.620b |
| 处理 Treatments | 纵径 Longitudinal diameter(mm) | 横径 Transverse diameter(mm) | 单果重 Berry weight (g) | 单穗重 Bunch weight (g) | 产量 Yield (kg/hm2) |
|---|---|---|---|---|---|
| CK | 22.34±0.561d | 19.84±0.572e | 5.37±0.265c | 546.1±11.75c | 27 032.0±38.77c |
| T0 | 23.66±0.249c | 21.25±0.544d | 6.16±0.254b | 579.5±9.81b | 28 685.3±32.39b |
| T1 | 23.89±0.442b | 21.60±0.352c | 6.17±0.211b | 573.8±6.13b | 28 403.1±20.27b |
| T2 | 24.35±0.512a | 22.41±0.377a | 7.06±0.124a | 607.1±7.09a | 30 051.5±23.39a |
| T3 | 23.95±0.501b | 22.15±0.436b | 6.89±0.173a | 602.1±6.65a | 29 802.3±21.97a |
Tab.6 Changes yield of Xiahei grape under different treatments
| 处理 Treatments | 纵径 Longitudinal diameter(mm) | 横径 Transverse diameter(mm) | 单果重 Berry weight (g) | 单穗重 Bunch weight (g) | 产量 Yield (kg/hm2) |
|---|---|---|---|---|---|
| CK | 22.34±0.561d | 19.84±0.572e | 5.37±0.265c | 546.1±11.75c | 27 032.0±38.77c |
| T0 | 23.66±0.249c | 21.25±0.544d | 6.16±0.254b | 579.5±9.81b | 28 685.3±32.39b |
| T1 | 23.89±0.442b | 21.60±0.352c | 6.17±0.211b | 573.8±6.13b | 28 403.1±20.27b |
| T2 | 24.35±0.512a | 22.41±0.377a | 7.06±0.124a | 607.1±7.09a | 30 051.5±23.39a |
| T3 | 23.95±0.501b | 22.15±0.436b | 6.89±0.173a | 602.1±6.65a | 29 802.3±21.97a |
| 处理 Treat- ments | 可溶性 固形物 Soluble solids (%) | 可滴定酸 Titratable acid (%) | 糖酸比 Sugar acid ratio | VC (mg/100g) | 总酚 Total phenol (mg/g) | 总糖 Total sugar (%) | 果糖 Fruc- tose (%) | 蔗糖 Sucrose (%) | 葡萄糖 Glucose (%) |
|---|---|---|---|---|---|---|---|---|---|
| CK | 18.51±0.236e | 0.623±0.037a | 29.747±0.640d | 3.552±0.096b | 23.35±0.478e | 14.34±0.373c | 8.03±0.061d | 1.20±0.025d | 5.11±0.035d |
| T0 | 19.47±0.141d | 0.593±0.071b | 32.858±0.360c | 3.680±0.055b | 25.18±0.230d | 16.73±0.135b | 8.72±0.036c | 1.29±0.015b | 6.72±0.020c |
| T1 | 19.74±0.174c | 0.595±0.032b | 33.203±1.064c | 3.584±0.055b | 26.02±0.135c | 16.74±0.115b | 8.68±0.030c | 1.25±0.0.17c | 6.82±0.015b |
| T2 | 20.52±0.109a | 0.528±0.028c | 38.910±0.509a | 3.936±0.096a | 29.16±0.215b | 17.54±0.145a | 9.19±0.025a | 1.36±0.030a | 7.02±0.040a |
| T3 | 19.99±0.183b | 0.538±0.034c | 37.197±0.565b | 3.872±0.055a | 30.48±0.642a | 17.32±0.090a | 8.99±0.030b | 1.33±0.020ab | 6.97±0.040a |
Tab.7 Changes internal quality of Xiahei grape under different treatments
| 处理 Treat- ments | 可溶性 固形物 Soluble solids (%) | 可滴定酸 Titratable acid (%) | 糖酸比 Sugar acid ratio | VC (mg/100g) | 总酚 Total phenol (mg/g) | 总糖 Total sugar (%) | 果糖 Fruc- tose (%) | 蔗糖 Sucrose (%) | 葡萄糖 Glucose (%) |
|---|---|---|---|---|---|---|---|---|---|
| CK | 18.51±0.236e | 0.623±0.037a | 29.747±0.640d | 3.552±0.096b | 23.35±0.478e | 14.34±0.373c | 8.03±0.061d | 1.20±0.025d | 5.11±0.035d |
| T0 | 19.47±0.141d | 0.593±0.071b | 32.858±0.360c | 3.680±0.055b | 25.18±0.230d | 16.73±0.135b | 8.72±0.036c | 1.29±0.015b | 6.72±0.020c |
| T1 | 19.74±0.174c | 0.595±0.032b | 33.203±1.064c | 3.584±0.055b | 26.02±0.135c | 16.74±0.115b | 8.68±0.030c | 1.25±0.0.17c | 6.82±0.015b |
| T2 | 20.52±0.109a | 0.528±0.028c | 38.910±0.509a | 3.936±0.096a | 29.16±0.215b | 17.54±0.145a | 9.19±0.025a | 1.36±0.030a | 7.02±0.040a |
| T3 | 19.99±0.183b | 0.538±0.034c | 37.197±0.565b | 3.872±0.055a | 30.48±0.642a | 17.32±0.090a | 8.99±0.030b | 1.33±0.020ab | 6.97±0.040a |
| [1] | 黄秉信, 中国农村统计年鉴[M]. 北京: 中国统计出版社, 2017:193-194. |
| HUANG Bingxin Ed. China Rural Statistical Yearbook[M]. Beijing: China Statistics Press, 2017:193-194. | |
| [2] | 李久生, 栗岩峰, 王军, 等. 微灌在中国: 历史、现状和未来[J]. 水利学报, 2016, 47(3): 372-381. |
| LI Jiusheng, LI Yanfeng, WANG Jun, et al. Microirrigation in China: history, current situation and prospects[J]. Journal of Hydraulic Engineering, 2016, 47(3): 372-381. | |
| [3] | 罗彤, 李俊华, 华瑞, 等. 滴施酸性有机肥浸提液对棉田土壤养分活化和利用效率的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1255-1265. |
| LUO Tong, LI Junhua, HUA Rui, et al. Effects of organic fertilizer extract on soil nutrient activation and use efficiency in cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1255-1265. | |
| [4] |
陶瑞, 李锐, 谭亮, 等. 减少化肥配施有机肥对滴灌棉花N、P吸收和产量的影响[J]. 棉花学报, 2014, 26(4): 342-349.
DOI |
| TAO Rui, LI Rui, TAN Liang, et al. Effects of application of different organic manures with chemical fertilizer on cotton yield, N and P utilization efficiency under drip irrigation[J]. Cotton Science, 2014, 26(4): 342-349. | |
| [5] | Sharma R, Banik P. Vermicompost and fertilizer application: effect on productivity and profitability of baby corn (Zea mays L.) and soil health[J]. Compost Science & Utilization, 2014, 22: 83-92. |
| [6] | Díaz-Pérez J C, Bautista J, Gunawan G, et al. Sweet onion (Allium cepa L.) as influenced by organic fertilization rate: 2. bulb yield and quality before and after storage[J]. HortScience, 53(4): 459-464. |
| [7] | Tao R, Wakelin S A, Liang Y C, et al. Organic fertilization enhances cotton productivity, nitrogen use efficiency, and soil nitrogen fertility under drip irrigated field[J]. Agronomy Journal, 2017, 109(6): 2889-2897. |
| [8] | Kumar K A, Swain D K, Bhadoria P B S. Split application of organic nutrient improved productivity, nutritional quality and economics of rice-chickpea cropping system in lateritic soil[J]. Field Crops Research, 2018, 223: 125-136. |
| [9] | Cai Y J, Ding W X, Luo J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement[J]. Atmospheric Environment, 2013, 65: 112-122. |
| [10] | 刘晓静, 冯宝春, 冯守千, 等. ‘国光’苹果及其红色芽变花青苷合成与相关酶活性的研究[J]. 园艺学报, 2009, 36(9): 1249-1254. |
| LIU Xiaojing, FENG Baochun, FENG Shouqian, et al. Studies on anthocyanin biosynthesis and activities of related enzymes of ‘ralls’ and its bud mutation[J]. Acta Horticulturae Sinica, 2009, 36(9): 1249-1254. | |
| [11] | 叶尚红. 植物生理生化实验教程[M]. 昆明: 云南科技出版社, 2004: 71-74. |
| YE Shanghong. Experimental course of plant physiology and biochemistry[M]. Kunming: Yunnan Science and Technology Press, 2004: 71-74. | |
| [12] | 韩振海, 陈昆松. 实验园艺学[M]. 北京: 高等教育出版社, 2006: 389-392. |
| HAN Zhenhai, CHEN Kunsong. Experimental horticulture[M]. Beijing: Higher Education Press, 2006: 389-392. | |
| [13] | 李忠芳, 徐明岗, 张会民, 等. 长期施肥和不同生态条件下我国作物产量可持续性特征[J]. 应用生态学报, 2010, 21(5): 1264-1269. |
|
LI Zhongfang, XU Minggang, ZHANG Huimin, et al. Sustainability of crop yields in China under long-term fertilization and different ecological conditions[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1264-1269.
