

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (7): 1624-1630.DOI: 10.6048/j.issn.1001-4330.2025.07.007
• Food and cash crops column • Previous Articles Next Articles
WANG Zixuan1,2(
), CAI Darun2(
), LIU Zigang2, LI Juan2, CHEN Guo2, LI Bo2, LI Xiaorong2, YANG Yang2, TANG Tianyu1, NIE Tengkun2, HU Xia2, CHEN Xunji2(
)
Received:2024-12-15
Online:2025-07-20
Published:2025-09-05
Correspondence author:
CAI Darun, CHEN Xunji
Supported by:
王子轩1,2(
), 蔡大润2(
), 刘志刚2, 李娟2, 陈果2, 李波2, 李晓荣2, 杨洋2, 唐天宇1, 聂腾坤2, 胡霞2, 陈勋基2(
)
通讯作者:
蔡大润,陈勋基
作者简介:王子轩(2000-),男,本科,研究方向为玉米遗传育种,(E-mail)1145530327@qq.com
基金资助:CLC Number:
WANG Zixuan, CAI Darun, LIU Zigang, LI Juan, CHEN Guo, LI Bo, LI Xiaorong, YANG Yang, TANG Tianyu, NIE Tengkun, HU Xia, CHEN Xunji. Effects of different proportions of zinc, boron and calcium leaf fertilizer on agronomic traits and seed yield of maize under high temperature environment[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1624-1630.
王子轩, 蔡大润, 刘志刚, 李娟, 陈果, 李波, 李晓荣, 杨洋, 唐天宇, 聂腾坤, 胡霞, 陈勋基. 高温环境下喷施不同配比的锌、硼、钙叶面肥对玉米农艺性状与制种产量的影响[J]. 新疆农业科学, 2025, 62(7): 1624-1630.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.07.007
| 处理 Treat- ments | 株高 Plant height (cm) | 父本 开花期 Flowering stage (M/D) | 母本 吐丝期 Silking stage (M/D) | 父本开花 和母本吐 丝间隔 interval (Day) |
|---|---|---|---|---|
| T1 | 187.6±4.6a | 7/6 | 7/9 | 3 |
| T2 | 178.9±8.5a | 7/5 | 7/8 | 3 |
| T3 | 178.2±2.4a | 7/6 | 7/10 | 4 |
| T4 | 184.8±3.0a | 7/3 | 7/8 | 5 |
| T5 | 184.7±14.6a | 7/5 | 7/9 | 4 |
| T6 | 183.2±19.4a | 7/4 | 7/9 | 5 |
| T7 | 180.8±11.1a | 7/4 | 7/8 | 3 |
| T8 | 184.4±15.9a | 7/4 | 7/9 | 5 |
| T9 | 183.5±13.0a | 7/4 | 7/9 | 5 |
| T10 | 187.1±6.9a | 7/2 | 7/8 | 6 |
| T11 | 182.8±11.9a | 7/3 | 7/9 | 6 |
| T12 | 174.8±16.1a | 7/2 | 7/8 | 7 |
| CK | 168.9±7.5a | 7/1 | 7/8 | 7 |
Tab.1 Changes of different leaf fertilizer treatments on maize plant height
| 处理 Treat- ments | 株高 Plant height (cm) | 父本 开花期 Flowering stage (M/D) | 母本 吐丝期 Silking stage (M/D) | 父本开花 和母本吐 丝间隔 interval (Day) |
|---|---|---|---|---|
| T1 | 187.6±4.6a | 7/6 | 7/9 | 3 |
| T2 | 178.9±8.5a | 7/5 | 7/8 | 3 |
| T3 | 178.2±2.4a | 7/6 | 7/10 | 4 |
| T4 | 184.8±3.0a | 7/3 | 7/8 | 5 |
| T5 | 184.7±14.6a | 7/5 | 7/9 | 4 |
| T6 | 183.2±19.4a | 7/4 | 7/9 | 5 |
| T7 | 180.8±11.1a | 7/4 | 7/8 | 3 |
| T8 | 184.4±15.9a | 7/4 | 7/9 | 5 |
| T9 | 183.5±13.0a | 7/4 | 7/9 | 5 |
| T10 | 187.1±6.9a | 7/2 | 7/8 | 6 |
| T11 | 182.8±11.9a | 7/3 | 7/9 | 6 |
| T12 | 174.8±16.1a | 7/2 | 7/8 | 7 |
