Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (6): 1308-1318.DOI: 10.6048/j.issn.1001-4330.2023.06.002
• Special volume for green, yield increasing, quality improving and eficiency improving technologies for major grain crops in Xinjiang • Previous Articles Next Articles
DONG Deyu1(), CHENG Yukun1, WANG Rui1, LEI Junjie2, WANG Wei1, CHEN Chuanxin2, ZHENG Yongqiang2, GENG Hongwei1(
)
Received:
2022-10-30
Online:
2023-06-20
Published:
2023-06-20
Correspondence author:
GENG Hongwei(1978-),male,professor,Dr,research direction for crop yield cultivation,(E-mail) hw-geng@163.com
Supported by:
董德誉1(), 程宇坤1, 王睿1, 雷钧杰2, 王伟1, 陈传信2, 张永强2, 耿洪伟1(
)
通讯作者:
耿洪伟(1978-),男,新疆库尔勒人,教授,博士,硕士生导师,研究方向为小麦遗传育种,(E-mail) hw-geng@163.com
作者简介:
董德誉(1995-),男,广西人,硕士研究生,研究方向为小麦遗传育种,(E-mail)deyudong@sina.com
基金资助:
CLC Number:
DONG Deyu, CHENG Yukun, WANG Rui, LEI Junjie, WANG Wei, CHEN Chuanxin, ZHENG Yongqiang, GENG Hongwei. Retrieval of wheat photosynthetic parameters at different growth stages based on UAV multispectral images[J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1308-1318.
董德誉, 程宇坤, 王睿, 雷钧杰, 王伟, 陈传信, 张永强, 耿洪伟. 基于无人机多光谱影像反演不同生育期小麦光合参数分析[J]. 新疆农业科学, 2023, 60(6): 1308-1318.
编号 Number | 品种名称 Variety | 编号 Number | 品种名称 Variety |
---|---|---|---|
1 | 石新633 | 9 | 新冬46号 |
2 | 新冬17号 | 10 | 新冬48号 |
3 | 新冬18号 | 11 | 新冬50号 |
4 | 新冬22号 | 12 | 新冬51号 |
5 | 新冬36号 | 13 | 新冬52号 |
6 | 新冬37号 | 14 | 新冬53号 |
7 | 新冬38号 | 15 | 新粮201 |
8 | 新冬41号 | 16 | 新冬60号 |
Tab.1 Wheat cultivars used in this study
编号 Number | 品种名称 Variety | 编号 Number | 品种名称 Variety |
---|---|---|---|
1 | 石新633 | 9 | 新冬46号 |
2 | 新冬17号 | 10 | 新冬48号 |
3 | 新冬18号 | 11 | 新冬50号 |
4 | 新冬22号 | 12 | 新冬51号 |
5 | 新冬36号 | 13 | 新冬52号 |
6 | 新冬37号 | 14 | 新冬53号 |
7 | 新冬38号 | 15 | 新粮201 |
8 | 新冬41号 | 16 | 新冬60号 |
施氮时期 N stages | 基肥 Basal nutrition | 起身期 Rising stage | 拔节期 Jointing stage | 孕穗期 Booting stage |
---|---|---|---|---|
施肥比例Fertilization ratio(%) | 40 | 10 | 40 | 10 |
施尿素量 Urea application amount(kg/667m2) | 13.00 | 3.26 | 13.00 | 3.26 |
Tab.2 Total nitrogen fertilizer amount and nitrogen application amount at different stages of drip irrigation for wheat (kg/667m2)
施氮时期 N stages | 基肥 Basal nutrition | 起身期 Rising stage | 拔节期 Jointing stage | 孕穗期 Booting stage |
---|---|---|---|---|
施肥比例Fertilization ratio(%) | 40 | 10 | 40 | 10 |
施尿素量 Urea application amount(kg/667m2) | 13.00 | 3.26 | 13.00 | 3.26 |
参数 Parameter | 参数值 Parameter values |
---|---|
飞行高度Altitude | 12 m |
飞行速度Speed | 5.4 km/h |
航向重叠率Course overlap ratio | 75% |
旁向重叠率Lateral overlap rate | 75% |
光谱类型Spectral types | R、G、B、RE、NIR |
Tab.3 Parameters of uav multispectral image acquisition
参数 Parameter | 参数值 Parameter values |
---|---|
飞行高度Altitude | 12 m |
飞行速度Speed | 5.4 km/h |
