

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (7): 1755-1764.DOI: 10.6048/j.issn.1001-4330.2025.07.020
• Fruits and vegetables and processing column • Previous Articles Next Articles
LI Xianguo1,2(
), WANG Zepeng1,2, CHEN Zhaolong1,2, YU Qinghui2, LI Ning2(
), YAN Huizhuan1(
)
Received:2024-12-07
Online:2025-07-20
Published:2025-09-05
Correspondence author:
LI Ning, YAN Huizhuan
Supported by:
李贤国1,2(
), 王泽鹏1,2, 陈兆龙1,2, 余庆辉2, 李宁2(
), 闫会转1(
)
通讯作者:
李宁,闫会转
作者简介:李贤国(1998-),男,甘肃人,硕士研究生,研究方向为蔬菜栽培生理与逆境胁迫,(E-mail)15099198840@163.com
基金资助:CLC Number:
LI Xianguo, WANG Zepeng, CHEN Zhaolong, YU Qinghui, LI Ning, YAN Huizhuan. A preliminary study on the enhanced salt tolerance of β-aminobutyric acid (BABA) in processed tomato seedlings[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1755-1764.
李贤国, 王泽鹏, 陈兆龙, 余庆辉, 李宁, 闫会转. β-氨基丁酸增强加工番茄幼苗耐盐性分析[J]. 新疆农业科学, 2025, 62(7): 1755-1764.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.07.020
| 处理 Treatments | 浓度 Concentration | 处理 Treatments | 浓度 Concentration |
|---|---|---|---|
| CK | 蒸馏水 | ||
| T1 | 150 mmol/L NaCl | T6 | 50 mmol/LNaHCO3 |
| T2 | 150 mmol/LNaCl+0.25 mmol/L BABA | T7 | 50 mmol/LNaHCO3+0.25 mmol/LBABA |
| T3 | 150 mmol/LNaCl+0.50 mmol/L BABA | T8 | 50 mmol/LNaHCO3+0.50 mmol/L BABA |
| T4 | 150 mmol/LNaCl+1.00 mmol/L BABA | T9 | 50 mmol/LNaHCO3+1.00 mmol/L BABA |
| T5 | 150 mmol/LNaCl+2.00 mmol/L BABA | T10 | 50 mmol/LNaHCO3+2.00 mmol/L BABA |
Tab.1 11 treatments for two processed tomatoes
| 处理 Treatments | 浓度 Concentration | 处理 Treatments | 浓度 Concentration |
|---|---|---|---|
| CK | 蒸馏水 | ||
| T1 | 150 mmol/L NaCl | T6 | 50 mmol/LNaHCO3 |
| T2 | 150 mmol/LNaCl+0.25 mmol/L BABA | T7 | 50 mmol/LNaHCO3+0.25 mmol/LBABA |
| T3 | 150 mmol/LNaCl+0.50 mmol/L BABA | T8 | 50 mmol/LNaHCO3+0.50 mmol/L BABA |
| T4 | 150 mmol/LNaCl+1.00 mmol/L BABA | T9 | 50 mmol/LNaHCO3+1.00 mmol/L BABA |
| T5 | 150 mmol/LNaCl+2.00 mmol/L BABA | T10 | 50 mmol/LNaHCO3+2.00 mmol/L BABA |
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T1 | 25.33±0.32bc | 17.73±2.30a | 7.71±0.26d | |
| T2 | 25.93±0.79bc | 18.30±1.14a | 8.99±0.11bc | |
| T3 | 28.03±0.64b | 20.40±2.40a | 10.18±0.21b | |
| T4 | 25.37±1.62bc | 21.07±1.91a | 9.46±0.32bc | |
| T5 | 24.23±0.23c | 18.53±1.73a | 8.45±0.23cd | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52b | 17.29±0.86a |
| T1 | 25.63±0.47d | 17.70±1.78ab | 8.21±0.63d | |
| T2 | 27.74±0.22c | 13.83±0.66ab | 12.65±0.05bc | |
| T3 | 33.53±0.088b | 18.35±1.66a | 15.35±0.92ab | |
| T4 | 26.20±0.81d | 13.17±1.74b | 13.17±1.84bc | |
| T5 | 26.27±0.52d | 16.70±1.40ab | 10.06±1.04cd |
Tab.2 Effects of β-aminobutyric acid on plant height, root length and leaf area of two processed tomato seedlings under NaCl stress
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T1 | 25.33±0.32bc | 17.73±2.30a | 7.71±0.26d | |