| CK | 168.9±7.5a | 7/1 | 7/8 | 7 |
| 处理 Treatments | 穗长 Spike length (cm) | 穗粗 Ear diameter (cm) | 秃尖长 Spike tip length (cm) | 穗行数 Ear rows | 行粒数 Kernels per row |
|---|---|---|---|---|---|
| T1 | 13.9±1.35a | 4.07±0.2a | 0.77±0.62a | 15.3±1.0a | 24.2±4.4a |
| T2 | 13.21±1.06ab | 4.03±0.24ab | 1.11±0.78ab | 15.3±1.7a | 21.2±4.6ab |
| T3 | 12.36±1.33ab | 3.70±0.24bc | 1.27±0.50ab | 13.1±1.8ab | 17.2±2.6bc |
| T4 | 11.6±1.88ab | 3.70±0.21bc | 1.59±0.54ab | 13.8±1.6a | 15.4±2.6cd |
| T5 | 11.57±1.34ab | 3.8±0.17abc | 1.10±0.65ab | 14.0±1.4a | 17.9±2.7bc |
| T6 | 11.69±2.06ab | 3.61±0.21c | 1.11±0.58ab | 13.8±1.6a | 15.6±3.0cd |
| T7 | 12.04±0.96ab | 3.8±0.16abc | 1.03±0.28ab | 14.4±1.3a | 18.9±3.3bc |
| T8 | 13.32±1.29ab | 3.76±0.21abc | 1.62±0.33ab | 14.4±1.3a | 18.0±2.0bc |
| T9 | 11.71±2.16ab | 3.73±0.30abc | 1.12±0.53ab | 12.9±2.0ab | 16.9±2.0bc |
| T10 | 12.94±1.31ab | 3.73±0.21abc | 1.63±0.94ab | 13.1±1.1ab | 16.3±3.2cd |
| T11 | 11.62±1.62ab | 3.80±0.29abc | 0.83±0.47a | 14.2±1.9a | 15.8±3.0cd |
| T12 | 11.19±1.58b | 3.68±0.22bc | 1.49±0.95ab | 13.3±1.0a | 14.8±2.4cd |
| CK | 11.16±2.79b | 3.50±0.24c | 2.08±1.49b | 10.7±2.0b | 11.9±1.4d |
Tab.2 Changes of different leaf fertilizer treatments on ear characteristics of maize
| 处理 Treatments | 穗长 Spike length (cm) | 穗粗 Ear diameter (cm) | 秃尖长 Spike tip length (cm) | 穗行数 Ear rows | 行粒数 Kernels per row |
|---|---|---|---|---|---|
| T1 | 13.9±1.35a | 4.07±0.2a | 0.77±0.62a | 15.3±1.0a | 24.2±4.4a |
| T2 | 13.21±1.06ab | 4.03±0.24ab | 1.11±0.78ab | 15.3±1.7a | 21.2±4.6ab |
| T3 | 12.36±1.33ab | 3.70±0.24bc | 1.27±0.50ab | 13.1±1.8ab | 17.2±2.6bc |
| T4 | 11.6±1.88ab | 3.70±0.21bc | 1.59±0.54ab | 13.8±1.6a | 15.4±2.6cd |
| T5 | 11.57±1.34ab | 3.8±0.17abc | 1.10±0.65ab | 14.0±1.4a | 17.9±2.7bc |
| T6 | 11.69±2.06ab | 3.61±0.21c | 1.11±0.58ab | 13.8±1.6a | 15.6±3.0cd |
| T7 | 12.04±0.96ab | 3.8±0.16abc | 1.03±0.28ab | 14.4±1.3a | 18.9±3.3bc |
| T8 | 13.32±1.29ab | 3.76±0.21abc | 1.62±0.33ab | 14.4±1.3a | 18.0±2.0bc |
| T9 | 11.71±2.16ab | 3.73±0.30abc | 1.12±0.53ab | 12.9±2.0ab | 16.9±2.0bc |
| T10 | 12.94±1.31ab | 3.73±0.21abc | 1.63±0.94ab | 13.1±1.1ab | 16.3±3.2cd |
| T11 | 11.62±1.62ab | 3.80±0.29abc | 0.83±0.47a | 14.2±1.9a | 15.8±3.0cd |
| T12 | 11.19±1.58b | 3.68±0.22bc | 1.49±0.95ab | 13.3±1.0a | 14.8±2.4cd |
| CK | 11.16±2.79b | 3.50±0.24c | 2.08±1.49b | 10.7±2.0b | 11.9±1.4d |
| 处理 Treatments | 单穗籽粒数 Grains per ear | 单穗粒重 Grains weight (g) | 结实率 Kernel setting rate (%) | 百粒重 100-grain weight (g) | 产量 Yield (kg/hm2) |