航向重叠率Course overlap ratio | 75% |
旁向重叠率Lateral overlap rate | 75% |
光谱类型Spectral types | R、G、B、RE、NIR |
植被指数 Vegetation index | 计算公式 Formula to calculate |
---|---|
归一化植被指数(NDVI)[ | (ρNIR-ρR)/(ρNIR+ρR) |
绿色归一化植被指数(GNDVI)[ | (ρNIR-ρG)/(ρNIR+ρG) |
归一化绿蓝差指数(NGBDI)[ | (ρG-ρB)/(ρG+ρB) |
归一化绿红差指数(NGRDI)[ | (ρG-ρR)/(ρG+ρR) |
红边重归一化植被指数(RERDVI)[ | (ρNIR-ρRE)/(ρNIR+ρRE) |
土壤调节植被指数(SAVI)[ | 2.5(ρNIR-ρR)/(ρNIR+ρR+0.5) |
绿波段优化土壤调节植被指数(GOSAVI)[ | 1.16[(ρNIR-ρG)/(ρNIR+ρG+0.16)] |
红边优化土壤调节植被指数(REOSAVI)[ | 1.16[(ρNIR-ρR)/(ρNIR+ρR+0.16)] |
优化土壤调节植被指数(OSAVI)[ | (ρNIR-ρR)/(ρNIR+ρR+0.16) |
比值植被指数(RVI)[ | ρNIR/ρR |
差值植被指数(DVI)[ | ρNIR-ρR |
绿波段比值植被指数(GRVI)[ | ρNIR/ρG |
过绿指数(EXG)[ | 2ρG-ρR-ρB |
三角植被指数(TVI)[ | 0.5[120(ρNIR-ρG)-200(ρR-ρG) |
叶绿素吸收比值植被指数(CARI)[ | (ρRE-ρR)-0.2(ρRE+ρR) |
绿波段大气阻抗植被指数(VARIgreen)[ | (ρG-ρR)/(ρG+ρR-ρB) |
红波段大气阻抗植被指数(VARIred)[ | (ρRE-1.7ρR+0.7ρB)/(ρRE+2.3ρR-1.3ρB) |
增强型植被指数(EVI)[ | 2.5(ρNIR-ρR)/(ρNIR+6ρR-7.5ρB+1) |
Tab.4 Vegetation index
植被指数 Vegetation index | 计算公式 Formula to calculate |
---|---|
归一化植被指数(NDVI)[ | (ρNIR-ρR)/(ρNIR+ρR) |
绿色归一化植被指数(GNDVI)[ | (ρNIR-ρG)/(ρNIR+ρG) |
归一化绿蓝差指数(NGBDI)[ | (ρG-ρB)/(ρG+ρB) |
归一化绿红差指数(NGRDI)[ | (ρG-ρR)/(ρG+ρR) |
红边重归一化植被指数(RERDVI)[ | (ρNIR-ρRE)/(ρNIR+ρRE) |
土壤调节植被指数(SAVI)[ | 2.5(ρNIR-ρR)/(ρNIR+ρR+0.5) |
绿波段优化土壤调节植被指数(GOSAVI)[ | 1.16[(ρNIR-ρG)/(ρNIR+ρG+0.16)] |
红边优化土壤调节植被指数(REOSAVI)[ | 1.16[(ρNIR-ρR)/(ρNIR+ρR+0.16)] |
优化土壤调节植被指数(OSAVI)[ | (ρNIR-ρR)/(ρNIR+ρR+0.16) |
比值植被指数(RVI)[ | ρNIR/ρR |
差值植被指数(DVI)[ | ρNIR-ρR |
绿波段比值植被指数(GRVI)[ | ρNIR/ρG |
过绿指数(EXG)[ | 2ρG-ρR-ρB |
三角植被指数(TVI)[ | 0.5[120(ρNIR-ρG)-200(ρR-ρG) |
叶绿素吸收比值植被指数(CARI)[ | (ρRE-ρR)-0.2(ρRE+ρR) |
绿波段大气阻抗植被指数(VARIgreen)[ | (ρG-ρR)/(ρG+ρR-ρB) |
红波段大气阻抗植被指数(VARIred)[ | (ρRE-1.7ρR+0.7ρB)/(ρRE+2.3ρR-1.3ρB) |
增强型植被指数(EVI)[ | 2.5(ρNIR-ρR)/(ρNIR+6ρR-7.5ρB+1) |
Fig 2 Changes of four photosynthetic parameters of wheat varieties under different nitrogen treatments Note:N0 and N1 respectively represent nitrogen free treatment levels N0(0 kg N/667m2) and normal nitrogen application level N1(15 kg N/667m2)
植被指数 Vegetation index | N1开花期 N1 Flowering stage | N0开花期 N0 Flowering stage | ||||||
---|---|---|---|---|---|---|---|---|
胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光 合速率 (Pn) | 蒸腾 速率 (Ti) | 胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光 合速率 (Pn) | 蒸腾 速率 (Ti) | |
叶绿素吸收比值指数CARI | -0.01 | -0.48 | -0.56* | -0.51* | -0.05 | 0.16 | 0.42 | -0.14 |
差值植被指数DVI | 0.06 | -0.10 | -0.13 | -0.09 | -0.12 | 0.09 | 0.51* | -0.24 |
增强型植被指数EVI | 0.02 | -0.23 | -0.32 | -0.26 | 0.24 | 0.06 | 0.55* | 0.08 |
过绿指数EXG | 0.43 | 0.29 | 0.11 | 0.16 | -0.14 | 0.42 | 0.39 | -0.14 |
绿色归一化植被指数GNDVI | -0.41 | -0.6 | -0.59* | -0.59* | 0.05 | -0.15 | 0.34 | -0.11 |