| T2 | 25.93±0.79bc | 18.30±1.14a | 8.99±0.11bc | |
| T3 | 28.03±0.64b | 20.40±2.40a | 10.18±0.21b | |
| T4 | 25.37±1.62bc | 21.07±1.91a | 9.46±0.32bc | |
| T5 | 24.23±0.23c | 18.53±1.73a | 8.45±0.23cd | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52b | 17.29±0.86a |
| T1 | 25.63±0.47d | 17.70±1.78ab | 8.21±0.63d | |
| T2 | 27.74±0.22c | 13.83±0.66ab | 12.65±0.05bc | |
| T3 | 33.53±0.088b | 18.35±1.66a | 15.35±0.92ab | |
| T4 | 26.20±0.81d | 13.17±1.74b | 13.17±1.84bc | |
| T5 | 26.27±0.52d | 16.70±1.40ab | 10.06±1.04cd |
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T6 | 24.43±0.87e | 19.50±1.59a | 9.02±0.12cd | |
| T7 | 31.80±1.021bc | 21.17±2.02a | 10.52±0.17b | |
| T8 | 33.57±0.581b | 20.13±1.93a | 12.03±0.21a | |
| T9 | 30.27±0.52cd | 18.67±3.54a | 10.05±0.59bc | |
| T10 | 28.87±0.22d | 15.50±2.04a | 9.71±0.35bc | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52a | 17.29±0.86a |
| T6 | 29.13±2.21bc | 12.63±2.05a | 11.25±0.59c | |
| T7 | 31.93±0.33abc | 12.23±1.04a | 13.04±1.12c | |
| T8 | 33.50±1.097a | 14.33±1.12a | 13.35±1.33bc | |
| T9 | 32.97±1.25ab | 12.00±0.29a | 15.85±0.54ab | |
| T10 | 28.89±0.940c | 14.72±0.62a | 12.92±0.24c |
Tab.3 Effects of β-aminobutyric acid on plant height, root length and leaf area of two processed tomato seedlings under NaHCO3 stress
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T6 | 24.43±0.87e | 19.50±1.59a | 9.02±0.12cd | |
| T7 | 31.80±1.021bc | 21.17±2.02a | 10.52±0.17b | |
| T8 | 33.57±0.581b | 20.13±1.93a | 12.03±0.21a | |
| T9 | 30.27±0.52cd | 18.67±3.54a | 10.05±0.59bc | |
| T10 | 28.87±0.22d | 15.50±2.04a | 9.71±0.35bc | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52a | 17.29±0.86a |
| T6 | 29.13±2.21bc | 12.63±2.05a | 11.25±0.59c | |
| T7 | 31.93±0.33abc | 12.23±1.04a | 13.04±1.12c | |
| T8 | 33.50±1.097a | 14.33±1.12a | 13.35±1.33bc | |
| T9 | 32.97±1.25ab | 12.00±0.29a | 15.85±0.54ab | |
| T10 | 28.89±0.940c | 14.72±0.62a | 12.92±0.24c |
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.73±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04a | 2.47±0.24a | 0.25±0.03bc | 0.18±0.01d |
| T1 | 3.89±0.08c | 1.43±0.33b | 5.32±0.36d | 1.02±0.09b | 0.73±0.03b | 1.76±0.12b | 0.36±0.08ab | 0.33±0.001a | |
| T2 | 4.70±0.16bc | 2.1±0.02ab | 6.81±0.14cd | 1.01±0.01b | 0.78±0.01ab | 1.78±0.02b | 0.45±0.02a | 0.26±0.003c | |
| T3 | 9.55±0.13a | 1.81±0.05ab | 11.37±0.17b | 1.05±0.02b | 0.74±0.01b | 1.79±0.02b | 0.19±0.01c | 0.16±0.001e | |
| T4 | 5.44±0.16b | 2.02±0.08ab | 7.46±0.07c | 1.11±0.03b | 0.76±0.01ab | 1.87±0.02b | 0.37±0.03a | 0.25±0.004c | |
| T5 | 4.73±0.15bc | 1.52±0.30b | 6.25±0.42cd | 1.07±0.09b | 0.73±0.03b | 1.8±0.12b | 0.32±0.06abc | 0.28±0.011b | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51a | 1.12±0.03b | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T1 | 3.56±0.16d | 1.80±0.02ab | 5.36±0.15b | 1.09±0.02b | 0.76±0.003b | 1.85±0.015b | 0.51±0.026a | 0.35±0.007a | |
