

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (7): 1612-1623.DOI: 10.6048/j.issn.1001-4330.2025.07.006
• Food and cash crops column • Previous Articles Next Articles
GU Meiying1,2(
), GE Chunhui2,3, CHU Min1,2, TANG Qiyong1,2, ZHU Jing1,2, Ghenijan Osman1,2, YI Yuanyang1,2, XU Wanli2,3(
), ZHANG Zhidong1,2(
)
Received:2024-12-22
Online:2025-07-20
Published:2025-09-05
Correspondence author:
XU Wanli, ZHANG Zhidong
Supported by:
顾美英1,2(
), 葛春辉2,3, 楚敏1,2, 唐琦勇1,2, 朱静1,2, 艾尼江·尔斯满1,2, 易鸳鸯1,2, 徐万里2,3(
), 张志东1,2(
)
通讯作者:
徐万里,张志东
作者简介:顾美英(1974- ),女,江苏无锡人,研究员,研究方向为特殊环境微生物资源利用,(E-mail)gmyxj2008@163.com
基金资助:CLC Number:
GU Meiying, GE Chunhui, CHU Min, TANG Qiyong, ZHU Jing, Ghenijan Osman, YI Yuanyang, XU Wanli, ZHANG Zhidong. Evaluation of the effect of composite bacteria on the functional diversity of microorganisms in wheat rhizosphere soils based on principal component-membership function analysis[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1612-1623.
顾美英, 葛春辉, 楚敏, 唐琦勇, 朱静, 艾尼江·尔斯满, 易鸳鸯, 徐万里, 张志东. 基于主成分-隶属函数分析法评价复合菌对小麦根际土壤微生物功能多样性的影响[J]. 新疆农业科学, 2025, 62(7): 1612-1623.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.07.006
| 菌株 Isolate | 种属 Genera | 温度 Temperature (℃) | 10% NaCl | ACC脱氨酶 ACC dean- minase | 解磷 Phosphate solubilizing | 解钾 Potassium solubilizing | 固氮 Nitrogen fixation | 生长素 IAA | 耐旱 PEG (30%) |
|---|---|---|---|---|---|---|---|---|---|
| L6 | Halomonas | 10~45 | ++ | + | - | - | - | + | ++ |
| Y24 | Paenibacillus | ++ | - | + | + | + | ++ | ++ |
Tab.1 Growth promoting functions of strains
| 菌株 Isolate | 种属 Genera | 温度 Temperature (℃) | 10% NaCl | ACC脱氨酶 ACC dean- minase | 解磷 Phosphate solubilizing | 解钾 Potassium solubilizing | 固氮 Nitrogen fixation | 生长素 IAA | 耐旱 PEG (30%) |
|---|---|---|---|---|---|---|---|---|---|
| L6 | Halomonas | 10~45 | ++ | + | - | - | - | + | ++ |
| Y24 | Paenibacillus | ++ | - | + | + | + | ++ | ++ |
| 处理 Treatments | 电导率 EC (mS/cm) | pH值 pH value | 速效氮 AN (mg/kg) | 速效磷 AP (mg/L) | 速效钾 AK (mg/kg) | 有机质 OM (g/kg) |
|---|---|---|---|---|---|---|
| CK | 0.60±0.06a | 8.10±0.21a | 163.30±21.51b | 65.10±6.11c | 16.80±1.95c | 37.70±2.11a |
| L6 | 0.40±0.15a | 8.20±0.35a | 100.30±6.66c | 69.90±4.36a | 21.70±2.56b | 31.30±2.52b |
| Y24 | 0.60±0.06a | 8.20±0.27a | 161.00±13.58b | 68.20±4.04b | 24.70±1.32a | 31.60±3.62b |
| L6-Y24 | 0.50±0.06a | 8.10±0.25a | 198.30±5.57a | 69.50±3.06a | 22.50±1.18b | 21.60±1.54c |
Tab.2 Changes of different compound bacteria on physicochemical properties in rhizosphere soil of wheat
| 处理 Treatments | 电导率 EC (mS/cm) | pH值 pH value | 速效氮 AN (mg/kg) | 速效磷 AP (mg/L) | 速效钾 AK (mg/kg) | 有机质 OM (g/kg) |
|---|---|---|---|---|---|---|
| CK | 0.60±0.06a | 8.10±0.21a | 163.30±21.51b | 65.10±6.11c | 16.80±1.95c | 37.70±2.11a |
| L6 | 0.40±0.15a | 8.20±0.35a | 100.30±6.66c | 69.90±4.36a | 21.70±2.56b | 31.30±2.52b |
| Y24 | 0.60±0.06a | 8.20±0.27a | 161.00±13.58b | 68.20±4.04b | 24.70±1.32a | 31.60±3.62b |
| L6-Y24 | 0.50±0.06a | 8.10±0.25a | 198.30±5.57a | 69.50±3.06a | 22.50±1.18b | 21.60±1.54c |