绿波段优化土壤调节植被指数GOSAVI | -0.41 | -0.68** | -0.60* | -0.59* | 0.04 | -0.14 | 0.36 | -0.13 |
绿波段比值植被指数GRVI | -0.33 | -0.69** | -0.64** | -0.61* | 0.01 | -0.07 | 0.45 | -0.05 |
归一化绿红差异指数NGRGI | 0.23 | -0.07 | -0.23 | -0.16 | 0.14 | 0.20 | 0.52* | 0.20 |
归一化植被指数NDVI | -0.09 | -0.41 | -0.47 | -0.42 | 0.16 | 0.01 | 0.57* | -0.08 |
归一化蓝绿差异指数NGBDI | -0.01 | -0.52* | -0.55* | -0.52* | -0.33 | -0.07 | 0.28 | -0.33 |
优化土壤调节植被指数OSAVI | 0.38 | 0.85** | 0.79** | 0.80** | 0.04 | 0.09 | -0.27 | 0.15 |
绿波段优化土壤调节植被指数REOSAVI | -0.09 | -0.39 | -0.44 | -0.40 | 0.15 | 0.02 | 0.56* | -0.08 |
红边重归一化植被指数RERDVI | -0.07 | 0.49 | 0.59* | 0.54* | 0.23 | -0.14 | 0.20 | -0.10 |
比值植被指数RVI | 0.05 | -0.31 | -0.41 | -0.35 | 0.10 | -0.01 | 0.63** | 0.09 |
土壤调节植被指数SAVI | -0.10 | -0.40 | -0.45 | -0.41 | 0.17 | 0.01 | 0.57* | -0.09 |
三角植被指数TVI | 0.09 | -0.10 | -0.15 | -0.11 | -0.09 | 0.13 | 0.55* | -0.23 |
绿波段大气阻抗植被指数VARIgreen | 0.21 | -0.04 | -0.18 | -0.12 | 0.23 | 0.16 | 0.53* | 0.09 |
红波段大气阻抗植被指数VARIred | -0.03 | -0.45 | -0.53* | -0.47 | 0.11 | 0.09 | 0.50 | 0.06 |
Tab.5 Correlation coefficient between vegetation index and photosynthetic parameters at flowering stage
植被指数 Vegetation index | N1开花期 N1 Flowering stage | N0开花期 N0 Flowering stage | ||||||
---|---|---|---|---|---|---|---|---|
胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光 合速率 (Pn) | 蒸腾 速率 (Ti) | 胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光 合速率 (Pn) | 蒸腾 速率 (Ti) | |
叶绿素吸收比值指数CARI | -0.01 | -0.48 | -0.56* | -0.51* | -0.05 | 0.16 | 0.42 | -0.14 |
差值植被指数DVI | 0.06 | -0.10 | -0.13 | -0.09 | -0.12 | 0.09 | 0.51* | -0.24 |
增强型植被指数EVI | 0.02 | -0.23 | -0.32 | -0.26 | 0.24 | 0.06 | 0.55* | 0.08 |
过绿指数EXG | 0.43 | 0.29 | 0.11 | 0.16 | -0.14 | 0.42 | 0.39 | -0.14 |
绿色归一化植被指数GNDVI | -0.41 | -0.6 | -0.59* | -0.59* | 0.05 | -0.15 | 0.34 | -0.11 |
绿波段优化土壤调节植被指数GOSAVI | -0.41 | -0.68** | -0.60* | -0.59* | 0.04 | -0.14 | 0.36 | -0.13 |
绿波段比值植被指数GRVI | -0.33 | -0.69** | -0.64** | -0.61* | 0.01 | -0.07 | 0.45 | -0.05 |
归一化绿红差异指数NGRGI | 0.23 | -0.07 | -0.23 | -0.16 | 0.14 | 0.20 | 0.52* | 0.20 |
归一化植被指数NDVI | -0.09 | -0.41 | -0.47 | -0.42 | 0.16 | 0.01 | 0.57* | -0.08 |
归一化蓝绿差异指数NGBDI | -0.01 | -0.52* | -0.55* | -0.52* | -0.33 | -0.07 | 0.28 | -0.33 |
优化土壤调节植被指数OSAVI | 0.38 | 0.85** | 0.79** | 0.80** | 0.04 | 0.09 | -0.27 | 0.15 |
绿波段优化土壤调节植被指数REOSAVI | -0.09 | -0.39 | -0.44 | -0.40 | 0.15 | 0.02 | 0.56* | -0.08 |
红边重归一化植被指数RERDVI | -0.07 | 0.49 | 0.59* | 0.54* | 0.23 | -0.14 | 0.20 | -0.10 |
比值植被指数RVI | 0.05 | -0.31 | -0.41 | -0.35 | 0.10 | -0.01 | 0.63** | 0.09 |
土壤调节植被指数SAVI | -0.10 | -0.40 | -0.45 | -0.41 | 0.17 | 0.01 | 0.57* | -0.09 |
三角植被指数TVI | 0.09 | -0.10 | -0.15 | -0.11 | -0.09 | 0.13 | 0.55* | -0.23 |
绿波段大气阻抗植被指数VARIgreen | 0.21 | -0.04 | -0.18 | -0.12 | 0.23 | 0.16 | 0.53* | 0.09 |
红波段大气阻抗植被指数VARIred | -0.03 | -0.45 | -0.53* | -0.47 | 0.11 | 0.09 | 0.50 | 0.06 |
植被指数 Vegetation index | N1全生育期 N1 The whole growth period | N0全生育期 N0 The whole growth period | ||||||
---|---|---|---|---|---|---|---|---|
胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光合 速率 (Pn) | 蒸腾 速率 (Ti) | 胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光合 速率 (Pn) | 蒸腾 速率 (Ti) | |
叶绿素吸收比值指数CARI | -0.34** | -0.05 | 0.21 | 0.48** | -0.37** | -0.32** | -0.07 | 0.23* |
差值植被指数DVI | -0.40** | 0.13 | 0.41** | 0.62** | -0.40** | -0.23* | 0.04 | 0.24* |
增强型植被指数EVI | -0.37** | 0.16 | 0.40** | 0.52** | -0.29** | -0.14 | 0.09 | 0.34** |
过绿指数EXG | 0.11 | -0.49** | -0.41** | -0.02 | -0.16 | -0.48** | -0.43** | 0.04 |
绿色归一化植被指数GNDVI | -0.43** | 0.49** | 0.67** | 0.54** | -0.18 | 0.24* | 0.41** | 0.24* |
绿波段优化土壤调节植被指数GOSAVI | -0.43** | 0.48** | 0.66** | 0.54** | -0.19 | 0.24* | 0.41** | 0.24* |
绿波段比值植被指数GRVI | -0.42** | 0.39** | 0.59** | 0.51** | -0.22 | 0.16 | 0.35** | 0.24* |
归一化绿红差异指数NGRGI | -0.17 | -0.18 | 0.02 | 0.28* | -0.26* | -0.37** | -0.21 | 0.24* |
归一化植被指数NDVI | -0.41** | 0.2 | 0.45** | 0.56** | -0.31** | -0.09 | 0.14 | 0.31** |
归一化蓝绿差异指数NGBDI | 0.28* | -0.25* | -0.43** | -0.55** | 0.19 | 0.03 | -0.17 | -0.18 |
优化土壤调节植被指数OSAVI | -0.41** | 0.2 | 0.46** | 0.56** | -0.31** | -0.09 | 0.14 | 0.31** |
绿波段优化土壤调节植被指数REOSAVI | -0.41** | 0.2 | 0.45** | 0.56** | -0.30** | -0.09 | 0.14 | 0.31** |
红边重归一化植被指数RERDVI | -0.19 | 0.54** | 0.58** | 0.30** | 0.08 | 0.52** | 0.54** | 0.16 |
比值植被指数RVI | -0.33** | 0.13 | 0.35** | 0.44** | -0.26* | -0.13 | 0.08 | 0.31** |
土壤调节植被指数SAVI | -0.41** | 0.2 | 0.45** | 0.56** | -0.31** | -0.09 | 0.14 | 0.31** |
三角植被指数TVI | -0.38** | 0.08 | 0.36** | 0.59** | -0.39** | -0.26* | 0.01 | 0.25* |
绿波段大气阻抗植被指数VARIgreen | -0.17 | -0.17 | 0.03 | 0.28* | -0.25* | -0.36** | -0.2 | 0.25* |
红波段大气阻抗植被指数VARIred | -0.34** | -0.01 | 0.25* | 0.46** | -0.35** | -0.29** | -0.05 | 0.30** |
Tab.6 Correlation coefficient between vegetation index and photosynthetic parameters in whole growth period
植被指数 Vegetation index | N1全生育期 N1 The whole growth period | N0全生育期 N0 The whole growth period | ||||||
---|---|---|---|---|---|---|---|---|
胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光合 速率 (Pn) | 蒸腾 速率 (Ti) | 胞间CO2 浓度(Ci) | 气孔 导度 (Gs) | 净光合 速率 (Pn) | 蒸腾 速率 (Ti) | |
叶绿素吸收比值指数CARI | -0.34** | -0.05 | 0.21 | 0.48** | -0.37** | -0.32** | -0.07 | 0.23* |
差值植被指数DVI | -0.40** | 0.13 | 0.41** | 0.62** | -0.40** | -0.23* | 0.04 | 0.24* |
增强型植被指数EVI | -0.37** | 0.16 | 0.40** | 0.52** | -0.29** | -0.14 | 0.09 | 0.34** |
过绿指数EXG | 0.11 | -0.49** | -0.41** | -0.02 | -0.16 | -0.48** | -0.43** | 0.04 |
绿色归一化植被指数GNDVI | -0.43** | 0.49** | 0.67** | 0.54** | -0.18 | 0.24* | 0.41** | 0.24* |
