Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (1): 230-240.DOI: 10.6048/j.issn.1001-4330.2024.01.025
• Agricultural Equipment Engineering and Mechanization·Animal Husbandry Veterinarian • Previous Articles Next Articles
LIU Liang1(), PENG Jian2, LI Gangyong2, HAN Wanqiang1, LIU Yujia1, GUAN Jingyun1, LIU Chengcai3, ZHENG Jianghua1,4(
)
Received:
2023-05-05
Online:
2024-01-20
Published:
2024-02-21
Correspondence author:
ZHENG Jianghua(1973-),man,born in Jiangshan,Zhejiang Province,professor,research interest is geographic information system and remote sensing technology application,(E-mail) Supported by:
刘亮1(), 彭建2, 李刚勇2, 韩万强1, 刘玉佳1, 关靖云1, 刘程才3, 郑江华1,4(
)
通讯作者:
郑江华(1973-),男,浙江江山人,教授,博士,硕士生/博士生导师,研究方向为地理信息系统与遥感技术应用,(E-mail)作者简介:
刘亮(1996-),男,新疆昌吉人,硕士研究生,研究方向为植被与环境遥感,(E-mail)liuliang19960423@163.com
基金资助:
CLC Number:
LIU Liang, PENG Jian, LI Gangyong, HAN Wanqiang, LIU Yujia, GUAN Jingyun, LIU Chengcai, ZHENG Jianghua. Analysis of dynamic remote sensing monitoring changes in Kulusitai grassland in Xinjiang from 2010 to 2021[J]. Xinjiang Agricultural Sciences, 2024, 61(1): 230-240.
刘亮, 彭建, 李刚勇, 韩万强, 刘玉佳, 关靖云, 刘程才, 郑江华. 2010~2021年新疆库鲁斯台草原动态遥感监测变化分析[J]. 新疆农业科学, 2024, 61(1): 230-240.
指标 Index | 综合得分模型系数 Comprehensive score model coefficient | 指标权重 Index weight |
---|---|---|
高度Height | 0.335 | 0.281 |
生物量Biomass | 0.408 | 0.343 |
覆盖度Coverage | 0.447 | 0.376 |
Tab.1 Index weight
指标 Index | 综合得分模型系数 Comprehensive score model coefficient | 指标权重 Index weight |
---|---|---|
高度Height | 0.335 | 0.281 |
生物量Biomass | 0.408 | 0.343 |
覆盖度Coverage | 0.447 | 0.376 |
方程 Equation | 模型摘要 Model summary | 参数估算值 Parameter estimation | |||||||
---|---|---|---|---|---|---|---|---|---|
R2 | F | df1 | df2 | 显著性 Significance | 常量 Constant | b1 | b2 | b3 | |
线性Linear | 0.854 1 | 146.315 | 1 | 25 | 0.000 | 0.038 | 0.860 | ||
对数Logarithm | 0.633 0 | 43.126 | 1 | 25 | 0.000 | 0.433 | 0.113 | ||
逆Contrary | 0.297 0 | 10.553 | 1 | 25 | 0.003 | 0.285 | -0.004 | ||
二次Secondary | 0.854 0 | 70.319 | 2 | 24 | 0.000 | 0.043 | 0.821 | 0.073 | |
三次Three times | 0.854 0 | 45.000 | 3 | 23 | 0.000 | 0.039 | 0.911 | -0.363 | 0.565 |
复合Composite | 0.665 0 | 49.573 | 1 | 25 | 0.000 | 0.074 | 76.540 | ||
幂Cloth cover | 0.853 0 | 157.420 | 1 | 25 | 0.000 | 0.727 | 0.755 | ||
S | 0.755 0 | 76.991 | 1 | 25 | 0.000 | -1.230 | -0.033 | ||
增长Increase | 0.665 0 | 49.573 | 1 | 25 | 0.000 | -2.599 | 4.338 | ||
指数Index | 0.665 0 | 49.573 | 1 | 25 | 0.000 | 0.074 | 4.338 | ||
Logistic | 0.665 0 | 49.573 | 1 | 25 | 0.000 | 13.446 | 0.013 |