| 处理 Treatments | 平均颜色变化率 AWCD | Simpson指数 Simpson index | Shannon指数 Shannon index | McIntosh指数 McIntosh index |
|---|---|---|---|---|
| CK | 0.568±0.048c | 0.985±0.036a | 2.843±0.036c | 0.964±0.036a |
| L6 | 0.909±0.079b | 0.975±0.044a | 2.965±0.052b | 0.932±0.055a |
| Y24 | 0.993±0.095b | 0.974±0.036a | 3.002±0.011b | 0.927±0.043a |
| L6-Y24 | 1.507±0.09a | 0.981±0.034a | 3.293±0.052a | 0.938±0.082a |
Tab.3 Changes of compound bacteria on rhizosphere soil microbial community diversity of wheat
| 处理 Treatments | 平均颜色变化率 AWCD | Simpson指数 Simpson index | Shannon指数 Shannon index | McIntosh指数 McIntosh index |
|---|---|---|---|---|
| CK | 0.568±0.048c | 0.985±0.036a | 2.843±0.036c | 0.964±0.036a |
| L6 | 0.909±0.079b | 0.975±0.044a | 2.965±0.052b | 0.932±0.055a |
| Y24 | 0.993±0.095b | 0.974±0.036a | 3.002±0.011b | 0.927±0.043a |
| L6-Y24 | 1.507±0.09a | 0.981±0.034a | 3.293±0.052a | 0.938±0.082a |
| 碳源种类 Types of carbon sources | PC1 | PC2 | |
|---|---|---|---|
| 碳水化 合物类 Carbohydrate | ß-甲基-D-葡萄糖苷 | 0.236 | -0.918 |
| D-半乳糖酸-γ-内酯 | 0.947 | 0.248 | |
| D-纤维二糖 | 0.87 | 0.318 | |
| I-赤藓糖醇 | 0.505 | 0.816 | |
| 葡萄糖-1-磷酸盐 | 0.884 | 0.452 | |
| D-木糖 | 0.967 | -0.254 | |
| N-乙酰基-D-葡萄胺 | 0.413 | 0.904 | |
| D,L-α-甘油 | 0.971 | -0.227 | |
| D-葡萄胺酸 | 0.812 | -0.455 | |
| 氨基酸类 Amino acids | L-苯基丙氨酸 | 0.837 | -0.183 |
| L-丝氨酸 | 0.925 | -0.274 | |
| 甘氨酰-L-谷氨酸 | 0.863 | 0.240 | |
| 羧酸类 Carboxylic acids | 衣康酸 | -0.177 | 0.926 |
| α-丁酮酸 | 0.923 | -0.152 | |
| D-苹果酸 | -0.024 | -0.890 | |
| 丙酮酸甲脂 | 0.886 | 0.400 | |
| 酚酸类 Phenolic acids | 2-羟基苯甲酸 | 0.922 | -0.276 |
| 4-羟基苯甲酸 | 0.831 | 0.401 | |
| 多聚物类 Polymers | α-环式糊精 | 0.917 | -0.096 |
| 肝糖 | 0.927 | 0.119 | |
| 胺类 Amine | 苯乙基胺 | 0.925 | -0.130 |
| 腐胺 | 0.366 | -0.844 | |
Tab.4 Loading coefficients of different carbon sources on PC1 and PC2
| 碳源种类 Types of carbon sources | PC1 | PC2 | |
|---|---|---|---|
| 碳水化 合物类 Carbohydrate | ß-甲基-D-葡萄糖苷 | 0.236 | -0.918 |
| D-半乳糖酸-γ-内酯 | 0.947 | 0.248 | |
| D-纤维二糖 | 0.87 | 0.318 | |
| I-赤藓糖醇 | 0.505 | 0.816 | |
| 葡萄糖-1-磷酸盐 | 0.884 | 0.452 | |
| D-木糖 | 0.967 | -0.254 | |
| N-乙酰基-D-葡萄胺 | 0.413 | 0.904 | |
| D,L-α-甘油 | 0.971 | -0.227 | |
| D-葡萄胺酸 | 0.812 | -0.455 | |
| 氨基酸类 Amino acids | L-苯基丙氨酸 | 0.837 | -0.183 |
| L-丝氨酸 | 0.925 | -0.274 | |
| 甘氨酰-L-谷氨酸 | 0.863 | 0.240 | |
| 羧酸类 Carboxylic acids | 衣康酸 | -0.177 | 0.926 |
| α-丁酮酸 | 0.923 | -0.152 | |
| D-苹果酸 | -0.024 | -0.890 | |
| 丙酮酸甲脂 | 0.886 | 0.400 | |
| 酚酸类 Phenolic acids | 2-羟基苯甲酸 | 0.922 | -0.276 |
| 4-羟基苯甲酸 | 0.831 | 0.401 | |
| 多聚物类 Polymers | α-环式糊精 | 0.917 | -0.096 |
| 肝糖 | 0.927 | 0.119 | |
| 胺类 Amine | 苯乙基胺 | 0.925 | -0.130 |
| 腐胺 | 0.366 | -0.844 | |
| 主成分 Components | 特征值 Eigenvalues | 贡献率 Contribution rate(%) | 累计贡献率 Cumulative contribution rate(%) |
|---|---|---|---|
| 1 | 9.443 | 59.020 | 59.020 |
| 2 | 4.773 | 29.834 | 88.854 |
| 3 | 1.783 | 11.146 | 100.000 |
Tab.5 Principal component eigenvalues, variance contribution ratio and cumulative variance contribution ratio