绿波段优化土壤调节植被指数GOSAVI | -0.43** | 0.48** | 0.66** | 0.54** | -0.19 | 0.24* | 0.41** | 0.24* |
绿波段比值植被指数GRVI | -0.42** | 0.39** | 0.59** | 0.51** | -0.22 | 0.16 | 0.35** | 0.24* |
归一化绿红差异指数NGRGI | -0.17 | -0.18 | 0.02 | 0.28* | -0.26* | -0.37** | -0.21 | 0.24* |
归一化植被指数NDVI | -0.41** | 0.2 | 0.45** | 0.56** | -0.31** | -0.09 | 0.14 | 0.31** |
归一化蓝绿差异指数NGBDI | 0.28* | -0.25* | -0.43** | -0.55** | 0.19 | 0.03 | -0.17 | -0.18 |
优化土壤调节植被指数OSAVI | -0.41** | 0.2 | 0.46** | 0.56** | -0.31** | -0.09 | 0.14 | 0.31** |
绿波段优化土壤调节植被指数REOSAVI | -0.41** | 0.2 | 0.45** | 0.56** | -0.30** | -0.09 | 0.14 | 0.31** |
红边重归一化植被指数RERDVI | -0.19 | 0.54** | 0.58** | 0.30** | 0.08 | 0.52** | 0.54** | 0.16 |
比值植被指数RVI | -0.33** | 0.13 | 0.35** | 0.44** | -0.26* | -0.13 | 0.08 | 0.31** |
土壤调节植被指数SAVI | -0.41** | 0.2 | 0.45** | 0.56** | -0.31** | -0.09 | 0.14 | 0.31** |
三角植被指数TVI | -0.38** | 0.08 | 0.36** | 0.59** | -0.39** | -0.26* | 0.01 | 0.25* |
绿波段大气阻抗植被指数VARIgreen | -0.17 | -0.17 | 0.03 | 0.28* | -0.25* | -0.36** | -0.2 | 0.25* |
红波段大气阻抗植被指数VARIred | -0.34** | -0.01 | 0.25* | 0.46** | -0.35** | -0.29** | -0.05 | 0.30** |
开花期Flowering stage | 全生育期The whole growth period | ||||||
---|---|---|---|---|---|---|---|
Ci | Gs | Pn | Ti | Ci | Gs | Pn | Ti |
EVI | CARI | GRVI | CARI | CARI | EXG | EXG | EVI |
EXG | EXG | NDVI | GNDVI | DVI | GNDVI | GNDVI | NDVI |
NGBDI | GNDVI | REOSAVI | GOSAVI | NDVI | GOSAVI | GOSAVI | OSAVI |
NGRDI | GOSAVI | RVI | NGBDI | TVI | GRVI | GRVI | RVI |
VARIgreen | VARIgreen | SAVI | OSAVI | VARIred | RERDVI | RERDVI | SAVI |
Tab.7 Vegetation indices with different photosynthetic parameters for data modeling
开花期Flowering stage | 全生育期The whole growth period | ||||||
---|---|---|---|---|---|---|---|
Ci | Gs | Pn | Ti | Ci | Gs | Pn | Ti |
EVI | CARI | GRVI | CARI | CARI | EXG | EXG | EVI |
EXG | EXG | NDVI | GNDVI | DVI | GNDVI | GNDVI | NDVI |
NGBDI | GNDVI | REOSAVI | GOSAVI | NDVI | GOSAVI | GOSAVI | OSAVI |
NGRDI | GOSAVI | RVI | NGBDI | TVI | GRVI | GRVI | RVI |
VARIgreen | VARIgreen | SAVI | OSAVI | VARIred | RERDVI | RERDVI | SAVI |
光合参数 Photosynthetic parameters | N1开花期 N1 Flowering stage | N0开花期 N0 Flowering stage | N1全生育期 N1 The whole growth period | N0全生育期 N0 The whole growth period | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE | R2 | RMSE | RE | R2 | RMSE | RE | R2 | RMSE | RE | |
Ci (μmol/(m2·s)) | 0.44 | 31.87 | 0.12 | 0.39 | 21.933 | 0.08 | 0.22 | 17.3 | 0.06 | 0.47 | 17.85 | 0.06 |
Gs (mol/(m2·s)) | 0.64 | 55.31 | 0.26 | 0.78 | 80.74 | 0.3 | 0.57 | 61.51 | 0.24 | 0.62 | 70.94 | 0.29 |
Pn (mol/(m2·s)) | 0.82 | 5.23 | 0.26 | 0.78 | 4.99 | 0.2 | 0.74 | 3.59 | 0.18 | 0.54 | 4.39 | 0.23 |