|---|---|---|---|---|---|
| T1 | 303.1±50.0a | 68.8±4.9a | 78.4±9.7a | 25.1±5.0 | 8 008.4±402.6a |
| T2 | 262.2±75.0ab | 63.9±6.5ab | 72.6±3.3ab | 27.9±9.3 | 7 771.5±365.6a |
| T3 | 219.3±76.8b | 57.7±5.0abc | 65.6±2.1bcd | 29.6±10.7 | 6 917.9±527.1abc |
| T4 | 199.4±68.1bc | 52.4±8.2abc | 60.9±1.7def | 29.0±9.2 | 6 515.7±151.8abc |
| T5 | 218.8±59.9b | 57.6±16.1abc | 69.9±1.9bc | 28.2±7.4 | 6 755.4±645.9abc |
| T6 | 210.1±74.9bc | 48.1±8.3abc | 62.8±2.0cde | 26.1±10.1 | 6 479.0±906.9abc |
| T7 | 244.3±61.6ab | 59.1±12.9abc | 65.2±2.2bcd | 25.8±7.0 | 7 315.4±652.7ab |
| T8 | 223.4±48.4b | 45.8±8.0bc | 62.3±2.0cdef | 21.3±4.1 | 6 620.4±428.6abc |
| T9 | 204.2±85.3bc | 50.2±12.6abc | 63.1±3.5cde | 30.5±17.7 | 6 287.7±341.7abc |
| T10 | 185.8±39.3bc | 46.0±20.0bc | 54.9±11.1f | 26.1±7.0 | 6 253.1±474.2abc |
| T11 | 194.5±64.2bc | 55.3±2.5abc | 61.8±2.7def | 32.0±12.3 | 5 790.5±196.7bc |
| T12 | 192.7±61.5bc | 51.2±15.1abc | 57.2±2.3ef | 29.8±12.1 | 5 574.6±293.1bc |
| CK | 152.2±31.1c | 42.1±7.0c | 46.9±2.1g | 32.7±7.1 | 5 376.5±492.2c |
Tab.3 Changes of different leaf fertilizer treatments on yield traits of maize
| 处理 Treatments | 单穗籽粒数 Grains per ear | 单穗粒重 Grains weight (g) | 结实率 Kernel setting rate (%) | 百粒重 100-grain weight (g) | 产量 Yield (kg/hm2) |
|---|---|---|---|---|---|
| T1 | 303.1±50.0a | 68.8±4.9a | 78.4±9.7a | 25.1±5.0 | 8 008.4±402.6a |
| T2 | 262.2±75.0ab | 63.9±6.5ab | 72.6±3.3ab | 27.9±9.3 | 7 771.5±365.6a |
| T3 | 219.3±76.8b | 57.7±5.0abc | 65.6±2.1bcd | 29.6±10.7 | 6 917.9±527.1abc |
| T4 | 199.4±68.1bc | 52.4±8.2abc | 60.9±1.7def | 29.0±9.2 | 6 515.7±151.8abc |
| T5 | 218.8±59.9b | 57.6±16.1abc | 69.9±1.9bc | 28.2±7.4 | 6 755.4±645.9abc |
| T6 | 210.1±74.9bc | 48.1±8.3abc | 62.8±2.0cde | 26.1±10.1 | 6 479.0±906.9abc |
| T7 | 244.3±61.6ab | 59.1±12.9abc | 65.2±2.2bcd | 25.8±7.0 | 7 315.4±652.7ab |
| T8 | 223.4±48.4b | 45.8±8.0bc | 62.3±2.0cdef | 21.3±4.1 | 6 620.4±428.6abc |
| T9 | 204.2±85.3bc | 50.2±12.6abc | 63.1±3.5cde | 30.5±17.7 | 6 287.7±341.7abc |
| T10 | 185.8±39.3bc | 46.0±20.0bc | 54.9±11.1f | 26.1±7.0 | 6 253.1±474.2abc |
| T11 | 194.5±64.2bc | 55.3±2.5abc | 61.8±2.7def | 32.0±12.3 | 5 790.5±196.7bc |
| T12 | 192.7±61.5bc | 51.2±15.1abc | 57.2±2.3ef | 29.8±12.1 | 5 574.6±293.1bc |
| CK | 152.2±31.1c | 42.1±7.0c | 46.9±2.1g | 32.7±7.1 | 5 376.5±492.2c |
| 穗行数 Ear rows | 行粒数 Kernels per row | 穗长 Spike length | 秃尖长 Spike tip length | 穗粗 Ear diameter | 百粒重 100-grain weight | 结实率 Kernel setting rate | 单穗粒重 Grains weight | 单穗籽粒数 Grains per ear | 产量 Yield | |
|---|---|---|---|---|---|---|---|---|---|---|
| 穗行数 Ear rows | 1 | |||||||||
| 行粒 Kernels per row | 0.554** | 1 | ||||||||
| 穗长 Spike length | 0.372* | 0.171 | 1 | |||||||
| 秃尖长 Spike tip length | -0.444** | -0.012 | -0.537** | 1 | ||||||
| 穗粗 Ear diameter | 0.518** | 0.580** | 0.367* | -0.411** | 1 | |||||
| 百粒重 100-grain weight | -0.712** | -0.424** | 0.067 | 0.103 | -0.115 | 1 | ||||
| 结实率 Kernel setting rate | 0.821** | 0.419** | 0.436** | -0.630** | 0.597** | -0.420** | 1 | |||
| 单穗粒重 Grains weight | 0.740** | 0.713** | 0.589** | -0.558** | 0.768** | -0.339* | 0.778** | 1 | ||
| 单穗籽粒数 Grains per ear | 0.558** | 0.530** | 0.261 | -0.477** | 0.788** | -0.189 | 0.636** | 0.703** | 1 | |
| 产量 Yield | 0.502** | 0.514** | 0.363* | -0.304 | 0.583** | -0.230 | 0.454** | 0.561** | 0.592** | 1 |
Tab.4 Correlation analysis between agronomic characters and yield of maize
| 穗行数 Ear rows | 行粒数 Kernels per row | 穗长 Spike length | 秃尖长 Spike tip length | 穗粗 Ear diameter | 百粒重 100-grain weight | 结实率 Kernel setting rate | 单穗粒重 Grains weight | 单穗籽粒数 Grains per ear | 产量 Yield | |
|---|---|---|---|---|---|---|---|---|---|---|
| 穗行数 Ear rows | 1 | |||||||||
| 行粒 Kernels per row | 0.554** | 1 | ||||||||
| 穗长 Spike length | 0.372* | 0.171 | 1 | |||||||
| 秃尖长 Spike tip length | -0.444** | -0.012 | -0.537** | 1 | ||||||
| 穗粗 Ear diameter | 0.518** | 0.580** | 0.367* | -0.411** | 1 | |||||
| 百粒重 100-grain weight | -0.712** | -0.424** | 0.067 | 0.103 | -0.115 | 1 | ||||
| 结实率 Kernel setting rate | 0.821** | 0.419** | 0.436** | -0.630** | 0.597** | -0.420** | 1 | |||
| 单穗粒重 Grains weight | 0.740** | 0.713** | 0.589** | -0.558** | 0.768** | -0.339* | 0.778** | 1 | ||
| 单穗籽粒数 Grains per ear | 0.558** | 0.530** | 0.261 | -0.477** | 0.788** | -0.189 | 0.636** | 0.703** | 1 | |
| 产量 Yield | 0.502** | 0.514** | 0.363* | -0.304 | 0.583** | -0.230 | 0.454** | 0.561** | 0.592** | 1 |
| [1] | 杨杰, 韩登旭, 阿布来提·阿布拉, 等. 新疆自然高温环境下玉米自交系开花期耐热性鉴定与评价[J]. 西北植物学报, 2021, 41(8): 1380-1390. |
| YANG Jie, HAN Dengxu, Abulaiti Abula, et al. Identification and evaluation of heat tolerance of maize inbred lines during flowering under natural high temperature in Xinjiang[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1380-1390. | |
| [2] |
颜鹏程, 李忆平, 曾鼎文, 等. 2024年4-6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 2024, 42(4): 507-518.
DOI |