| 主成分 Components | 特征值 Eigenvalues | 贡献率 Contribution rate(%) | 累计贡献率 Cumulative contribution rate(%) |
|---|---|---|---|
| 1 | 9.443 | 59.020 | 59.020 |
| 2 | 4.773 | 29.834 | 88.854 |
| 3 | 1.783 | 11.146 | 100.000 |
| 指标Indexes | PC1 | PC2 | PC3 |
|---|---|---|---|
| 电导率EC | -0.426 | 0.593 | 0.683 |
| pH值 pH value | 0.026 | -0.926 | 0.378 |
| 速效氮 AN | 0.338 | 0.896 | 0.289 |
| 速效磷AP | 0.835 | -0.534 | -0.135 |
| 速效钾AK | 0.800 | -0.486 | 0.352 |
| 有机质OM | -0.983 | -0.158 | 0.094 |
| 平均颜色变化率AWCD | 0.985 | 0.173 | 0.015 |
| Simpson指数Simpson index | -0.340 | 0.839 | -0.425 |
| Shannon指数Shannon index | 0.957 | 0.287 | -0.041 |
| McIntosh指数McIntosh index | -0.665 | 0.638 | -0.388 |
| 碳水化合物类Carbohydrate | 0.961 | 0.194 | 0.199 |
| 氨基酸类Amino acids | 0.882 | 0.458 | 0.109 |
| 羧酸类Carboxylic acids | 0.788 | -0.275 | -0.551 |
| 酚酸类Phenolic acids | 0.893 | -0.088 | -0.442 |
| 多聚物类Polymers | 0.967 | 0.159 | 0.201 |
| 胺类Amine | 0.588 | 0.799 | 0.128 |
Tab.6 Eigenvectors of correlation loading matrix of main parameters
| 指标Indexes | PC1 | PC2 | PC3 |
|---|---|---|---|
| 电导率EC | -0.426 | 0.593 | 0.683 |
| pH值 pH value | 0.026 | -0.926 | 0.378 |
| 速效氮 AN | 0.338 | 0.896 | 0.289 |
| 速效磷AP | 0.835 | -0.534 | -0.135 |
| 速效钾AK | 0.800 | -0.486 | 0.352 |
| 有机质OM | -0.983 | -0.158 | 0.094 |
| 平均颜色变化率AWCD | 0.985 | 0.173 | 0.015 |
| Simpson指数Simpson index | -0.340 | 0.839 | -0.425 |
| Shannon指数Shannon index | 0.957 | 0.287 | -0.041 |
| McIntosh指数McIntosh index | -0.665 | 0.638 | -0.388 |
| 碳水化合物类Carbohydrate | 0.961 | 0.194 | 0.199 |
| 氨基酸类Amino acids | 0.882 | 0.458 | 0.109 |
| 羧酸类Carboxylic acids | 0.788 | -0.275 | -0.551 |
| 酚酸类Phenolic acids | 0.893 | -0.088 | -0.442 |
| 多聚物类Polymers | 0.967 | 0.159 | 0.201 |
| 胺类Amine | 0.588 | 0.799 | 0.128 |
| 处理 Treatments | 主成分-隶属函数 Principal components- membership function | 加权综合指标 Weighted comprehensive parameters | 综合得分 Composite scores | 排名 Ranking | ||||
|---|---|---|---|---|---|---|---|---|
| CK | -1.966 | 2.801 | 0.200 | -1.160 | 0.836 | 0.022 | -0.302 | 4 |
| L6 | 3.455 | -1.840 | -0.196 | 2.039 | -0.549 | -0.022 | 1.469 | 3 |
| Y24 | 3.364 | 0.127 | 1.697 | 1.985 | 0.038 | 0.189 | 2.212 | 2 |
| L6-Y24 | 8.198 | 2.706 | 0.049 | 4.838 | 0.807 | 0.005 | 5.651 | 1 |
Tab.7 Comprehensive evaluation of functional strains and compound bacteria on wheat growth
| 处理 Treatments | 主成分-隶属函数 Principal components- membership function | 加权综合指标 Weighted comprehensive parameters | 综合得分 Composite scores | 排名 Ranking | ||||
|---|---|---|---|---|---|---|---|---|
| CK | -1.966 | 2.801 | 0.200 | -1.160 | 0.836 | 0.022 | -0.302 | 4 |
| L6 | 3.455 | -1.840 | -0.196 | 2.039 | -0.549 | -0.022 | 1.469 | 3 |
| Y24 | 3.364 | 0.127 | 1.697 | 1.985 | 0.038 | 0.189 | 2.212 | 2 |
| L6-Y24 | 8.198 | 2.706 | 0.049 | 4.838 | 0.807 | 0.005 | 5.651 | 1 |
| [1] |
高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
DOI |
|
GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: a case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.
