Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (11): 2787-2796.DOI: 10.6048/j.issn.1001-4330.2024.11.020

• Prataculture • Previous Articles     Next Articles

Estimation of aboveground biomass of Diarthron tianschanicum based on vegetation index fusion

HOU Zhengqing1(), YAN An2(), XIE Kaiyun2, YUAN Yilin1, XIA Wenqiu3, XIAO Shuting1, ZHANG Zhenfei1, SUN Zhe1   

  1. 1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
    2. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China
    3. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2024-04-15 Online:2024-11-20 Published:2025-01-08
  • Correspondence author: YAN An
  • Supported by:
    Special Project for Key R & D Tasks in Xinjiang Uygur Autonomous Region(2022B02003)

基于植被指数融合天山假狼毒地上生物量的估测

侯正清1(), 颜安2(), 谢开云2, 袁以琳1, 夏雯秋3, 肖淑婷1, 张振飞1, 孙哲1   

  1. 1.新疆农业大学资源与环境学院,乌鲁木齐 830052
    2.新疆农业大学草业学院,乌鲁木齐 830052
    3.新疆农业大学计算机与信息工程学院,乌鲁木齐 830052
  • 通讯作者: 颜安
  • 作者简介:侯正清(1999-),女,新疆昭苏人,硕士研究生,研究方向为农业信息化,(E-mail)287511284@qq.com
  • 基金资助:
    新疆维吾尔自治区重点研发任务专项计划(2022B02003)

Abstract:

【Objective】 In order to explore the ability of multi-source data to estimate aboveground biomass (AGB) of D.tianschanicum.【Methods】 A drone platform equipped with visible light and multispectral sensors was used to collect information on blooming and heading stages and obtain visible light vegetation index, multispectral vegetation index, and a combination of the two vegetation indices.Multiple linear regression (MLR), stepwise linear regression (SMLR) Random Forest Regression (RF) were applied to establish an AGB estimation model for single vegetation index and fused vegetation index by using the determination coefficient (R2), and to valuate the estimation model with the adjusted coefficient of determination (Radj2) and root mean square error (RMSE).【Results】 The vegetation index in the combination of near-infrared and red edge bands was more sensitive to the AGB of D. tianschanicum, so selecting;The peak flowering period had the best estimation effect among different growth stages, and the fitting effect was the best in the multiple linear stepwise regression estimation model based on the fusion vegetation index. The model's R2, Radj2 and RMSE were 0.837, 0.831, and 7.357;Compared with vegetation index estimation models based on a single type, estimation models based on fused vegetation indices hadthe best fitting accuracy and better stability. 【Conclusion】 The fusion of vegetation index can effectively increase spectral information and improve model prediction accuracy.

Key words: drones; Diarthron tianschanicum aboveground biomass; vegetation index; visible light; multispectral

摘要:

【目的】研究多源数据估算天山假狼毒地上生物量(AGB)的能力。【方法】采用搭载可见光和多光谱传感器的无人机平台采集盛花期与结实期信息,获取可见光植被指数、多光谱植被指数及两者相融合的植被指数,分别以多元线性回归(MLR)、逐步线性回归(SMLR)、随机森林回归(RF)建立单一植被指数与融合植被指数的AGB估测模型,采用决定系数(R2)、调整后决定系数(Radj2)和均方根误差(RMSE)评价估算模型。【结果】(1)近红外和红边波段组合的植被指数对天山假狼毒AGB较为敏感,可以较好的估算天山假狼毒的AGB。(2)在不同生育期中,盛花期估算效果最佳;基于融合植被指数的多元线性逐步回归估测模型中拟合效果最佳,模型的R2Radj2RMSE为0.837、0.831和7.357。(3)与基于单一类型的植被指数估测模型相比,基于融合植被指数建立的估测模型拟合精度最佳、稳定性更好。【结论】融合植被指数可有效增加光谱信息,提高模型预测精度。

关键词: 无人机, 天山假狼毒地上生物量, 植被指数, 可见光, 多光谱

CLC Number: