Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (11): 2705-2712.DOI: 10.6048/j.issn.1001-4330.2024.11.011
• Crop Genetics and Breeding·Cultivation Physiology • Previous Articles Next Articles
CHEN Rong1(), LAI Ning2, GENG Qinglong2, LI Yongfu2, XIN Huinan2, LYU Caixia2, LI Na2, CHEN Shuhuang2(
)
Received:
2024-05-20
Online:
2024-11-20
Published:
2025-01-08
Correspondence author:
CHEN Shuhuang
Supported by:
陈荣1(), 赖宁2, 耿庆龙2, 李永福2, 信会男2, 吕彩霞2, 李娜2, 陈署晃2(
)
通讯作者:
陈署晃
作者简介:
陈荣(1997-),男,贵州纳雍人,硕士研究生,研究方向为农业信息化,(E-mail)chenrong2581@163.com
基金资助:
CLC Number:
CHEN Rong, LAI Ning, GENG Qinglong, LI Yongfu, XIN Huinan, LYU Caixia, LI Na, CHEN Shuhuang. Study on variable nitrogen fertilization model of winter wheat during booting period based on remote sensing data[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2705-2712.
陈荣, 赖宁, 耿庆龙, 李永福, 信会男, 吕彩霞, 李娜, 陈署晃. 基于遥感数据构建冬小麦孕穗期变量施氮模型[J]. 新疆农业科学, 2024, 61(11): 2705-2712.
年份 Year | 处理 Treatments | N (kg/hm2) | P2O5 (kg/hm2) | K2O (kg/hm2) |
---|---|---|---|---|
2021 | N0 | 0 | 120 | 20 |
N1 | 180 | 120 | 20 | |
N2 | 210 | 120 | 20 | |
N3 | 240 | 120 | 20 | |
N4 | 270 | 120 | 20 | |
N5 | 315 | 120 | 20 | |
2022 | N0 | 0 | 120 | 20 |
N1 | 180 | 120 | 20 | |
N2 | 210 | 120 | 20 | |
N3 | 240 | 120 | 20 | |
N4 | 315 | 120 | 20 | |
2023 | N0 | 0 | 150 | 45 |
N1 | 210 | 150 | 45 | |
N2 | 240 | 150 | 45 | |
N3 | 270 | 150 | 45 | |
N4 | 300 | 150 | 45 | |
N5 | 330 | 150 | 45 |
Tab.1 Nitrogen concentration gradient of winter wheat
年份 Year | 处理 Treatments | N (kg/hm2) | P2O5 (kg/hm2) | K2O (kg/hm2) |
---|---|---|---|---|
2021 | N0 | 0 | 120 | 20 |
N1 | 180 | 120 | 20 | |
N2 | 210 | 120 | 20 | |
N3 | 240 | 120 | 20 | |
N4 | 270 | 120 | 20 | |
N5 | 315 | 120 | 20 | |
2022 | N0 | 0 | 120 | 20 |
N1 | 180 | 120 | 20 | |
N2 | 210 | 120 | 20 | |
N3 | 240 | 120 | 20 | |
N4 | 315 | 120 | 20 | |
2023 | N0 | 0 | 150 | 45 |
N1 | 210 | 150 | 45 | |
N2 | 240 | 150 | 45 | |
N3 | 270 | 150 | 45 | |
N4 | 300 | 150 | 45 | |
N5 | 330 | 150 | 45 |
编号 Num bering | 植被 指数 Vegetation index | 公式 Formula | 引用文献 Reference |
---|---|---|---|
1 | DVI | [ | |
2 | EVI | [ | |
3 | RVI | [ | |
4 | MSR | [ | |
5 | NDVI | [ | |
6 | MNVI | [ | |
7 | SAVI | [ | |
8 | OSAVI | [ | |
9 | CIRE | [ | |
10 | NDVIRE | [ | |
11 | MCARI | [ | |
12 | TCARI | [ | |