DOI |
|
| [2] | 吴海华, 刘元元, 喜炜, 等. 新疆盐碱耕地改良利用现状与对策建议[J]. 中国农业综合开发, 2023,(8): 6-8. |
| WU Haihua, LIU Yuanyuan, XI Wei, et al. Present situation and countermeasures of improvement and utilization of saline-alkali cultivated land in Xinjiang[J]. Agricultural Comprehensive Development in China, 2023,(8): 6-8. | |
| [3] | 郎嘉伟, 梁书琪, 李玉恒. 新疆塔里木河流域主要农作物干旱脆弱性研究[J]. 智慧农业导刊, 2023, 3(11): 29-37, 41. |
| LANG Jiawei, LIANG Shuqi, LI Yuheng. Research on drought vulnerability of main crops in Tarim River Basin of Xinjiang[J]. Journal of Smart Agriculture, 2023, 3(11): 29-37, 41. | |
| [4] | 孙德华, 刘维忠, 盛洋. 干旱区耕地安全压力测试及时空演变特征研究——以新疆为例[J]. 资源开发与市场, 2022, 38(7): 792-800. |
| SUN Dehua, LIU Weizhong, SHENG Yang. Pressure test and spatial-temporal evolution characteristics of cultivated land safety in arid areas—a case study of Xinjiang[J]. Resource Development & Market, 2022, 38(7): 792-800. | |
| [5] | 蒋慎港, 胡宝华. 干旱区耕地资源与水资源空间演变测度研究——以新疆为例[J]. 水利发展研究, 2023, 23(7): 26-32. |
| JIANG Shengang, HU Baohua. A study on the spatial evolution measurement of cultivated land resources and water resources in arid areas: a case study of Xinjiang[J]. Water Resources Development Research, 2023, 23(7): 26-32. | |
| [6] | 王骞. 新疆地区农田土壤现状与科学改良措施[J]. 农业工程技术, 2021, 41(23): 32-33. |
| WANG Jian|Qian. Present situation of farmland soil in Xinjiang and scientific improvement measures[J]. Agricultural Engineering Technology, 2021, 41(23): 32-33. | |
| [7] | 朱生堡, 乌尔古丽·托尔逊, 唐光木, 等. 新疆盐碱地变化及其治理措施研究进展[J]. 山东农业科学, 2023, 55(3): 158-165. |
| ZHU Shengbao, Wuerguli Tuoerxun, TANG Guangmu, et al. Research progress on saline-alkali land changes and its treatment measures in Xinjiang[J]. Shandong Agricultural Sciences, 2023, 55(3): 158-165. | |
| [8] | Jangra A, Kumar K, Maikhuri S, et al. Unveiling stress-adapted endophytic bacteria: characterizing plant growth-promoting traits and assessing cross-inoculation effects onPopulus deltoides under abiotic stress[J]. Plant Physiology and Biochemistry, 2024, 210: 108610. |
| [9] | 郭彦钊, 杜春辉, 于烽, 等. 旱区盐生植物根际促生菌的分离鉴定及其干旱、盐胁迫下促生特性[J]. 微生物学报, 2023, 63(2): 610-622. |
| GUO Yanzhao, DU Chunhui, YU Feng, et al. Isolation and identification of growth-promoting bacteria in halophyte rhizosphere in arid region and their growth-promoting characteristics under drought and salt stresses[J]. Acta Microbiologica Sinica, 2023, 63(2): 610-622. | |
| [10] | Damodaran T, Jha S K, Kumari S, et al. Development of halotolerant microbial consortia for salt stress mitigation and sustainable tomato production in sodic soils: an enzyme mechanism approach[J]. Sustainability, 2023, 15(6): 5186. |
| [11] | 何汉琼, 王艺璇, 姜洪进, 等. 盐碱——干旱交叉胁迫下羊草-菌根共生体有机酸积累特征[J]. 现代农业科技, 2024,(4): 109-112. |
| HE Hanqiong, WANG Yixuan, JIANG Hongjin, et al. Characteristics of organic acids accumulation in Leymus chinensis-mycorrhiza symbionts under salinity-drought cross stress[J]. Modern Agricultural Science and Technology, 2024,(4): 109-112. | |
| [12] |