Ti (μmol/(m2·s)) | 0.48 | 0.88 | 0.14 | 0.8 | 0.9 | 0.13 | 0.54 | 0.8 | 0.16 | 0.16 | 1.14 | 0.28 |
Tab.8 Effects of wheat photosynthetic parameters with different growth potential differences on the model
光合参数 Photosynthetic parameters | N1开花期 N1 Flowering stage | N0开花期 N0 Flowering stage | N1全生育期 N1 The whole growth period | N0全生育期 N0 The whole growth period | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE | R2 | RMSE | RE | R2 | RMSE | RE | R2 | RMSE | RE | |
Ci (μmol/(m2·s)) | 0.44 | 31.87 | 0.12 | 0.39 | 21.933 | 0.08 | 0.22 | 17.3 | 0.06 | 0.47 | 17.85 | 0.06 |
Gs (mol/(m2·s)) | 0.64 | 55.31 | 0.26 | 0.78 | 80.74 | 0.3 | 0.57 | 61.51 | 0.24 | 0.62 | 70.94 | 0.29 |
Pn (mol/(m2·s)) | 0.82 | 5.23 | 0.26 | 0.78 | 4.99 | 0.2 | 0.74 | 3.59 | 0.18 | 0.54 | 4.39 | 0.23 |
Ti (μmol/(m2·s)) | 0.48 | 0.88 | 0.14 | 0.8 | 0.9 | 0.13 | 0.54 | 0.8 | 0.16 | 0.16 | 1.14 | 0.28 |
[1] |
Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety[J]. Annals of Applied Biology, 2014, 164(3):354-372.
PMID |
[2] | 吴舒, 穆月英, 聂凤英. 中国小麦生产波动成因及产量预测[J]. 农业展望, 2020, 16(6): 40-47,58. |
WU Shu, MU Yueying, NIE Fenying. Influencing Factors and Forecast of China's Wheat Production Fluctuations[J]. Agricultural Outlook, 2020, 16(6): 40-47,58. | |
[3] | 张其德. 光合作用的光反应[J]. 植物杂志, 2000,(5):2. |
ZHANG Qide. The light reaction of photosynthesis[J]. Plants, 2000,(5): 2. | |
[4] | 蒋高明. LI-6400光合作用测定系统: 原理、性能、基本操作与常见故障的排除[J]. 植物学通报, 1996,(S1): 74-78. |
JIANG Gaoming. LI-6400 Portable photosyntheses system: principle, function, basic, operation and main problems and solutions during measurement[J]. Chinese Bulletin of Botany, 1996,(S1): 74-78. | |
[5] | 张雨晴, 于海业, 刘爽, 等. 玉米叶片净光合速率快速检测方法研究[J]. 农机化研究, 2019, 41(4): 182-185. |
ZHANG Yuqing, YU Haiying, LIU Shuan, et al. Study on Rapid Detection Method of Net Photosynthetic Rate of Maize Leaves[J]. Journal of Agricultural Mechanization Research, 2019, 41(4): 182-185. | |
[6] |
Korres N E, Froud-Williams R J, Moss S R. Chlorophyll fluorescence technique as a rapid diagnostic test of the effects of the photosynthetic inhibitor chlorotoluron on two winter wheat cultivars[J]. Annals of Applied Biology, 2003, 143(1): 53-56.
DOI URL |
[7] | 刘慎彬. 基于多角度日光诱导叶绿素荧光估算水稻光能利用率[D]. 南京: 南京信息工程大学, 2020. |
LIU Shenbin. Estimation of light use efficiency of rice based on multi-angle solar-induced chlorophyll fluorescence[D]. Nanjing: Nanjing University of Information Science and Technology, 2020. | |
[8] |
刘玉梅, 王云诚, 于贤昌, 等. 黄瓜单叶净光合速率对二氧化碳浓度、温度和光照强度响应模型[J]. 应用生态学报, 2007,(4): 883-887.
PMID |
LIU Yumei, WANG Yunchen, YU Xianchan, et al. Mathematic m ode ls of cucumber net photosynthesis rate respond ing to CO2 concentration, temperature, and illum ination intensity[J]. Chinese Journal of Applied Ecology, 2007,(4): 883-887.