Tab.2 Statistics and parameter evaluation of various fitting models of NDVI and GDI
方程 Equation | 模型摘要 Model summary | 参数估算值 Parameter estimation | |||||||
---|---|---|---|---|---|---|---|---|---|
R2 | F | df1 | df2 | 显著性 Significance | 常量 Constant | b1 | b2 | b3 | |
线性Linear | 0.854 1 | 146.315 | 1 | 25 | 0.000 | 0.038 | 0.860 | ||
对数Logarithm | 0.633 0 | 43.126 | 1 | 25 | 0.000 | 0.433 | 0.113 | ||
逆Contrary | 0.297 0 | 10.553 | 1 | 25 | 0.003 | 0.285 | -0.004 | ||
二次Secondary | 0.854 0 | 70.319 | 2 | 24 | 0.000 | 0.043 | 0.821 | 0.073 | |
三次Three times | 0.854 0 | 45.000 | 3 | 23 | 0.000 | 0.039 | 0.911 | -0.363 | 0.565 |
复合Composite | 0.665 0 | 49.573 | 1 | 25 | 0.000 | 0.074 | 76.540 | ||
幂Cloth cover | 0.853 0 | 157.420 | 1 | 25 | 0.000 | 0.727 | 0.755 | ||
S | 0.755 0 | 76.991 | 1 | 25 | 0.000 | -1.230 | -0.033 | ||
增长Increase | 0.665 0 | 49.573 | 1 | 25 | 0.000 | -2.599 | 4.338 | ||
指数Index | 0.665 0 | 49.573 | 1 | 25 | 0.000 | 0.074 | 4.338 | ||
Logistic | 0.665 0 | 49.573 | 1 | 25 | 0.000 | 13.446 | 0.013 |
等级 Grade | 程度 Degree | GDI Grassland degradation index | NDVI Normalized difference vegetation index |
---|---|---|---|
1 | 无明显退化 | GDI>0.404 | NDVI>0.425 |
2 | 轻度退化 | 0.404>GDI>0.254 | 0.425>NDVI>0.251 |
3 | 中度退化 | 0.254>GDI>0.201 | 0.251>NDVI>0.189 |
4 | 重度退化 | GDI<0.201 | NDVI<0.189 |
Tab.3 Classification standard of vegetation degradation in Kulusitai grassland
等级 Grade | 程度 Degree | GDI Grassland degradation index | NDVI Normalized difference vegetation index |
---|---|---|---|
1 | 无明显退化 | GDI>0.404 | NDVI>0.425 |
2 | 轻度退化 | 0.404>GDI>0.254 | 0.425>NDVI>0.251 |
3 | 中度退化 | 0.254>GDI>0.201 | 0.251>NDVI>0.189 |
4 | 重度退化 | GDI<0.201 | NDVI<0.189 |
Fig.3 Degradation level of Kulusitai grassland from 2010 to 2021 Note:This diagram is based on the Ministry of Natural Resources the standard Map production with the review number GS(2019)1968号 downloaded from the map service website,no modi-fications made to the base map,the asme as beolw
年份 Year | 无明显 退化面积 No obvious degradation area (km2) | 轻度退 化面积 Slightly degraded area (km2) | 中度退 化面积 Moderately degraded area (km2) | 重度退 化面积 Severely degraded area (km2) |
---|---|---|---|---|
2010 | 209.756 9 | 631.38 | 968.87 | 35.89 |
2011 | 60.76 | 701.82 | 940.79 | 20.49 |
2012 | 1.4 | 657.85 | 1 032.49 | 5 |
2013 | 231.35 | 674.01 | 825.53 | 89.19 |
2014 | 75.01 | 700.86 | 818.21 | 57.98 |
2015 | 173.61 | 806.78 | 590.39 | 104.02 |
2016 | 410.97 | 496.91 | 473.62 | 123.94 |