PMID |
|
| [14] | 林葆, 林继雄, 李家康. 长期施肥的作物产量和土壤肥力变化[J]. 植物营养与肥料学报, 1994,(1): 6-18. |
| LIN Bao, LIN Jixiong, LI Jiakang. The changes of crop yield and soil fertility with long-term fertilizer application[J]. Plant Nutrition and Fertilizing Science, 1994,(1): 6-18. | |
| [15] |
Marinari S, Masciandaro G, Ceccanti B, et al. Evolution of soil organic matter changes using pyrolysis and metabolic indices: a comparison between organic and mineral fertilization[J]. Bioresource Technology, 2007, 98(13): 2495-2502.
PMID |
| [16] | Shen H, Shen J Z, Li Y, et al. Promotion of lateral root growth and leaf quality of flue-cured tobacco by the combined application of humic acids and npk chemical fertilizers[J]. Experimental Agriculture, 2017, 53(1): 59-70. |
| [17] | Zhang Y L, Li C H, Wang Y W, et al. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain[J]. Soil and Tillage Research, 2016, 155: 85-94. |
| [18] | Yang Z C, Zhao N, Huang F, et al. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain[J]. Soil and Tillage Research, 2015, 146: 47-52. |
| [19] | 张芮, 成自勇, 王旺田, 等. 不同生育期水分胁迫对延后栽培葡萄产量与品质的影响[J]. 农业工程学报, 2014, 30(24): 105-113. |
| ZHANG Rui, CHENG Ziyong, WANG Wangtian, et al. Effect of water stress in different growth stages on grape yield and fruit quality under delayed cultivation facility[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 105-113. | |
| [20] | Zhang Z X, Cai Z Q, Liu G Z, et al. Effects of fertilization on the growth, phoT0synthesis, and biomass accumulation in juvenile plants of three coffee (Coffea arabica L.) cultivars[J]. Photosynthetica, 2017, 55(1):134-143. |
| [21] | Saikia P, Bhattacharya S S, Baruah K K. Organic substitution in fertilizer schedule: impacts on soil health, photosynthetic efficiency, yield and assimilation in wheat grown in alluvial soil[J]. Agriculture, Ecosystems & Environment, 2015, 203: 102-109. |
| [22] | 蒲瑶瑶, 吕秀敏, 邬梦成, 等. 熏蒸条件下有机肥部分替代化肥对西瓜生长及养分利用的影响[J]. 水土保持学报, 2017, 31(6): 306-311, 352. |
| PU Yaoyao, LYU Xiumin, WU Mengcheng, et al. Effects of partial substitution for chemical fertilizer by organic manure on the growth and nutrient use of watermelon under fumigation condition[J]. Journal of Soil and Water Conservation, 2017, 31(6): 306-311, 352. | |
| [23] | Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh.)[J]. Nature Genetics, 2010, 42(10): 833-839. |
| [24] | Sharma S, Sharma S D, Kumar P. Response of nectarines to organic fertilization under the rain-fed ecosystem of Northwest Himalayas[J]. Journal of Plant Nutrition, 2017, 40(14): 2014-2025. |
| [25] | Illera-Vives M, Seoane Labandeira S, Iglesias Loureiro L, et al. Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops[J]. Journal of Applied Phycology, 2017, 29(3): 1663-1671. |
| [1] | BAO Yanli, WANG Xiaowei, LI Qiongshi, ZHANG Lizhao, CHEN Yulan. Analysis of the high Quality development level and differences of cotton in major cotton regions of Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 1032-1040. |
| [2] | HOU Liangzhong, TAN Rui, DU Baojun, GUO Tongjun, CAO Hongbin, Guzailinuer Aimaiti. Quality analysis of whole-plant silage corn in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 850-857. |
| [3] | HUA Hui, ZENG Xueling, TANG Zhanghu, WANG Shaopeng, YU Shuiyun, ZHANG Shikui, ZHOU Weiquan. Effects of exogenous sugar alcohol calciumon the quality and volatile substances of Kumaiti apricot [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 876-886. |