| T2 | 4.37±0.15c | 1.43±0.22b | 5.80±0.21b | 1.13±0.08b | 0.73±0.014b | 1.86±0.089b | 0.33±0.056bc | 0.32±0.010ab | |
| T3 | 6.09±0.24b | 2.49±0.45a | 8.59±0.69a | 1.36±0.04a | 0.83±0.036a | 2.19±0.076a | 0.40±0.060ab | 0.26±0.013c | |
| T4 | 3.70±0.07cd | 1.35±0.25b | 5.05±0.30b | 0.99±0.06b | 0.72±0.012b | 1.71±0.071b | 0.36±0.064ab | 0.34±0.015ab | |
| T5 | 4.42±0.19c | 1.29±0.30b | 5.70±0.40b | 1±0.07b | 0.73±0.025b | 1.73±0.095b | 0.29±0.062bc | 0.30±0.014b | |
Tab.4 Effects of β-aminobutyric acid on the dry and fresh weight of two processed tomato seedlings under NaCl stress
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.73±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04a | 2.47±0.24a | 0.25±0.03bc | 0.18±0.01d |
| T1 | 3.89±0.08c | 1.43±0.33b | 5.32±0.36d | 1.02±0.09b | 0.73±0.03b | 1.76±0.12b | 0.36±0.08ab | 0.33±0.001a | |
| T2 | 4.70±0.16bc | 2.1±0.02ab | 6.81±0.14cd | 1.01±0.01b | 0.78±0.01ab | 1.78±0.02b | 0.45±0.02a | 0.26±0.003c | |
| T3 | 9.55±0.13a | 1.81±0.05ab | 11.37±0.17b | 1.05±0.02b | 0.74±0.01b | 1.79±0.02b | 0.19±0.01c | 0.16±0.001e | |
| T4 | 5.44±0.16b | 2.02±0.08ab | 7.46±0.07c | 1.11±0.03b | 0.76±0.01ab | 1.87±0.02b | 0.37±0.03a | 0.25±0.004c | |
| T5 | 4.73±0.15bc | 1.52±0.30b | 6.25±0.42cd | 1.07±0.09b | 0.73±0.03b | 1.8±0.12b | 0.32±0.06abc | 0.28±0.011b | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51a | 1.12±0.03b | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T1 | 3.56±0.16d | 1.80±0.02ab | 5.36±0.15b | 1.09±0.02b | 0.76±0.003b | 1.85±0.015b | 0.51±0.026a | 0.35±0.007a | |
| T2 | 4.37±0.15c | 1.43±0.22b | 5.80±0.21b | 1.13±0.08b | 0.73±0.014b | 1.86±0.089b | 0.33±0.056bc | 0.32±0.010ab | |
| T3 | 6.09±0.24b | 2.49±0.45a | 8.59±0.69a | 1.36±0.04a | 0.83±0.036a | 2.19±0.076a | 0.40±0.060ab | 0.26±0.013c | |
| T4 | 3.70±0.07cd | 1.35±0.25b | 5.05±0.30b | 0.99±0.06b | 0.72±0.012b | 1.71±0.071b | 0.36±0.064ab | 0.34±0.015ab | |
| T5 | 4.42±0.19c | 1.29±0.30b | 5.70±0.40b | 1±0.07b | 0.73±0.025b | 1.73±0.095b | 0.29±0.062bc | 0.30±0.014b | |
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.72±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04ab | 2.47±0.24a | 0.25±0.03c | 0.18±0.01d |
| T6 | 4.37±0.17c | 1.79±0.13bc | 6.16±0.16cd | 1.04±0.05c | 0.76±0.02c | 1.80±0.06c | 0.41±0.04ab | 0.29±0.006b | |
| T7 | 5.2±0.13c | 2.55±0.26ab | 7.76±0.36c | 1.24±0.09bc | 0.81±0.02abc | 2.06±0.11bc | 0.49±0.04a | 0.27±0.002c | |
| T8 | 8.58±0.17b | 2.86±0.19a | 11.45±0.33b | 1.41±0.04ab | 0.86±0.02a | 2.27±0.06ab | 0.33±0.02bc | 0.2±0.003d | |
| T9 | 4.89±0.04c | 2.03±0.20bc | 6.93±0.16cd | 1.17±0.02bc | 0.79±0.01bc | 1.96±0.03bc | 0.41±0.04ab | 0.28±0.003bc | |