2017 | 391.39 | 588.07 | 645.1 | 167.73 |
2018 | 301.73 | 610.33 | 690.78 | 134.75 |
2019 | 357.26 | 654.14 | 738.87 | 125.16 |
2020 | 271.68 | 767.75 | 689.66 | 63.86 |
2021 | 481.51 | 599.58 | 590.49 | 22.46 |
Tab.4 Classification standard of vegetation degradation in Kulusitai grassland
年份 Year | 无明显 退化面积 No obvious degradation area (km2) | 轻度退 化面积 Slightly degraded area (km2) | 中度退 化面积 Moderately degraded area (km2) | 重度退 化面积 Severely degraded area (km2) |
---|---|---|---|---|
2010 | 209.756 9 | 631.38 | 968.87 | 35.89 |
2011 | 60.76 | 701.82 | 940.79 | 20.49 |
2012 | 1.4 | 657.85 | 1 032.49 | 5 |
2013 | 231.35 | 674.01 | 825.53 | 89.19 |
2014 | 75.01 | 700.86 | 818.21 | 57.98 |
2015 | 173.61 | 806.78 | 590.39 | 104.02 |
2016 | 410.97 | 496.91 | 473.62 | 123.94 |
2017 | 391.39 | 588.07 | 645.1 | 167.73 |
2018 | 301.73 | 610.33 | 690.78 | 134.75 |
2019 | 357.26 | 654.14 | 738.87 | 125.16 |
2020 | 271.68 | 767.75 | 689.66 | 63.86 |
2021 | 481.51 | 599.58 | 590.49 | 22.46 |
变化趋势 Change trend | 退化等级 Degradation level |
---|---|
退化增强型 Degenerate enhanced type | 1→2、1→3、1→4、2→3、2→4、3→4 |
退化恢复型 Degenerative recovery type | 4→3、4→2、4→1、3→2、3→1、2→1 |
未变化型 Unchanged type | 1→1、2→2、3→3、4→4 |
Tab.5 Classification standard of change in Kulusitai grassland
变化趋势 Change trend | 退化等级 Degradation level |
---|---|
退化增强型 Degenerate enhanced type | 1→2、1→3、1→4、2→3、2→4、3→4 |
退化恢复型 Degenerative recovery type | 4→3、4→2、4→1、3→2、3→1、2→1 |
未变化型 Unchanged type | 1→1、2→2、3→3、4→4 |
年份 Year | 退化恢复型 Degenerate restorative (km2) | 退化增强型 Degenerate enhanced (km2) | 未变化型 Unchanged type (km2) |
---|---|---|---|
2010~2011 | 181.63 | 316.23 | 1 078.28 |
2011~2012 | 133.38 | 242.80 | 1 169.80 |
2012~2013 | 511.33 | 117.35 | 905.21 |
2013~2014 | 193.74 | 206.63 | 1 073.96 |
2014~2015 | 761.14 | 90.33 | 554.21 |
2015~2016 | 377.53 | 151.34 | 765.39 |
2016~2017 | 218.55 | 285.62 | 767.75 |
2017~2018 | 301.75 | 290.19 | 965.55 |
2018~2019 | 220.03 | 265.48 | 1 084.23 |
2019~2020 | 241.70 | 230.29 | 1 157.90 |
2020~2021 | 387.08 | 146.96 | 1 042.54 |
2010~2021 | 668.45 | 199.67 | 642.97 |
Tab.6 Area statistics of change trend in Kulusitai grassland from 2010 to 2021
年份 Year | 退化恢复型 Degenerate restorative (km2) | 退化增强型 Degenerate enhanced (km2) | 未变化型 Unchanged type (km2) |
---|---|---|---|
2010~2011 | 181.63 | 316.23 | 1 078.28 |
2011~2012 | 133.38 | 242.80 | 1 169.80 |
2012~2013 | 511.33 | 117.35 | 905.21 |
2013~2014 | 193.74 | 206.63 | 1 073.96 |
2014~2015 | 761.14 | 90.33 | 554.21 |