| YAN Pengcheng, LI Yiping, ZENG Dingwen, et al. Characteristics of regional high temperature and drought in China from April to June 2024 and their influence factors[J]. Journal of Arid Meteorology, 2024, 42(4): 507-518. | |
| [3] | 刘雨佳, 张艺琼, 方一如, 等. 高温干旱复合胁迫对夏玉米生长发育及产量形成的影响[J]. 气象与减灾研究, 2024, 47(1): 42-49. |
| LIU Yujia, ZHANG Yiqiong, FANG Yiru, et al. Effects of combined high temperature and drought stress on the growth and yield formation of summer maize[J]. Meteorology and Disaster Reduction Research, 2024, 47(1): 42-49. | |
| [4] | Humtsoe B M, Dawson J, Rajana P. Effect of nitrogen, boron and zinc as basal and foliar application on growth and yield of maize (Zea mays L.)[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(6): 01-04. |
| [5] | Shahab Q, Afzal M, Hussain B, et al. Effect of different methods of zinc application on maize (Zea mays L.)[J]. International Journal of Agronomy and Agricultural Research, 2016, 9(3): 66-75. |
| [6] | Kanshouwa C M, Mehera B. Effect of boron and panchagavya on growth and yield of baby corn (Zea mays L.)[J]. International Journal of Plant & Soil Science, 2023, 35(13): 102-108. |
| [7] | Nirmala Nautiyal N N, Ruby Srivastava R S. Abscisic acid modifies boron stress in cultured maize kernels[J]. Indian Journal of Plant Physiology, 2005, 10(2): 103-107. |
| [8] | Kumar T B, Mehera B, Kumar P, et al. Effect of boron on growth and yield of sweet corn (Zea mays L. Saccharata) varieties[J]. International Journal of Environment and Climate Change, 2023, 13(6): 1-6. |
| [9] | 尹雪巍, 张翼飞, 杨克军, 等. 不同施钙水平对松嫩平原西部玉米干物质积累、产量及品质的影响[J]. 玉米科学, 2020, 28(3): 155-162. |
| YIN Xuewei, ZHANG Yifei, YANG Kejun, et al. Effects of different calcium fertilizer application levels on dry matter accumulation, grain yield and quality of maize in the western Songnen Plain[J]. Journal of Maize Sciences, 2020, 28(3): 155-162. | |
| [10] | 徐荣琼, 张翼飞, 杜嘉瑞, 等. 叶面喷施钙肥对春玉米茎秆抗倒伏特性与产量形成的影响[J]. 作物杂志, 2024(3): 223-230. |
| XU Rongqiong, ZHANG Yifei, DU Jiarui, et al. Effects of foliar spraying calcium fertilizer on lodging resistance and yield formation of spring maize[J]. Crops, 2024(3): 223-230. | |
| [11] | Xin J, Ren N, Hu X L, et al. Variations in grain yield and nutrient status of different maize cultivars by application of zinc sulfate[J]. PLoS One, 2024, 19(3): e0295391. |
| [12] | Calderón-Páez S E, Cueto-Ni?o Y A, Sánchez-Reinoso A D, et al. Foliar boron compounds applications mitigate heat stress caused by high daytime temperatures in rice (Oryza sativa L.) Boron mitigates heat stress in rice[J]. Journal of Plant Nutrition, 2021, 44(17): 2514-2527. |