| T10 | 3.97±0.11c | 1.6±0.20c | 5.57±0.15d | 1.05±0.07c | 0.75±0.02c | 1.79±0.09c | 0.4±0.06ab | 0.32±0.011a | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51ab | 1.12±0.03ab | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T6 | 3.16±0.13c | 1.79±0.18ab | 4.95±0.30d | 1.04±0.02b | 0.75±0.007ab | 1.79±0.02b | 0.56±0.032a | 0.36±0.025a | |
| T7 | 4.62±0.37b | 1.63±0.42ab | 6.25±0.78cd | 1.05±0.11b | 0.74±0.035ab | 1.78±0.145b | 0.34±0.060b | 0.29±0.015b | |
| T8 | 5.48±0.22b | 1.65±0.22ab | 7.13±0.43bc | 1.12±0.08ab | 0.74±0.017ab | 1.86±0.095ab | 0.30±0.030b | 0.26±0.003bc | |
| T9 | 6.76±0.46a | 2.16±0.18a | 8.92±0.56a | 1.34±0.08a | 0.80±0.020a | 2.14±0.100a | 0.32±0.026b | 0.24±0.004c | |
| T10 | 4.66±0.26b | 1.72±0.23ab | 6.39±0.38cd | 1.17±0.06ab | 0.75±0.012ab | 1.93±0.073ab | 0.37±0.050b | 0.30±0.018b | |
Table.5 Effects of β-aminobutyric acid on the dry and fresh weight of tomato seedlings under NaHCO3 stress
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.72±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04ab | 2.47±0.24a | 0.25±0.03c | 0.18±0.01d |
| T6 | 4.37±0.17c | 1.79±0.13bc | 6.16±0.16cd | 1.04±0.05c | 0.76±0.02c | 1.80±0.06c | 0.41±0.04ab | 0.29±0.006b | |
| T7 | 5.2±0.13c | 2.55±0.26ab | 7.76±0.36c | 1.24±0.09bc | 0.81±0.02abc | 2.06±0.11bc | 0.49±0.04a | 0.27±0.002c | |
| T8 | 8.58±0.17b | 2.86±0.19a | 11.45±0.33b | 1.41±0.04ab | 0.86±0.02a | 2.27±0.06ab | 0.33±0.02bc | 0.2±0.003d | |
| T9 | 4.89±0.04c | 2.03±0.20bc | 6.93±0.16cd | 1.17±0.02bc | 0.79±0.01bc | 1.96±0.03bc | 0.41±0.04ab | 0.28±0.003bc | |
| T10 | 3.97±0.11c | 1.6±0.20c | 5.57±0.15d | 1.05±0.07c | 0.75±0.02c | 1.79±0.09c | 0.4±0.06ab | 0.32±0.011a | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51ab | 1.12±0.03ab | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T6 | 3.16±0.13c | 1.79±0.18ab | 4.95±0.30d | 1.04±0.02b | 0.75±0.007ab | 1.79±0.02b | 0.56±0.032a | 0.36±0.025a | |
| T7 | 4.62±0.37b | 1.63±0.42ab | 6.25±0.78cd | 1.05±0.11b | 0.74±0.035ab | 1.78±0.145b | 0.34±0.060b | 0.29±0.015b | |
| T8 | 5.48±0.22b | 1.65±0.22ab | 7.13±0.43bc | 1.12±0.08ab | 0.74±0.017ab | 1.86±0.095ab | 0.30±0.030b | 0.26±0.003bc | |
| T9 | 6.76±0.46a | 2.16±0.18a | 8.92±0.56a | 1.34±0.08a | 0.80±0.020a | 2.14±0.100a | 0.32±0.026b | 0.24±0.004c | |
| T10 | 4.66±0.26b | 1.72±0.23ab | 6.39±0.38cd | 1.17±0.06ab | 0.75±0.012ab | 1.93±0.073ab | 0.37±0.050b | 0.30±0.018b | |
| [15] | 陈嵘峰, 屠静韵, 许学文, 等. 蔬菜作物盐胁迫响应及耐盐机制研究进展[J]. 中国蔬菜, 2024(4): 23-33. |
| CHEN Rongfeng, TU Jingyun, XU Xuewen, et al. Research progress on salt stress response and salt tolerance mechanism of vegetable crops[J]. China Vegetables, 2024(4): 23-33. | |
| [16] |
于婵, 张依琳, 李秋莹, 等. 盐碱胁迫对牛至种子萌发和幼苗生理生化特性的影响[J]. 草地学报, 2024, 32(6): 1882-1892.