2015~2016 | 377.53 | 151.34 | 765.39 |
2016~2017 | 218.55 | 285.62 | 767.75 |
2017~2018 | 301.75 | 290.19 | 965.55 |
2018~2019 | 220.03 | 265.48 | 1 084.23 |
2019~2020 | 241.70 | 230.29 | 1 157.90 |
2020~2021 | 387.08 | 146.96 | 1 042.54 |
2010~2021 | 668.45 | 199.67 | 642.97 |
年份 Year | 无变化 Unchanged (km2) | 慢速 Slow (km2) | 中速 Medium (km2) | 快速 Fast (km2) |
---|---|---|---|---|
2010~2011 | 1 078.28 | 458.13 | 39.61 | 0.12 |
2011~2012 | 1 169.80 | 371.65 | 4.53 | 0.10 |
2012~2013 | 905.21 | 600.31 | 28.33 | 0.04 |
2013~2014 | 1 073.96 | 393.13 | 7.06 | 0.16 |
2014~2015 | 554.21 | 847.69 | 3.75 | 0.03 |
2015~2016 | 765.39 | 512.90 | 15.76 | 0.21 |
2016~2017 | 767.75 | 465.66 | 38.22 | 0.29 |
2017~2018 | 965.55 | 546.14 | 45.22 | 0.58 |
2018~2019 | 1 084.23 | 470.36 | 15.01 | 0.13 |
2019~2020 | 1 157.90 | 461.66 | 10.28 | 0.05 |
2020~2021 | 1 042.54 | 520.42 | 13.55 | 0.06 |
2010~2021 | 642.97 | 727.10 | 139.92 | 1.09 |
Tab.7 Area statistics of change intensity in Kulusitai grassland from 2010 to 2021
年份 Year | 无变化 Unchanged (km2) | 慢速 Slow (km2) | 中速 Medium (km2) | 快速 Fast (km2) |
---|---|---|---|---|
2010~2011 | 1 078.28 | 458.13 | 39.61 | 0.12 |
2011~2012 | 1 169.80 | 371.65 | 4.53 | 0.10 |
2012~2013 | 905.21 | 600.31 | 28.33 | 0.04 |
2013~2014 | 1 073.96 | 393.13 | 7.06 | 0.16 |
2014~2015 | 554.21 | 847.69 | 3.75 | 0.03 |
2015~2016 | 765.39 | 512.90 | 15.76 | 0.21 |
2016~2017 | 767.75 | 465.66 | 38.22 | 0.29 |
2017~2018 | 965.55 | 546.14 | 45.22 | 0.58 |
2018~2019 | 1 084.23 | 470.36 | 15.01 | 0.13 |
2019~2020 | 1 157.90 | 461.66 | 10.28 | 0.05 |
2020~2021 | 1 042.54 | 520.42 | 13.55 | 0.06 |
2010~2021 | 642.97 | 727.10 | 139.92 | 1.09 |
[1] |
Houghton R A. The worldwide extent of land-use change[J]. BioScience, 1994, 44(5):305-313.
DOI URL |
[2] |
黄麟, 翟俊, 祝萍, 等. 中国草畜平衡状态时空演变指示的草地生态保护格局[J]. 地理学报, 2020, 75(11):2396-2407.
DOI |
HUANG Lin, ZHAI Jun, ZHU Ping, et al. Spatiotemporal evolution characteristics of livestock-carrying pressure in China and its implications for grassland ecosystem conservation pattern[J]. Acta Geographica Sinica, 2020, 75(11):2396-2407.
DOI |
|
[3] |
Ahlström A, Raupach M R, Schurgers G, et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink[J]. Science, 2015, 348(6237):895-899.
DOI PMID |
[4] |
WANG Yuhui, ZHOU Guangsheng, JIA Bingrui. Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China[J]. Ecological Modelling, 2008, 217(1-2):72-78.
DOI URL |
[5] |
李玉强, 陈云, 曹雯婕, 等. 全球变化对资源环境及生态系统影响的生态学理论基础[J]. 应用生态学报, 2022, 33(3):603-612.