宋雪, 付楚涵, 李家红, 等. 内生菌提高植物抗旱性和耐盐性分子机制研究进展[J]. 草地学报, 2024, 32(1): 13-24.
DOI |
|
SONG Xue, FU Chuhan, LI Jiahong, et al. Research progress on molecular mechanism of endophytes improving the drought resistance and salt tolerance of plant[J]. Acta Agrestia Sinica, 2024, 32(1): 13-24.
DOI |
|
| [13] | Yang L J, Yang K J. Biological function ofKlebsiella variicolaand its effect on the rhizosphere soil of maize seedlings[J]. PeerJ, 2020, 8: e9894. |
| [14] |
孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5): 1203-1215.
DOI |
|
SUN Yunya, CHEN Jia, WANG Yue, et al. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance[J]. Acta Agrestia Sinica, 2020, 28(5): 1203-1215.
DOI |
|
| [15] | 王乙富, 朱新开. 解钾菌对盐胁迫下小麦种子萌发和幼苗生长的促进作用及其机制分析[J]. 分子植物育种, 2023, 21(17): 5761-5767. |
| WANG Yifu, ZHU Xinkai. Promotion of wheat seed germination and seedling growth under salt stress by KSB and analysis of its mechanism[J]. Molecular Plant Breeding, 2023, 21(17): 5761-5767. | |
| [16] | AL-Shwaiman H A, Shahid M, Elgorban A M, et al. Beijerinckiafluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: Deciphering the stress amelioration, phytopathogenic inhibition and growth promotion inTriticum aestivum (L.)[J]. Chemosphere, 2022, 295: 133843. |
| [17] | 徐亚军, 赵龙飞, 邢鸿福, 等. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响[J]. 生态学报, 2020, 40(11): 3726-3737. |
| XU Yajun, ZHAO Longfei, XING Hongfu, et al. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress[J]. Acta Ecologica Sinica, 2020, 40(11): 3726-3737. | |
| [18] | Shah D, Khan M S, Aziz S, et al. Molecular and biochemical characterization, antimicrobial activity, stress tolerance, and plant growth-promoting effect of endophytic bacteria isolated from wheat varieties[J]. Microorganisms, 2021, 10(1): 21. |
| [19] | Chakraborty U, Chakraborty B N, Chakraborty A P, et al. Water and salt stress alleviation in Wheat induced by rhizosphere bacteria with multi-functional traits[J]. International Journal of Bio-Resource and Stress Management, 2014, 4(2): 214-219. |
| [20] | Barnawal D, Bharti N, Pandey S S, et al. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiologia Plantarum, 2017, 161(4): 502-514. |
| [43] | 王国丽, 张晓丽, 张晓霞, 等. 施用功能微生物菌剂对重度盐碱地向日葵生长及土壤微生物的影响[J]. 中国土壤与肥料, 2021,(5): 133-139. |
| WANG Guoli, ZHANG Xiaoli, ZHANG Xiaoxia, et al. Effects of applying functional microbial agents on sunflower growth and soil microorganism in severe saline alkali soil[J]. Soil and Fertilizer Sciences in China, 2021,(5): 133-139. | |
| [44] | 王巍琦, 杨磊, 程志博, 等. 干旱区不同类型盐碱地土壤微生物碳源代谢活性研究[J]. 干旱区资源与环境, 2019, 33(6): 158-166. |
| WANG Weiqi, YANG Lei, CHENG Zhibo, et al. Study on soil microbial biomass carbon source metabolism in different types of sodic saline-alkali soil in arid area[J]. Journal of Arid Land Resources and Environment, 2019, 33(6): 158-166. | |
| [21] |
Misra S, Dixit V K, Khan M H, et al. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria[J]. Microbiological Research, 2017, 205: 25-34.