13 | TVI | [ | |
14 | MTVI2 | [ |
Tab.2 Vegetation index and its formulas and references
编号 Num bering | 植被 指数 Vegetation index | 公式 Formula | 引用文献 Reference |
---|---|---|---|
1 | DVI | [ | |
2 | EVI | [ | |
3 | RVI | [ | |
4 | MSR | [ | |
5 | NDVI | [ | |
6 | MNVI | [ | |
7 | SAVI | [ | |
8 | OSAVI | [ | |
9 | CIRE | [ | |
10 | NDVIRE | [ | |
11 | MCARI | [ | |
12 | TCARI | [ | |
13 | TVI | [ | |
14 | MTVI2 | [ |
植被指数 Vegetation index | 相关性 Correlation |
---|---|
DVI | 0.606** |
EVI | 0.637** |
RVI | 0.473** |
MSR | 0.500** |
NDVI | 0.705** |
MNVI | 0.629** |
SAVI | 0.633** |
OSAVI | 0.612** |
CIRE | 0.673** |
NDVIRE | 0.704** |
MCARI | 0.412** |
TCARI | 0.412** |
TVI | 0.573** |
MTVI2 | 0.585** |
Tab.3 Correlation analysis between vegetation index and SPAD value
植被指数 Vegetation index | 相关性 Correlation |
---|---|
DVI | 0.606** |
EVI | 0.637** |
RVI | 0.473** |
MSR | 0.500** |
NDVI | 0.705** |
MNVI | 0.629** |
SAVI | 0.633** |
OSAVI | 0.612** |
CIRE | 0.673** |
NDVIRE | 0.704** |
MCARI | 0.412** |
TCARI | 0.412** |
TVI | 0.573** |
MTVI2 | 0.585** |
[1] | 杜佳囝, 李广, 马维伟, 等. 黄土丘陵区4种典型植被土壤可溶性氮组分特征[J]. 水土保持学报, 2021, 35(6): 251-257. |
DU Jianan, LI Guang, MA Weiwei, et al. Characteristics of soil soluble nitrogen components under four typical vegetations in the loess hilly areas[J]. Journal of Soil and Water Conservation, 2021, 35(6): 251-257. | |
[2] | 李铁成, 张忠学, 张作合, 等. 减施氮肥对节水灌溉稻田NH3、N2O排放与氮肥利用的影响[J/OL]. 农业机械学报:1-12. |
Li Tiecheng, Zhang Zhongxue, Zhang Zuohe, et al. Effects of reduced nitrogen fertilizer application on NH3 and N2O emissions and nitrogen fertilizer utilization in water-saving irrigated rice fields[J/OL]. Journal of Agricultural Machinery: 1-12. | |
[3] |
陈检锋, 尹梅, 陈华, 等. 云南莴笋高产养分临界值施肥模型研究[J]. 中国农学通报, 2023, 39(25): 89-93.
DOI |
CHEN Jianfeng, YIN Mei, CHEN Hua, et al. Study on fertilization system of nutrient critical value for high yield of Asparagus lettuce in Yunnan[J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 89-93.
DOI |
|
[4] |
白如霄, 崔瑜, 和海秀, 等. 新疆塔额盆地滴灌甜菜临界氮浓度模型的构建与检验[J]. 核农学报, 2023, 37(5): 1048-1055.
DOI |
BAI Ruxiao, CUI Yu, HE Haixiu, et al. Development and verification of critical nitrogen concentration model for drip-irrigated sugar beet in Ta’e Basin, Xinjiang[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(5): 1048-1055.