DOI |
|
YU Chan, ZHANG Yilin, LI Qiuying, et al. Effects of saline-alkali stresses on seed germination and seedling physiological and biochemical characteristics of Origanum vulgare[J]. Acta Agrestia Sinica, 2024, 32(6): 1882-1892.
DOI |
|
| [17] | 柳国强, 谢爱方, 林多, 等. 盐胁迫对叶用莴苣生长与品质的影响[J]. 北方园艺, 2016,(21): 20-23. |
| LIU Guoqiang, XIE Aifang, LIN Duo, et al. Effects of salt stress on growth and quality of lettuce[J]. Northern Horticulture, 2016,(21): 20-23. | |
| [18] | Jisha K C, Vijayakumari K, Puthur J T. Seed priming for abiotic stress tolerance: an overview[J]. Acta Physiologiae Plantarum, 2013, 35(5): 1381-1396. |
| [19] | 徐倩, 郭尚敬, 魏慧恬, 等. 外源BABA对NaCl胁迫下二月兰幼苗生长和生理特性的影响[J]. 北方园艺, 2020,(12): 75-81. |
| XU Qian, GUO Shangjing, WEI Huitian, et al. Effects of exogenous BABA on growth and physiological characteristics of wheat seedlings in Orychophragmus violaceus under NaCl stress[J]. Northern Horticulture, 2020,(12): 75-81. | |
| [20] | 张清莉, 刘再强, 钟玉德, 等. BABA诱导烟草抵御高盐胁迫的初步研究[J]. 中国烟草学报, 2015, 21(3): 72-81. |
| ZHANG Qingli, LIU Zaiqiang, ZHONG Yude, et al. A preliminary study on BABA-induced resistance to high salt stress in tobacco[J]. Acta Tabacaria Sinica, 2015, 21(3): 72-81. | |
| [21] | 苏小东, 李梅. 绿色植物光系统Ⅰ及其光合作用调控的结构基础[J]. 生物化学与生物物理进展, 2024, 51(10): 2298-2310. |
| SU Xiaodong, LI Mei. Structural basis of photosystem Ⅰ and its photosynthesis regulation in green plants[J]. Progress in Biochemistry and Biophysics, 2024, 51(10): 2298-2310. | |
| [22] | 郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5): 967-973. |
| GUO Chunai, LIU Fang, XU Xiaoming. Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973. | |
| [23] | Moghimi S M, Ghavami S H. Effect of Zeolite and salinity on growth indices of marigold (Calendula officinalis L.)[J]. Science Journal, 2015, 36: 641-644. |
| [24] | Mbadi S H, Alipour Z T, Asghari H, et al. Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis)[J]. Journal of Biodiversity and Environmental Sciences, 2015, 6: 215-219. |
| [25] |
Jisha K C, Puthur J T. Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings[J]. Rice Science, 2016, 23(5): 242-254.