DOI PMID |
| [22] | 宋晓桐, 周健, 王营营. 基于主成分分析-耦合协调模型的生态文明理念下新疆农业可持续发展综合评价[J]. 喀什大学学报, 2023, 44(3): 33-39. |
| SONG Xiaotong, ZHOU Jian, WANG Yingying. Based on principal component analysis-coupled coordination model comprehensive evaluation of sustainable agricultural development in Xinjiang under the concept of ecological civilization[J]. Journal of Kashi University, 2023, 44(3): 33-39. | |
| [23] | 王洁, 谭浩, 阮志勇, 等. 基于文献统计学的我国新疆特殊环境微生物新种资源挖掘概况及展望[J]. 微生物学通报, 2023, 50(2): 857-873. |
| WANG Jie, TAN Hao, RUAN Zhiyong, et al. Overview and prospect of newly discovered microbial resources in the special environments of Xinjiang in China based on bibliometrics[J]. Microbiology China, 2023, 50(2): 857-873. | |
| [24] | 苑霖, 王新珍, 孙宏勇, 等. 一株克锡勒氏菌对小麦苗期的促生耐盐效应研究[J]. 中国生态农业学报(中英文), 2021, 29(11): 1913-1920. |
| YUAN Lin, WANG Xinzhen, SUN Hongyong, et al. Growth promotion and mitigation of salt stress in wheat seedlings by aKushneriabacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913-1920. | |
| [25] | Zhao Y G, Zhang F H, Mickan B, et al. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth[J]. Plant Cell Reports, 2023, 42(1): 165-179. |
| [26] |
伊帕热·帕尔哈提, 祖力胡玛尔·肉孜, 田永芝, 等. 荒漠植物内生菌多样性及其增强农作物抗旱和耐盐性的研究进展[J]. 生物技术通报, 2022, 38(12): 88-99.
DOI |
|
Yipare Paerhati, Zulihumaer Rouzi, TIAN Yongzhi, et al. Research progress in diversity of endophytes microbial communities isolated from desert plants and their strengthening effects on drought and salt tolerance in crops[J]. Biotechnology Bulletin, 2022, 38(12): 88-99.
DOI |
|
| [27] |
张志东, 顾美英, 唐琦勇, 等. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3): 186-192.
DOI |
|
ZHANG Zhidong, GU Meiying, TANG Qiyong, et al. Screening of salt-tolerant and growth-promoting bacteria in the rhizosphere of Kalidium foliatum and the functional identification in pot experiments[J]. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192.
DOI |
|
| [28] |
陈腊, 米国华, 李可可, 等. 多功能植物根际促生菌对东北黑土区玉米的促生效果[J]. 应用生态学报, 2020, 31(8): 2759-2766.
DOI |
|
CHEN La, MI Guohua, LI Keke, et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in NorthEast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2759-2766.
DOI |
|
| [29] | 邓振山, 陈凯凯, 李静, 等. 巨菌草根部促生菌的筛选及其促生效应[J]. 广西植物, 2020, 40(9): 1323-1331. |
| DENG Zhenshan, CHEN Kaikai, LI Jing, et al. Screening of growth-promoting bacteria associated with Pennisetum sinese root and their abilities of growth-promoting effect[J]. Guihaia, 2020, 40(9): 1323-1331. | |
| [30] |
高雁, 张永强, 张志东, 等. 功能性微生物菌剂对小麦生长和根际土壤生态的影响[J]. 新疆农业科学, 2021, 58(1): 115-124.