DOI |
|
[5] | 边立丽, 艾栋, 张云贵, 等. 基于植被指数的烤烟精准追肥研究[J]. 中国土壤与肥料, 2023,(1): 126-132. |
BIAN Lili, AI Dong, ZHANG Yungui, et al. Precise top dressing of flue-cured tobacco based on vegetation index[J]. Soil and Fertilizer Sciences in China, 2023,(1): 126-132. | |
[6] | 李志博, 李亚芹, 赵浣旻, 等. 基于GNDVI指数的土壤—水稻冠层变量施氮决策方案研究[J]. 中国农机化学报, 2022, 43(4): 160-165. |
LI Zhibo, LI Yaqin, ZHAO Huanmin, et al. Study on the decision-making scheme of soil-rice canopy variable nitrogen application based on GNDVI index[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 160-165. | |
[7] | 赖宁, 耿庆龙, 李青军, 等. 基于RapidSCAN CS-45的新疆滴灌冬小麦氮肥推荐研究[J]. 麦类作物学报, 2021, 41(1): 96-104. |
LAI Ning, GENG Qinglong, LI Qingjun, et al. Study on nitrogen fertilizer recommendation based on RapidSCAN CS-45 for drip-irrigated winter wheat in Xinjiang[J]. Journal of Triticeae Crops, 2021, 41(1): 96-104. | |
[8] | 董超, 赵庚星, 宿宝巍, 等. 基于无人机多光谱影像的冬小麦返青期变量施氮决策模型研究[J]. 光谱学与光谱分析, 2019, 39(11): 3599. |
DONG Chao, ZHAO Gengxing, SU Baowei, et al. Decision model of variable nitrogen fertilizer in winter wheat returning green stage based on UAV multi-spectral images[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3599. | |
[9] | 汪旭, 邓裕帅, 练雪萌, 等. 基于无人机多光谱技术的甜菜冠层叶绿素含量反演[J]. 中国糖料, 2022, 44(4): 36-42. |
WANG Xu, DENG Yushuai, LIAN Xuemeng, et al. Inversion of chlorophyll content in sugar beet canopy based on UAV multispectral technique[J]. Sugar Crops of China, 2022, 44(4): 36-42. | |
[10] |
李艳大, 曹中盛, 舒时富, 等. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035.
DOI |
LI Yanda, CAO Zhongsheng, SHU Shifu, et al. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus[J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
DOI |
|
[11] | 张秋阳. 基于多源遥感数据的冬小麦氮肥推荐的研究[D]. 哈尔滨: 东北农业大学, 2015. |
ZHANG Qiuyang. Study on N Fertilization Recommendation in Winter Wheat Based on Multi-sources Remote Sensing Data[D]. Harbin:Northeast Agricultural University, 2015. | |
[12] | 张秋阳, 杨贵军, 徐新刚, 等. 基于GeoEye-1高分遥感影像的冬小麦氮肥推荐应用[J]. 麦类作物学报, 2014, 34(12): 1685-1693. |
ZHANG Qiuyang, YANG Guijun, XU Xingang, et al. Recommended application of N rate for winter wheat based on GeoEye-1 image[J]. Journal of Triticeae Crops, 2014, 34(12): 1685-1693. | |
[13] | 程千, 徐洪刚, 曹引波, 等. 基于无人机多时相植被指数的冬小麦产量估测[J]. 农业机械学报, 2021, 52(3): 160-167. |
CHENG Qian, XU Honggang, CAO Yinbo, et al. Grain yield prediction of winter wheat using multi-temporal UAV based on multispectral vegetation index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 160-167. | |
[14] | Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. |
[15] | 白燕英, 高聚林, 张宝林. 基于NDVI与EVI的作物长势监测研究[J]. 农业机械学报, 2019, 50(9): 153-161. |
BAI Yanying, GAO Julin, ZHANG Baolin. Monitoring of crops growth based on NDVI and EVI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 153-161. | |
[16] | PEARSON R L, MILLER L D. Remote mapping of standing crop biomass for estimation of the productivity of the short grass prairie, Pawnee National Grasslands, Colorado[C]. Proceedings of the 8th International Symposium on Remote Sensing of Environment, 1972:1355-1379. |
[17] | Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 229-242. |
[18] | ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring the vernal advancements and retro gradation of natural vegetation[M]. Greenbelt: Texas A and M University, Remote Sensing Center, 1974:371. |
[19] | Gong P, Pu R L, Biging G S, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362. |
[20] | HUETE A R. Soil influences in remotely sensed vegetation-canopy spectra[M]. ASRAR G.Theory and applications of optical remote sensing.New York: Wiley, 1989:107-141. |
[21] | 黄婷, 梁亮, 耿笛, 等. 波段宽度对利用植被指数估算小麦LAI的影响[J]. 农业工程学报, 2020, 36(4): 168-177. |
HUANG Ting, LIANG Liang, GENG Di, et al. Effects of band width on estimation of wheat LAI using vegetation index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 168-177. | |
[22] | Gitelson A A, Viña A, Ciganda V, et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophysical Research Letters, 2005, 32(8): L08403 |
[23] |
朱曼, 张立福, 王楠, 等. 基于Sentinel-2的UNVI植被指数及性能对比研究[J]. 遥感技术与应用, 2021, 36(4): 936-947.