DOI |
LI Yuqiang, CHEN Yun, CAO Wenjie, et al. Theoretical basis of ecology for the influence of global change on resources,environment,and ecosystems[J]. Chinese Journal of Applied Ecology, 2022, 33(3):603-612.
DOI |
|
[6] |
Asrar G, Weiser R L, Johnson D E, et al. Distinguishing among tallgrass prairie cover types from measurements of multispectral reflectance[J]. Remote Sensing of Environment, 1986, 19(2):159-169.
DOI URL |
[7] | 李博. 中国北方草地退化及其防治对策[J]. 中国农业科学, 1997, 30(6):27-29. |
LI Bo. The rangeland degradation in North China and its preventive strategy[J]. Scientia Agricultura Sinica, 1997, 30(6):27-29. | |
[8] |
Lu D, Batistella M, Mausel P, et al. Mapping and monitoring land degradation risks in the Western Brazilian Amazon using multitemporal Landsat TM/ETM+ images[J]. Land Degradation & Development, 2007, 18(1):41-54.
DOI URL |
[9] |
Taylor B F, Dini P W, Kidson J W. Determination of seasonal and interannual variation in New Zealand pasture growth from NOAA-7 data[J]. Remote Sensing of Environment, 1985, 18(2):177-192.
DOI URL |
[10] |
Sun B, Li Z, Gao Z, et al. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League[J]. Acta Ecologica Sinica, 2017, 37(4):219-228.
DOI URL |
[11] |
Liu B, You G Y, Li R, et al. Spectral characteristics of alpine grassland and their changes responding to grassland degradation on the Tibetan Plateau[J]. Environmental Earth Sciences, 2015, 74(3):2115-2123.
DOI URL |
[12] |
Yeganeh H, Seyed jamale Khajedein, Amiri F, et al. Monitoring rangeland ground cover vegetation using multitemporal MODIS data[J]. Arabian Journal of Geosciences, 2014, 7(1):287-298.
DOI URL |
[13] |
Wiesmair M, Feilhauer H, Magiera A, et al. Estimating vegetation cover from high-resolution satellite data to assess grassland degradation in the Georgian Caucasus[J]. Mountain Research and Development, 2016, 36(1):56-65.
DOI URL |
[14] | 徐剑波, 陈进发, 胡月明, 等. 青海省玛多县草地退化现状及动态变化研究[J]. 草业科学, 2011, 28(3):359-364. |
XU Jianbo, CHEN Jinfa, HU Yueming, et al. Research on the status and the dynamic of grassland degradation in Maduo County,Qinghai Province[J]. Pratacultural Science, 2011, 28(3):359-364. | |
[15] | 李辉霞, 刘淑珍. 基于ETM+影像的草地退化评价模型研究——以西藏自治区那曲县为例[J]. 中国沙漠, 2007, 27(3):412-418. |
LI Huixia, LIU Shuzhen. Research on grassland degradation assessment model based on ETM+ image:A case study in Naqu County of Tibet[J]. Journal of Desert Research, 2007, 27(3):412-418. | |
[16] | 朱宁, 王浩, 宁晓刚, 等. 草地退化遥感监测研究进展[J]. 测绘科学, 2021, 46(5):66-76. |
ZHU Ning, WANG Hao, NING Xiaogang, et al. Advances in remote sensing monitoring of grassland degradation[J]. Science of Surveying and Mapping, 2021, 46(5):66-76. | |
[17] | 陈长生, 丁启斌. 论库鲁斯台草原生态系统的可持续发展[J]. 新疆畜牧业, 2012,(1):58-61. |
CHEN Changsheng, DING Qibin. On the sustainable development of Kurustai grassland ecosystem[J]. Xinjiang Animal Husbandry, 2012,(1):58-61. | |
[18] | 朱玉华. 新疆库鲁斯台草原植被数量特征研究[J]. 环境影响评价, 2019, 41(2):44-47. |
ZHU Yuhua. Study on the quantitative characteristics of vegetation in Xinjiang Kulusitai grassland[J]. Environmental Impact Assessment, 2019, 41(2):44-47. | |
[19] | 闫俊杰, 崔东, 夏倩倩. 库鲁斯台草原植被盖度变化及其与TVDI相关性分析[J]. 伊犁师范学院学报(自然科学版), 2018, 12(1):43-49. |