DOI |
|
GAO Yan, ZHANG Yongqiang, ZHANG Zhidong, et al. Effects of functional microbial agents on wheat growth and rhizosphere soil micro-ecology[J]. Xinjiang Agricultural Sciences, 2021, 58(1): 115-124.
DOI |
|
| [31] |
冯国红, 周金东, 朱玉杰, 等. 基于近红外光谱-光纤液滴分析法检测蓝莓综合品质[J]. 食品科学, 2024, 45(18): 216-224.
DOI |
|
FENG Guohong, ZHOU Jindong, ZHU Yujie, et al. Comprehensive quality evaluation of blueberries based on near-infrared spectroscopy and fiber optic droplet analysis[J]. Food Science, 2024, 45(18): 216-224.
DOI |
|
| [32] | 王明杰. 新疆小麦生产发展现状及存在的问题分析[J]. 种子科技, 2023, 41(19): 142-144. |
| WANG Mingjie. Analysis on the present situation and existing problems of wheat production in Xinjiang[J]. Seed Science & Technology, 2023, 41(19): 142-144. | |
| [33] | Zhao S C, Wang H R, Wang J H. Synthesis and application of a compound microbial inoculant for effective soil remediation[J]. Environmental Science and Pollution Research International, 2023, 30(57): 120915-120929. |
| [34] |
车永梅, 刘广超, 郭艳苹, 等. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225.
DOI |
|
CHE Yongmei, LIU Guangchao, GUO Yanping, et al. Preparation of compound halotolerant bioinoculant and study on its growth-promoting effect[J]. Biotechnology Bulletin, 2023, 39(11): 217-225.
DOI |
|
| [35] | 张继雨, 王连祥, 任庆国, 等. 复合微生物菌剂对轻度盐碱地土壤改良及红花产量的影响[J]. 磷肥与复肥, 2023, 38(10): 48-52. |
| ZHANG Jiyu, WANG Lianxiang, REN Qingguo, et al. Effects of compound microbial agent on soil improvement and safflower yield in mild saline-alkali land[J]. Phosphate & Compound Fertilizer, 2023, 38(10): 48-52. | |
| [36] | Alhammad B A, Zaheer M S, Ali H H, et al. Effect of co-application ofAzospirillum brasilenseandRhizobium pision wheat performance and soil nutrient status under deficit and partial root drying stress[J]. Plants, 2023, 12(17): 3141. |
| [37] |
Qurashi A W, Sabri A N. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress[J]. Brazilian Journal of Microbiology, 2012, 43(3): 1183-1191.
DOI PMID |
| [38] | 陈潼樾. 耐盐碱多功能类芽孢杆菌对苏打盐碱土的改良潜力研究[D]. 长春: 吉林农业大学, 2021. |
| CHEN Tongyue. Study on the improvement potential of saline-alkali tolerant multi-functional Paenibacillus bacillus to soda saline-alkali soil[D]. Changchun: Jilin Agricultural University, 2021. | |
| [39] | 梁新波, 张晨, 张冠初, 等. 花生根际微生物群落结构对干旱和盐胁迫的响应[J]. 花生学报, 2021, 50(1): 33-40. |
| LIANG Xinbo, ZHANG Chen, ZHANG Guanchu, et al. Response of peanut rhizosphere bacterial community structure to salt and drought stress[J]. Journal of Peanut Science, 2021, 50(1): 33-40. | |
| [40] | 韦江璐, 覃英, 谢显秋, 等. 促生菌对土壤养分、酶活性及细菌群落功能多样性的影响[J]. 南方农业学报, 2020, 51(10): 2348-2357. |
| WEI Jianglu, QIN Ying, XIE Xianqiu, et al. Effects of growth-promoting bacteria on soil nutrient, enzyme activity and bacterial community function diversity[J]. Journal of Southern Agriculture, 2020, 51(10): 2348-2357. | |
| [41] | Samain E, Duclercq J, Ait Barka E, et al. PGPR-soil microbial communities' interactions and their influence on wheat growth promotion and resistance induction againstMycosphaerella Graminicola[J]. Biology, 2023, 12(11): 1416. |
| [42] | 王艳宇, 刘爽, 李鑫, 等. 3株耐盐碱促生菌对绿豆根际微生态的影响[J]. 干旱地区农业研究, 2022, 40(1): 139-145. |
| WANG Yanyu, LIU Shuang, LI Xin, et al. Effects of three saline-alkali tolerant growth-promotingbacteria on the rhizosphere microecology of mung bean[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 139-145. |
| [1] | WANG Haobo, XIA Jianqiang, ZHANG Pengpeng, JIN Yongwei, ZHANG Yueqiang, GENG Hongwei. Screening and identification of spring wheat germplasm resources for heat resistance [J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1586-1594. |
| [2] | LIN Min, SHEN Yuyang, DENG Feifei, LI Guangkuo, GAO Haifeng. Effects of Bromus japonicus on the yield traits of wheat in desert oasis regions [J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1605-1611. |