| [13] | Naeem M, Naeem M S, Ahmad R, et al. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity[J]. Archives of Agronomy and Soil Science, 2018, 64(1): 116-131. |
| [14] | Liu D Y, Zhang W, Liu Y M, et al. Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains[J]. Frontiers in Plant Science, 2020, 11: 188. |
| [15] | Haque M A. Boron Impact on Maize Growth and Yield: A Review[J]. International Journal of Plant & Soil Science, 2024, 36(6): 353-363. |
| [16] | Wang Y Y, Tao H B, Tian B J, et al. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering[J]. Environmental and Experimental Botany, 2019, 158: 80-88. |
| [17] | Ngoune Tandzi L, Mutengwa C S. Estimation of maize (Zea mays L.) yield per harvest area: appropriate methods[J]. Agronomy, 2020, 10(1): 29. |
| [18] | 盛得昌, 王媛媛, 黄收兵, 等. 高温对玉米植株形态与功能、产量构成及子粒养分的影响[J]. 玉米科学, 2020, 28(5): 86-92. |
| SHENG Dechang, WANG Yuanyuan, HUANG Shoubing, et al. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants[J]. Journal of Maize Sciences, 2020, 28(5): 86-92. | |
| [19] | Potarzycki J, Grzebisz W. Effect of zinc foliar application on grain yield of maize and its yielding compone[J]. Plant, Soil and Environment, 2009, 55(12): 519-527. |
| [20] | Tahir M, Ali A, Khalid F, et al. Effect of foliar applied boron application on growth, yield and quality of maize (Zea mays L.)[J]. Biological Sciences - PJSIR, 2012, 55(3): 117-121. |
| [21] | Abbas M, Abdel-Lattif H, Shahba M. Ameliorative effects of calcium sprays on yield and grain nutritional composition of maize (Zea mays L.) cultivars under drought stress[J]. Agriculture, 2021, 11(4): 285. |
| [22] | 蒋曦龙, 王澜, 乔月彤, 等. 叶面喷锌对两种类型玉米产量、籽粒锌等矿质营养元素含量的影响[J]. 山东农业科学, 2021, 53(3): 72-78. |
| JIANG Xilong, WANG Lan, QIAO Yuetong, et al. Effects of foliar spraying zinc on yield and contents of zinc and other mineral elements of two maize cultivars[J]. Shandong Agricultural Sciences, 2021, 53(3): 72-78. | |
| [23] | 隋文成, 纪伟波. 硼肥不同施用量对玉米产量的影响[J]. 现代化农业, 2019, (5): 18-19. |
| SUI Wencheng, JI Weibo. Effects of different application rates of boron fertilizer on maize yield[J]. Modernizing Agriculture, 2019, (5): 18-19. | |
| [24] |
张勇强, 宋航, 薛志伟, 等. 施用锌肥和硼肥对玉米穗粒性状和品质的影响[J]. 核农学报, 2017, 31(2): 371-378.
DOI |
|
ZHANG Yongqiang, SONG Hang, XUE Zhiwei, et al. Effects of zinc and boron rate on ear-kernel traits and grain quality in maize[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 371-378.
DOI |
|
| [25] | Singh H, Singh V, Singh S, et al. Response of maize (Zea mays) to foliar application of Zinc and Boron[J]. Indian Journal of Agronomy, 2020, 65(4): 489-492. |
| [1] | TIAN Liwen, KONG Jie, ZHENG Zipiao, ZHANG Na, LIU Jun, WANG Tianli, CUI Jianping. Analysis of key traits and characteristics and issues of new varieties of Xinjiang extra-long staple cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1561-1568. |
| [2] | WU Lili, GUO Shijian, LI Lei, WANG Xiaofei, LIU Yue, LI Guangkuo, DING Ruifeng. Control efficacy and safety of soil treatment herbicides against annual weeds in cotton fields [J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1595-1604. |
| [3] | LIN Min, SHEN Yuyang, DENG Feifei, LI Guangkuo, GAO Haifeng. Effects of Bromus japonicus on the yield traits of wheat in desert oasis regions [J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1605-1611. |
| [4] | DU Xiaojing, HOU Tianyu, ZHANG Yanhong, LI Dong, YUAN Jie, LI Jianrui, SHEN Yuxin, LI Xiaorong, WANG Fengbin. Effects of low temperature at booting stage on antioxidant enzyme activity and yield of sword leaves of different varieties of rice [J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1631-1638. |
| [5] | DING Yingdeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong, ZHOU Anding, WU Xinyuan, FANG Hui. Effects of pre-flowering drought and gibberellin concentration on photosynthetic characteristics and yield formation in winter wheat [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1328-1336. |
| [6] | JING Yanqiang, HONG Ming, YU Qiuyue, HENG Tong, XIAO Jian, ZHANG Xinle. Analysis the suitable lower limit of soil moisture for spring oil sunflower irrigated with drip irrigation under membrane in northern Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1344-1353. |
| [7] | REN Shiheng, WANG Aifan, MAO Liping, ZHU Qisheng, SU Xiujuan. Effects of different reproduction modes on agronomic traits, essential oil yield and quality of lavender [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1371-1379. |
| [8] | LIAO Xingyang, WANG Fangyong, FU Jihai, CHEN Weiming, HAN Huanyong. Effects of different amounts of drip irrigation water and DPC on population structure, yield, quality and production cost of machine-picked cotton in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1051-1063. |
| [9] | ZHANG Mengke, LIN Li, LIN Hao, HUI Ruihan, YANG Kepan. The effect of different irrigation frequencies on the growth indicators and yield of upland cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1064-1074. |
| [10] | MU Guangrong, LI Jie, Gulnaz Jurat, LOU Shanwei, Parhat Mamat, MA Tengfei, ZHANG Pengzhong, WU Xianglin, ZHANG Lizhen, Batur Bake. Effects of potassium fertilizer rationing and dosage on the growth, development and yield of cotton under membrane drip irrigation [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1075-1083. |
| [11] | CHEN Chuangzhou, ZHANG Yan, Halihash Yibati, SHE Lingyi, FAN Linxin, ZHANG You. Effects of different nitrogen application rates on growth, development and yield composition of cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1092-1101. |
| [12] | WU Bin, WU Haibo, LIU Xiangyu, ZHAO Long. Studies on the effects of alkaloids of bitter bean seeds on the quality of watermelon [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1151-1158. |
| [13] | QIAO Di, LIN Tao, CUI Jianping, ZHANG Pengzhong, ZHANG Hao, BAO Longlong, TANG Qiuxiang. Effects of RZWQM2-based nitrogen fertilizer transport mode on cotton growth and yield [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 807-819. |
| [14] | HAO Xiyu, ZHANG Zhongjuan, ZHENG Chengdong, ZHANG Siwen, ZHANG Jin, ZHENG Chunxiu, WU Shikai, WANG Xue. Comparative analysis of agronomic traits and yield of different fresh corn varieties (series) [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 837-849. |
| [15] | MA Ruhai, HUANG Chunyan, CUI Huimei, ZHENG Yuehui, FANG Yuan, WANG Dengwei. Effects of different planting modes of yellow sand substrate on tomato yield and quality in solar greenhouse [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 903-910. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||