YAN Junjie, CUI Dong, XIA Qianqian. Analysis of the covered vegetation changes and its correlation with TVDI in Kulusitai steppe from 2000 to 2015[J]. Journal of Yili Normal University(Natural Science Ed.), 2018, 12(1):43-49. | |
[20] | 余晓光, 吴海山, 陈卫国. 新疆库鲁斯台草原退化现状分析及发展对策[J]. 中国草食动物, 2008,(3):58-61. |
YU Xiaoguang, WU Haishan, CHEN Weiguo. Status analysis and development countermeasures of grassland degradation in Kulusitai,Xinjiang[J]. China Herbivores, 2008,(3):58-61. | |
[21] |
GUAN Jingyun, YAO Junqiang, LI Moyan, et al. Assessing the spatiotemporal evolution of anthropogenic impacts on remotely sensed vegetation dynamics in Xinjiang,China[J]. Remote Sensing, 2021, 13(22):4651.
DOI URL |
[22] |
赵鹏, 陈桃, 王茜, 等. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析[J]. 中国科学院大学学报, 2020, 37(1):51-62.
DOI |
ZHAO Peng, CHEN Tao, WANG Qian, et al. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem NPP in Xinjiang[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1):51-62.
DOI |
|
[23] | 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19):5495-5504. |
LI Huixia, LIU Guohua, FU Bojie. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2011, 31(19):5495-5504. | |
[24] | 柴立夫, 田莉, 奥勇, 等. 人类活动干扰对青藏高原植被覆盖变化的影响[J]. 水土保持研究, 2021, 28(6):382-388. |
CHAI Lifu, TIAN Li, AO Yong, et al. Influence of human disturbance on the change of vegetation cover in the Tibetan Plateau[J]. Research of Soil and Water Conservation, 2021, 28(6):382-388. | |
[25] |
Liu J G, Li S X, Ouyang Z Y, et al. Ecological and socioeconomic effects of China's policies for ecosystem services[J]. PNAS, 2008, 105(28):9477-9482.
DOI PMID |
[26] | Wang S, Wilkes A, Zhnag Z, et al. Management and land use change effects on soil carbon in northern China's grasslands:a synthesis[J]. Agriculture,Ecosystems & Environment, 2011, 142(3/4):329-340. |
[27] |
Tong C, Wu J, Yong S, et al. A landscape-scale assessment of steppe degradation in the Xilin River Basin,Inner Mongolia,China[J]. Journal of Arid Environments, 2004, 59(1):133-149.
DOI URL |
[28] |
Jiang Y, Guo J, Peng Q, et al. The effects of climate factors and human activities on net primary productivity in Xinjiang[J]. International Journal of Biometeorology, 2020, 64(5):765-777.
DOI PMID |
[29] | 王嘉蓉. 新疆塔城市库鲁斯台草原牧民生计变化影响因素研究[D]. 乌鲁木齐: 新疆农业大学, 2018. |
WANG Jiarong. Study on the influencing factors of livelihood changes of the herdsmen on the Kulusitai steppe in Xinjiang Tacheng City[D].. Urumqi: Xinjiang Agricultural University, 2018. | |
[30] | 杨坤, 郭雅婷, 马金龙, 等. 塔城地区库鲁斯台萨孜草原蝗虫种类分布调查分析[J]. 新疆林业, 2021,(6):12-13. |
YANG Kun, GUO Yating, MA Jinlong, et al. Investigation and analysis of grasshopper species distribution in Kurustai Sazi grassland in Tacheng area[J]. Forestry of Xinjiang, 2021,(6):12-13. | |
[31] | Zhang Y, Zhang C, Wang Z, et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region,China from 1982 to 2012[J]. Science of the Total Environment, 2016,563-564:210-220. |
[32] |
Piao S, Yin G, Tan J, et al. Detection and attribution of vegetation greening trend in China over the last 30 years[J]. Global Change Biology, 2015, 21(4):1601-1609.