| [3] | DING Yingdeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong, ZHOU Anding, WU Xinyuan, FANG Hui. Effects of pre-flowering drought and gibberellin concentration on photosynthetic characteristics and yield formation in winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1328-1336. |
| [4] | ZHU Hongxia, HU Linfeng, WANG Qiqi, ZHANG Jungao, ZHANG Shaomin, ZHOU Xiaoyun, LEI Bin, ZHANG Zhidong. Expression analysis of disease resistance-related genes in wheat induced by Streptomyces sp. HU2014 [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1337-1343. |
| [5] | LAI Hailin, LI Jin, SHEN Yuyang, DE Feifei, YANG Hong, LI Guangkuo, LI Yue, GAO Haifeng. Development of SNP molecular markers applied to genetic structure analysis of wheat stripe rust fungus [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1219-1225. |
| [6] | LIU Xuhuan, YU Shan, LIU Yue, SHI Shubing. Comprehensive evaluation of low temperature tolerance of different varieties of spring wheat seeds during germination [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 820-828. |
| [7] | NIE Lingfan, ZHANG Jinshan, TIAN Wenqiang, SUN Ganggang, WANG Hongyi, ZHANG Jun, ZHANG Qiangbin, GUO Fei, WU Li, SHI Shubing. Effects of different water and nitrogen treatments on the growth, water and nitrogen use efficiency and yield of ultra-late sowing winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 584-592. |
| [8] | SUN Ganggang, GUO Fei, NIE Lingfan, TIAN Wenqiang, WANG Hongyi, SHI Yongqing, WU Li, AI Hongyu, ZHANG Jinshan, SHI Shubing. Effects of seed fertilizer separation on photosynthesis, dry matter accumulation and yield formation of winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 593-599. |
| [9] | LEI Jiacheng, ZHANG Jingjing, HAN Bo, LU Ziao. Research on virtual wheat growth simulation and visualization system based on PyOpenGL [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 609-618. |
| [10] | SUN Na, MA Lin, ZOU Hui, ZHANG Zhihui, ZHANG Shengjun, HUANG Qiannan, YANG Hui, Dengsilamu Tuerxunbai, LI Zhibin, CAO Junmei, LEI Junjie. Analysis of combined application of NPK fertilizers on yield and quality of winter wheat and the fertilizer effect [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 1-12. |
| [11] | CHEN Hui, ZHANG Yongqiang, BI Haiyan, TANJun , CHEN Chuanxin, XU Qijiang, NIE Shihui, YU Jianxin, LU Dong, LEI Junjie. Yield formation characteristics of different spring wheat varieties in dryland farming area of Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 13-20. |
| [12] | XIE Xiurong, ZHANG Yongqiang, HAI Feng, LEI Junjie, LYU Xiaoqing, CHEN Chuanxin, XU Qijiang, NIE Shihui, WANG Jichuan. Effects of uniform sowing and densification on population structure and yield of late sowing winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 21-28. |
| [13] | ZHANG Yanting, ZHANG Yongqiang, LEI Junjie, CHEN Hui, CHEN Chuanxin, XU Qijiang, NIE Shihui, XU Wenxiu. Effects of different phosphorus application modes on photosynthetic physiological characteristics and yield of Dry-Seeded and Wet-Emerged winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 29-36. |
| [14] | ZHANG Jingcan, XU Qijiang, ZHANG Yongqiang, LEI Junjie, LYU Xiaoqing, CHEN Chuanxin, NIE Shihui, XU Wenxiu. Effects of different growth regulator and its application times on stem characteristics and lodging resistance of winter wheat under drip irrigation [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 37-44. |
| [15] | HAI Feng, ZHANG Yongqiang, XIE Xiurong, LYU Xiaoqing, CHEN Chuanxin, XU Qijiang, NIE Shihui, WANG Jichuan, LEI Junjie. Effects of different drip irrigation rates on photosynthetic characteristics and yield of drip irrigated winter wheat under limited irrigation [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 45-52. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||