DOI |
| [26] | Ali E F, Hassan F A S. β-aminobutyric acid raises salt tolerance and reorganises some physiological characters in Calendula officinalis L. plant[J]. Annual Research & Review in Biology, 2019: 1-16. |
| [27] | Ella E S, Dionisio-Sese M L, Ismail A M. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions[J]. AoB PLANTS, 2011, 2011: plr007. |
| [28] | Goswami A, Banerjee R, Raha S. Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms[J]. Protoplasma, 2013, 250(5): 1115-1129. |
| [29] | 何永明, 谢建春, 李春晓. β-氨基丁酸增强水稻幼苗耐盐性的初步研究[J]. 安徽农业科学, 2010, 38(2): 641-642, 645. |
| [1] | 刘庚炜, 高雅琪, 邵泽璇, 等. 土壤盐渍化修复技术研究进展[J]. 黑龙江农业科学, 2024,(1): 99-107. |
| LIU Gengwei, GAO Yaqi, SHAO Zexuan, et al. Research progress of soil salinization-alkalization remediation technology[J]. Heilongjiang Agricultural Sciences, 2024,(1): 99-107. | |
| [2] | 马凯, 饶良懿. 我国土壤盐碱化问题研究脉络和热点分析[J]. 中国农业大学学报, 2023, 28(11): 90-102. |
| MA Kai, RAO Liangyi. Research lineage and hot spot analysis of soil salinization in China[J]. Journal of China Agricultural University, 2023, 28(11): 90-102. | |
| [3] | 宋炫钰, 汪晶晶. 全球番茄制品贸易网络特征及其动态演化分析[J]. 中国蔬菜, 2024,(7): 16-25. |
| SONG Xuanyu, WANG Jingjing. Network characteristics of global tomato products trade and its dynamic evolution analysis[J]. China Vegetables, 2024,(7): 16-25. | |
| [4] | 梁爽, 谭占明, 程云霞, 等. 加工番茄遗传多样性分析研究进展及展望[J]. 农业工程技术, 2024, 44(3): 18-21. |
| LIANG Shuang, TAN Zhanming, CHENG Yunxia, et al. Research progress and prospect of genetic diversity analysis of processed tomatoes[J]. Agricultural Engineering Technology, 2024, 44(3): 18-21. | |
| [5] | 李云霞, 王国栋, 刘瑜, 等. 新疆典型绿洲灌区土壤理化性状与盐分离子分布特征[J]. 农业机械学报, 2024, 55(7): 357-364, 414. |
| LI Yunxia, WANG Guodong, LIU Yu, et al. Distribution characteristics of soil physicochemical properties and salt ions in typical oasis irrigation areas of Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 357-364, 414. | |
| [6] | 邵华伟, 孙九胜, 胡伟, 等. 新疆盐碱地分布特点和成因及改良利用技术研究进展[J]. 黑龙江农业科学, 2014,(11): 160-164. |
| [29] | HE Yongming, XIE Jianchun, LI Chunxiao. Preliminary study on the enhancement of salt tolerance of rice seedlings by β-aminobutyric acid[J]. Journal of Anhui Agricultural Sciences, 2010, 38(2): 641-642, 645. |
| [30] | Al Mahmud J, Hasanuzzaman M, Khan M I R, et al. β-aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification[J]. Plants, 2020, 9(2): 241. |
| [31] |
Mostek A, B?rner A, Weidner S. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley[J]. Plant Physiology and Biochemistry, 2016, 99: 150-161.
DOI PMID |
| [32] |
Wu C C, Singh P, Chen M C, et al. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(4): 995-1002.
DOI PMID |
| [6] | SHAO Huawei, SUN Jiusheng, HU Wei, et al. Research progress on distribution characteristics, causes and improved utilization technology of saline-alkali land in Xinjiang[J]. Heilongjiang Agricultural Sciences, 2014,(11): 160-164. |
| [7] | 周程爱, 杨宇红, 梁俊峰, 等. β-氨基丁酸诱导植物抗病作用的研究[J]. 湖南农业大学学报(自然科学版), 2007, 33(1): 68-71. |
| ZHOU Chengai, YANG Yuhong, LIANG Junfeng, et al. On the induced disease-resistance by β-aminonbutyric acid[J]. Journal of Hunan Agricultural University (Natural Sciences), 2007, 33(1): 68-71. | |
| [8] | Devaiah S P, Mahadevappa G H, Shetty H S. Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract[J]. Crop Protection, 2009, 28(9): 783-791. |
| [9] | Olivieri F P, Lobato M C, et al.González Altamiranda E, BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani[J]. European Journal of Plant Pathology, 2009, 123(1): 47-56. |
| [10] | Nandeeshkumar P, Sarosh B R, Kini K R, et al. Elicitation of resistance and defense related proteins by β-amino butyric acid in sunflower against downy mildew pathogen Plasmopara halstedii[J]. Archives of Phytopathology and Plant Protection, 2009, 42(11): 1020-1032. |
| [11] | Šašek V, Nováková M, Dobrev P I, et al. β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect[J]. European Journal of Plant Pathology, 2012, 133(1): 279-289. |
| [12] | Ji H L, Kyndt T, He W, et al. β-aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense[J]. Molecular Plant-Microbe Interactions, 2015, 28(5): 519-533. |
| [13] |
张维, 周会玲, 温晓红, 等. β-氨基丁酸结合壳聚糖处理对苹果采后青霉病及贮藏品质的影响[J]. 食品科学, 2013, 34(12): 312-316.