| [4] | WANG Shu, LIU Baojun, ZHANG Liya, SHAN Jiaqi, LI Kemei, BAI Jianyu. Sequence analysis and detection of grapevine geminivirus A [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 887-893. |
| [5] | MA Ruhai, HUANG Chunyan, CUI Huimei, ZHENG Yuehui, FANG Yuan, WANG Dengwei. Effects of different planting modes of yellow sand substrate on tomato yield and quality in solar greenhouse [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 903-910. |
| [6] | CHEN Jun, ZHANG Qi, YANG Mengyu, YUAN Zhenyang. Effects of grass growing on soil physicochemical properties and fruit quality of apple orchard in arid desert area [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 936-943. |
| [7] | XU Shouzhen, MA Qi, NING Xinzhu, LI Jilian, SU Junji, HAN Huanyong, WANG Fangyong, LIN Hai. Effects of different row spacing and defoliant on cotton defoliation [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 546-555. |
| [8] | NIE Lingfan, ZHANG Jinshan, TIAN Wenqiang, SUN Ganggang, WANG Hongyi, ZHANG Jun, ZHANG Qiangbin, GUO Fei, WU Li, SHI Shubing. Effects of different water and nitrogen treatments on the growth, water and nitrogen use efficiency and yield of ultra-late sowing winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 584-592. |
| [9] | LEI Jiacheng, ZHANG Jingjing, HAN Bo, LU Ziao. Research on virtual wheat growth simulation and visualization system based on PyOpenGL [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 609-618. |
| [10] | HAO Xiyu, LIU Tingting, WANG Hui, LENG Jingwen, GONG Shihang, LIU Wei. Selection and comprehensive evaluation of nitrogen-efficient foxtail millet varieties based on principal component analysis [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 619-626. |
| [11] | BAI Shijian, HU Jinge, CAI Junshe, WU Jiuyun, MA Xiaocai, YUAN Sen, WU Guohong. Cultivation characteristics and berry quality analysis of twelve grape cultivars in Turpan grape production area [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 678-687. |
| [12] | LIU Limeng, MA Wenbin, LI Lingui, YUAN Cen, SHI Zhihai, LIU Yanfeng, QIN Rongyan, WANG Wenqi. Effects of fermented Chinese herbal medicines on growth performance, serum biochemistry and growth hormone in lamb [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 754-765. |
| [13] | HU Shasha, SHAO Liping, CHEN Lihua, SONG Weiping, ZHAO Hai, ZHANG Xinyu, SUN Jie. Effect of defoliant on boll development and fiber quality of machine-picked cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 270-277. |
| [14] | LIU Yue, LIAN Shihao, LI Jiahao, WANG Hongyi, TIAN Wenqiang, NIE Lingfan, SUN Ganggang, JIA Yonghong, SHI Shubing, YU Yuehua, ZHANG Jinshan. Effects of sowing dates and planting density on yield formation and quality of peanut [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 278-285. |
| [15] | LU Mingkun, LI Junhong, Nilupaier Yusufujiang, PAN Xipeng, LIU Xiaocheng, ZHANG Zhenggui, PAN Zhanlei, ZHAI Menghua, ZHANG Yaopeng, ZHAO Wenqi, WANG Lihong, WANG Zhanbiao. Effect of silic on fertiliser application on the growth and development of cotton and its yield and quality [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 286-293. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||