PMID |
|
[9] | Gamon J A, Kovalchuk O, Wong C, et al. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors[J]. Biogeosciences, 2015, 12(3): 2947-2978. |
[10] |
Albert P C, Esa T, Jon A, et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges[J]. Journal of Experimental Botany, 2014, 65(15): 4065-4095.
DOI URL |
[11] | Ian B S, Elizabeth P, Clare S, et al. Use of hyperspectral remote sensing to estimate the gross photosynthesis of agricultural fields[J]. Canadian Journal of Remote Sensing, 2014, 34(3): 333-341. |
[12] | 王娣, 佃袁勇, 乐源, 等. 基于高光谱植被指数的叶片净光合速率Pn反演[J]. 地理与地理信息科学, 2016, 32(4): 42-48. |
WANG Di, DIAN Yuanyong, LE Yuan, et al. Net Photosynthetic Rata Inversion Based on Hyperspectral Vegetation Indices[J]. Geography and Geo-Information Science, 2016, 32(4): 42-48. | |
[13] | 苗梦珂, 王宝山, 李长春, 等. 基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J]. 江苏农业学报, 2020, 36(3): 544-552. |
MIAO Mengkai, WANG Baoshang, LI Changchun, et al. Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(3): 544-552. | |
[14] |
Nz A, Mw B, Ning W A. Precision agriculture—a worldwide overview[J]. Computers and Electronics in Agriculture, 2002, 36(2-3): 113-132.
DOI URL |
[15] |
Monika R, Behara S, Viviana O, et al. The advantages of using drones over space-borne imagery in the mapping of mangrove forests[J]. Plos One, 2018, 13(7): e0200288.
DOI URL |
[16] | 陈俊英, 陈硕博, 张智韬, 等. 无人机多光谱遥感反演花蕾期棉花光合参数研究[J]. 农业机械学报, 2018, 49(10): 230-239. |
CHEN Junying, CHEN Shuobo, ZHANG Zhitao. Investigation on Photosynthetic Parameters of Cotton during Budding Period by Multi-spectral Remote Sensing of Unmanned Aerial Vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 230-239. | |
[17] | Rouse J W, Haas R W, Schell J A, et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[J]. Greenbelt, MD: NASA/GSFC Type III, Final Report. 1974. |
[18] |
Hunt E R, Cavigelli M, Daughtry C, et al. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status[J]. Precision Agriculture, 2005, 6(4): 359-378.
DOI URL |
[19] | Kim M S, Daughtry C S T, Chappelle E W, et al. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation.ISPRS sixth international colloquium on physical measurements and signatures in remote sensing, Val d'Isère, France, 17-21. |
[20] | Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988,(25): 295-309. |
[21] | Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of Productivity of the Shortgrass Prairie[J]. Remote Sensing of Environment, 1972. |
[22] |
Torres-Sánchez J, Peña J M, De-Castro A I, et al. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV[J]. Computers and Electronics in Agriculture, 2014, 103: 104-113.
DOI URL |
[23] |
Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.
DOI URL |
[24] |
Chen Y Z, Murchie E H, Hubbart S, et al. Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa)[J]. Physiologia plantarum, 2003, 117(3): 343-351.
DOI URL |
[25] | 张岁岐, 山仑. 土壤干旱条件下氮素营养对玉米内源激素含量影响[J]. 应用生态学报, 2003,(9): 1503-1506. |
ZHANG Shuiqi, SHAN Lun. Effeet of nitrogen nutrition on endogenous hormone content of maize under soil drought conditions[J]. Chinese Journal of Applied Ecology, 2003,(9): 1503-1506. | |
[26] | Evans J R, Seemann J R. The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control[J]. Plant Biology, 1989,(1): 183-205. |
[27] | Grassi G, Meir P, Cromer R, et al. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell & Environment, 2010, 25(12): 1677-1688. |
[28] | 孙小妹, 张涛, 陈年来, 等. 土壤水分和氮素对春小麦叶片抗氧化系统的影响[J]. 干旱区研究, 2011, 28(2): 205-214. |
Sun Xiaomei, Zhang Tao, Chen Nianlai, et al. Study on Antioxygenic System in Leaves of Three Spring Wheat Cultivars with Different Drought-resistant Capabilities under Different Soil Moisture Content and Nitrogen Levels[J]. Arid Zone Research, 2011, 28(2): 205-214. | |
[29] |
曹树青, 赵永强, 温家立, 等. 高产小麦旗叶光合作用及与籽粒灌浆进程关系的研究[J]. 中国农业科学, 2000, 33(6):19-25.