DOI |
ZHU Man, ZHANG Lifu, WANG Nan, et al. Comparative study on UNVI vegetation index and performance based on sentinel-2[J]. Remote Sensing Technology and Application, 2021, 36(4): 936-947. | |
[24] | Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239. |
[25] | 陶惠林, 冯海宽, 徐良骥, 等. 基于无人机高光谱遥感数据的冬小麦生物量估算[J]. 江苏农业学报, 2020, 36(5): 1154-1162. |
TAO Huilin, FENG Haikuan, XU Liangji, et al. Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1154-1162. | |
[26] | Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172. |
[27] | Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352. |
[28] | 李港, 孔亚聪, 代元帅, 等. 基于野外原位光谱的棉田耕层土壤全氮含量监测模型研究[J]. 干旱地区农业研究, 2023, 41(6): 273-280. |
LI Gang, KONG Yacong, DAI Yuanshuai, et al. Study on monitoring model for total nitrogen content in plow layer of cotton field based on field in situ spectroscopy[J]. Agricultural Research in the Arid Areas, 2023, 41(6): 273-280. | |
[29] | 彭建, 徐飞雄, 邓凯, 等. 琅琊山景区不同叶绿素条件下树种叶片光谱差异分析[J]. 光谱学与光谱分析, 2018, 38(6): 1839. |
PENG Jian, XU Feixiong, DENG Kai, et al. Spectral differences of tree leaves at different chlorophyll relative content in Langya Mountain[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1839. | |
[30] | 谢东, 何敬, 何嘉晨, 等. 基于无人机高光谱影像的水稻叶片SPAD值反演方法研究[J/OL]. 山西农业大学学报(自然科学版),1-10. |
Xie Dong, He Jing, He Jiachen, et al. Research on SPAD value inversion method of rice leaves based on UAV hyperspectral image[J/OL]. Journal of Shanxi Agricultural University (Natural Science Edition),1-10. | |
[31] | 王磊, 白由路. 不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J]. 中国农业科学, 2005, 38(11): 2268-2276. |
WANG Lei,BAI Youlu. Correlation between corn leaf spectral reflectance and leaf total nitrogen and chlorophyll content under different nitrogen level[J]. Scientia Agricultura Sinica, 2005, 38(11): 2268-2276.