DOI URL |
[33] |
Zhang Q T, Li J, et al. Spatiotemporal variations of pan evaporation in China during 1960-2005:changing patterns and causes[J]. International Journal of Climatology, 2015, 35(6):903-912.
DOI URL |
[34] | 周妍妍, 朱敏翔, 郭晓娟, 等. 疏勒河流域气候变化和人类活动对植被NPP的相对影响评价[J]. 生态学报, 2019, 39(14):5127-5137. |
ZHOU Yanyan, ZHU Minxiang, GUO Xiaojuan, et al. Relative effects of climate change and human activities on net primary productivity in Shule River Basin[J]. Acta Ecologica Sinica, 2019, 39(14):5127-5137. | |
[35] |
Chen T, Tang G, Yuan Y, et al. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades[J]. Science of the Total Environment, 2020, 743:140649.
DOI URL |
[1] | ZHANG Lei, YAO Mengyao, LIU Zhigang, LI Juan, YANG Yang, CAI Darun, CHEN Guo, LI Bo, LI Xiaorong, CHEN Xunji, ZHAI Yunlong. Research of maize yield estimation based on unmanned aerial vehicle multispectral NDVI [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 845-851. |
[2] | HOU Zhengqing, YAN An, XIE Kaiyun, YUAN Yilin, XIA Wenqiu, XIAO Shuting, ZHANG Zhenfei, SUN Zhe. Estimation of aboveground biomass of Diarthron tianschanicum based on vegetation index fusion [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2787-2796. |
[3] | CHEN Rong, LAI Ning, GENG Qinglong, LI Yongfu, XIN Huinan, LYU Caixia, LI Na, CHEN Shuhuang. Study on variable nitrogen fertilization model of winter wheat during booting period based on remote sensing data [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2705-2712. |
[4] | SHI Zhiyu, PEI Yakun, ZHU Yutao, JIA Yujiao, HU Xiaoqian, HOU Shicong, HOU Yuxia. Study on Remote Monitoring of Cotton Verticillium wilt Diagnosis and Control Management Based on Digital Image [J]. Xinjiang Agricultural Sciences, 2020, 57(6): 1166-1174. |
[5] | HAN Wanqiang, JIN Guili, YUE Yonghuan, WANG Huining, GONG Ke, WU Xueer, Wulupa Ardererkali. Spectral Characteristics and Modified Vegetation Index of ihree Main Plants of Seriphidium transiliense Desert Grassland [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 950-957. |
[6] | WU Wenli, YUAN Ye, LI Yuanyuan, CHU Guangming, ZHANG Hao. Comparison of Hyperspectral and Optical Image Vegetation Index (VI) in Desert Forest [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 149-156. |
[7] | LI Na, WANG Xin-jun, CHANG Meng-di, YAN Li-nan, XU Xiao-long. Response of Sparse Vegetation Patch Pattern to Precipitation Based on Landsat Image [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1895-1903. |
[8] | LI Tian-sheng, CUI Jing, WANG Hai-jiang, YANG Jin. Study on Water Content Estimation Model of Winter Wheat Based on Hyperspectral Characteristic Wavelength [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1772-1782. |
[9] | TIAN Chun-yan;HUANG Chun-yan;GUO Xiao-fei;LIU Xin-yue;WANG Deng-wei. Estimation of Cotton Canopy Fractional Interception of Absorbed Photosynthetic Active Radiation and Leaf Net Photosynthetic Rate Based on Hyperspectral Vegetation Index [J]. , 2017, 54(6): 981-987. |
[10] | GUO Xiao-fei;HUANG Chun-yan;TIAN Chun-yan;LIU Xin-yue;WANG Deng-wei. Correlation Analysis between Hyperspectral Vegetation Indices and Photosynthetic Parameters of Cotton under Different Water Treatments [J]. , 2017, 54(1): 20-26. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||