DOI |
CAO Shuqing, ZHAO Yongqiang, WEN Jiali, et al. Studies on Photosynthesis in Flag Leaves and Its Relation to Grain Filling Course of High-yield Wheat[J]. Scientia Agricultura Sinica, 2000, 33(6): 19-25. | |
[30] | 杨淑巧, 许琦, 刘跃鹏, 等. 冬小麦光合作用和叶绿素荧光特性的研究[J]. 农学学报, 2015, 5(3): 6. |
YANG Shuqiao, XU Qi, LIU Yaopeng, et al. Research on the Photosynthesis and Chlorophyll Fluorspar Characteristic of Winter Wheat[J]. Journal of Agriculture, 2015, 5(3): 6. | |
[31] | Pallett K E, Sestak Z. Photosynthesis during Leaf Development[J]. Bioscience, 1985, 37(10): 10. |
[32] | Hoerl A, Kennard R. Taylor & Francis Online: Ridge Regression: Biased Estimation for Nonorthogonal Problems-Technometrics-Volume 12, Issue 1[J]. Technometrics, 2000, 42(1): 7. |
[33] |
Fenner H, Andrew R, Adam M, et al. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing[J]. Remote Sensing, 2016, 8(12): 1031.
DOI URL |
[34] | 周敏姑, 邵国敏, 张立元, 等. 无人机多光谱遥感反演冬小麦SPAD值[J]. 农业工程学报, 2020, 36(20): 125-133. |
ZHOU Mingu, SHAO Guomin, ZHANG Liyuan, et al. Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 125-133. |
[1] | LI Jin, SHEN Yuyang, DENG Feifei, CHEN Jianghua, SUN Jingjing, LI Guangkuo, GAO Haifeng. Analysis of Occurrence Status and Control Strategies of Wheat Harmful Organisms in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 122-126. |
[2] | DAI Aimei, YE Mengdi, DING Zhimei, WANG Zhihui, QIAO Xiaoyan, WANG Xiaowu, FU Kaiyun, JIA Zunzun, YE Xiaoqin, Tuerxun Ahemati, KANG Jian, DING Xinhua, GUO Wenchao. Evaluation on the efficacy and safety of dif ferent application methods of flumioxazinone in controlling weeds in corn field [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 28-34. |
[3] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[4] | WANG Chunsheng, LI Jianfeng, ZHANG Yueqiang, FAN Zheru, WANG Zhong, GAO Xin, SHI Jia, ZHANG Hongzhi, WANG Lihong, XIA Jianqiang, WANG Fangping, ZHAO Qi. Study on genotypic differences of anther culture ability in mainly cultivated spring wheat varieties in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2081-2086. |
[5] | CHANG Keqin, DU Yanping, MU Lanhai, YANG Chongqing, CHEN Yixin. Analysis of stable yield and adaptability of buckwheat varieties based on AMMI model and GGE double label graph [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2152-2159. |
[6] | SHEN Yuyang, HONG Gaojie, FAN Guiqiang, CHEN Li, LEI Junjie, LI Guangkuo, GAO Haifeng. The control effect of reduced pesticides application and adjuvant addition on wheat aphids in jujube-wheat intercropping pattern [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2257-2268. |
[7] | HOU Lili, WANG Wei, CUI Xinju, ZHOU Dawei. Effects of organic and inorganic combined application on yield, soil nutrients and enzyme activities of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1845-1852. |
[8] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[9] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[10] | YUAN Yilin, YAN An, ZUO Xiaoxiao, HOU Zhengqing, ZHANG Zhenfei, XIAO Shuting, SUN Zhe, MA Mengqian, ZHAO Yuhang. Impact of reduced nitrogen fertilization combined with bio-organic fertilizer on spring wheat yield enhancement and soil enrichment [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1872-1882. |
[11] | LIU Xuhuan, YU Shan, LIU Yue, SHI Shubing. Comparative on the vigor differences of spring wheat seeds of different sizes [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1883-1887. |
[12] | YANG Mei, ZHAO Hongmei, Dilireba Xiamixiding, YANG Weijun, ZHANG Jinshan, HUI Chao. Effects of nitrogen fertilizer reduction and biochar application on population structure, photosynthetic characteristics and yield of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1582-1589. |
[13] | DU Yun, ZHANG Jingjing, LEI Jiacheng, LI Bo, LI Yongfu. Forecasting method of water requirement of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1590-1596. |
[14] | ZHANG Zhenfei, GUO Jing, YAN An, HOU Zhengqing, YUAN Yilin, XIAO Shuting, SUN Zhe. Study on extraction of apple tree height at different flight altitudes using multispectral UAV [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1710-1716. |
[15] | SHAO Yajie, LI Ke, DING Wenhao, LIN Tao, CUI Jianping, GUO Rensong, WANG Liang, WU Fengquan, WANG Xin, TANG Qiuxiang. Study on cotton biomass estimation based on multi-spectral imaging features of unmanned aerial vehicle [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1328-1335. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 222
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||