DOI |
|
[32] | 王建伟, 李树人, 周汉平, 等. 不同施氮量条件下烤烟叶面积系数与冠层光谱参数的相关性[J]. 烟草科技, 2011, 44(3): 77-80. |
WANG Jianwei, LI Shuren, ZHOU Hanping, et al. Correlation of leaf area index with canopy reflectance spectrum of flue-cured tobacco under different nitrogen application rate[J]. Tobacco Science & Technology, 2011, 44(3): 77-80. | |
[33] | 李新伟, 吕新, 张泽, 等. 棉花氮素营养诊断与追肥推荐模型[J]. 农业机械学报, 2014, 45(12): 209-214. |
LI Xinwei, LYU Xin, ZHANG Ze, et al. Diagnosis of nitrogen nutrition and recommended model of topdressing for cotton[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 209-214. |
[1] | XIAO Shuting, YAN An, WANG Weixia, ZHANG Qingqing, HOU Zhengqing, MA Mengqian, SUN Zhe. Analysis of spatial and temporal variations of aboveground biomass and the factors affecting it in a typical forest area in the central Tianshan Mountains [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2237-2244. |
[2] | ZHANG Lei, YAO Mengyao, LIU Zhigang, LI Juan, YANG Yang, CAI Darun, CHEN Guo, LI Bo, LI Xiaorong, CHEN Xunji, ZHAI Yunlong. Research of maize yield estimation based on unmanned aerial vehicle multispectral NDVI [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 845-851. |
[3] | GUO Zhengyu, SUN Qian, HU Xinyue, HUANG Jinyi. Correlation analysis of main environmental impact factors based on remote sensing and Apocheima cinerarius Erschoff emergence [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 954-963. |
[4] | HOU Zhengqing, YAN An, XIE Kaiyun, YUAN Yilin, XIA Wenqiu, XIAO Shuting, ZHANG Zhenfei, SUN Zhe. Estimation of aboveground biomass of Diarthron tianschanicum based on vegetation index fusion [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2787-2796. |
[5] | ZHAO Haonan, MA Haiyan, Asiya Manlike, TIAN Cong, XU Jun, PAN Jing, SUN Zongjiu, ZHENG Fengling. Crop remote sensing classification study in Qitai County based on deep learning and Google earth engine (GEE) [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2807-2814. |
[6] | QIN Yekangyang, LI Jiaxin, JIN Guili, LIU Wenhao, MA Jian, LI Wenxiong, CHEN Mentian. Identification of main plants in desert grassland Seriphidium transiliense based on UAV remote sensing and CNN ResNet 18 [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2547-2556. |
[7] | LIU Liang, PENG Jian, LI Gangyong, HAN Wanqiang, LIU Yujia, GUAN Jingyun, LIU Chengcai, ZHENG Jianghua. Analysis of dynamic remote sensing monitoring changes in Kulusitai grassland in Xinjiang from 2010 to 2021 [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 230-240. |
[8] | YANG Yongqiang, WANG Zhenxi, SHI Yuxia, LIAN Ling, GAO Yali. The Extraction of Single Wood Canopy of Picea Schrenkiana var tianshanica Forest Based on UAV Image [J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1484-1492. |
[9] | SHI Zhiyu, PEI Yakun, ZHU Yutao, JIA Yujiao, HU Xiaoqian, HOU Shicong, HOU Yuxia. Study on Remote Monitoring of Cotton Verticillium wilt Diagnosis and Control Management Based on Digital Image [J]. Xinjiang Agricultural Sciences, 2020, 57(6): 1166-1174. |
[10] | WEI Qing, ZHANG Baozhong, WEI Zheng. Research on Object Recognition Based on UAV Multispectral Image [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 932-939. |
[11] | HAN Wanqiang, JIN Guili, YUE Yonghuan, WANG Huining, GONG Ke, WU Xueer, Wulupa Ardererkali. Spectral Characteristics and Modified Vegetation Index of ihree Main Plants of Seriphidium transiliense Desert Grassland [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 950-957. |
[12] | WU Wenli, YUAN Ye, LI Yuanyuan, CHU Guangming, ZHANG Hao. Comparison of Hyperspectral and Optical Image Vegetation Index (VI) in Desert Forest [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 149-156. |
[13] | GE Yuan-mei, CHEN Xiang-yu, HONG Shuai, MA Lu-lu, L Xin , ZHANG Ze. Establishment of Estimation Model for Different Varieties Based on Red Edge Parameters [J]. Xinjiang Agricultural Sciences, 2019, 56(6): 1032-1040. |
[14] | LI Tian-sheng, CUI Jing, WANG Hai-jiang, YANG Jin. Study on Water Content Estimation Model of Winter Wheat Based on Hyperspectral Characteristic Wavelength [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1772-1782. |
[15] | LI Na, WANG Xin-jun, CHANG Meng-di, YAN Li-nan, XU Xiao-long. Response of Sparse Vegetation Patch Pattern to Precipitation Based on Landsat Image [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1895-1903. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||