DOI |
|
ZHANG Wei, ZHOU Huiling, WEN Xiaohong, et al. Effect of β-aminobutyric acid combined with chitosan treatment on postharvest blue mold and storage quality of red fuji apple[J]. Food Science, 2013, 34(12): 312-316.
DOI |
|
| [14] | Cohen Y R. β-aminobutyric acid-induced resistance against plant pathogens[J]. Plant Disease, 2002, 86(5): 448-457. |
| [1] | WANG Yaling, JIANG Yinghong, SUN Hui, LIU Yi. Comparative transcriptome analysis between two potato varieties with different salt-tolerance and further identification of potato salt-tolerance genes [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1121-1130. |
| [2] | Gulinaer Bahetibieke, LIU Wenjing, MA Jingbiao, ZHANG Guosheng, GUO Qiping, YUAN Jie, ZHANG Yanhong, AN Wangang, Sajidaimu Yusufu, PAN Jianming, REN Lei. Germination characteristics and salt tolerance of rice seeds under salt stress [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 858-868. |
| [3] | GONG Zhaoxing, HAN Pengcheng, LI Zesen, LI Guizhen, WANG Yuxiang, ZHANG Bo. The physiological effects of inoculation with AM fungi under salt stress on wild smooth [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 129-136. |
| [4] | SUN Caiqin, WU Jia, HUANG Hai, GUO Jiaxin, MIN Wei, GUO Huijuan. Effects of different saline and alkaline stress on the proteome of cotton root system [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 146-160. |
| [5] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
| [6] | DONG Zhiduo, XU Fei, FU Qiuping, HUANG Jian, QI Tong, MENG Ajing, FU Yanbo, Kaisaier Kuerban. Effects of different types of salt and alkali stress on cotton seed germination [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1831-1844. |
| [7] | XI Rui, CHEN Yijia, LI Ning, YU Qinghui, WANG Qiang, QIN Yong. Effects of exogenous 2, 4-epibrassinolide on seed germination of different salt-sensitive tomatoes under salt stress [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1983-1992. |
| [8] | RUAN Xiangyang, PU Min, XIAO Lele, LUO Linyi, CHEN Ruijie, LI Ran, CHEN Guoyong, YE Jun. Effect of magnesium sulfate fertilizer application strategy on the yield and quality of processed tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 916-925. |
| [9] | OU Yuan, LUO Shasha, WANG Ruyue, SUN Yali, HU Haifang. Effects of salt stress on the growth and physiological characteristics of american black walnut seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 393-401. |
| [10] | LIU Huifang, WANG Qiang, HAN Hongwei, ZHUANG Hongmei, WANG Hao, CHANG Yanan. Effects of salt, alkali and complex salt alkali stress on the photosynthetic characteristics and antioxidant enzyme activity of tomato seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2658-2666. |
| [11] | ZHAO Wenxuan, CHENG Yunxia, TAN Zhanming, LI Chunyu, SHU Sheng, Ayimaimu Shawuti, YANG Liyu, MIAO Xianjun. Comparison of chlorophyll fluorescence and photosynthetic characteristics of different processed tomato varieties based on principal component analysis [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2667-2675. |
| [12] | LAI Hanlin, SHEN Yuyang, CHEN Li, YANG Hong, LI Yue, LEI Junjie, LI Guangkuo, GAO Haifeng. Effects of temperature and salt stress on seed germination characteristics of Descurainia sophia [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1326-1334. |
| [13] | WANG Xingzhou, SHI Xiaolei, ZHANG Heng, QU Kejia, GENG Hongwei, DING Sunlei, ZHANG Jinbo, YAN Yongliang. Identification and evaluation of salt tolerance at germination stage of introduced spring wheat varieties [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1353-1362. |
| [14] | YANG Jinyu, QIAO Xiaoyan, WANG Xihe, SUN Jiusheng. Effects of NaCl Stress on Seed Germination of Three Varieties of Forage [J]. Xinjiang Agricultural Sciences, 2023, 60(2): 448-453. |
| [15] | ZHANG Hongxia, YONG Xiaoyu, HE Fei, XIA Jun, LI Huiqin, WANG Tangang. Effects of Different Concentrations of NaCl Stress on Seed Embryo Protective Enzyme Activity during Cotton Germination [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 1-10. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||