Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (3): 616-623.DOI: 10.6048/j.issn.1001-4330.2023.03.012
• Horticultural Special Local Products·Physiology and Biochemistry • Previous Articles Next Articles
GUO Yang1(), GUO Junxian1(
), SHI Yong1, LIU Li2, FANG Wenyan2, LIU Yancen1
Received:
2022-07-08
Online:
2023-03-20
Published:
2023-04-18
Correspondence author:
GUO Junxian(1975-), male, from Balikun County, Xinjiang, Professor, research direction is nondestructive testing of agricultural products, (E-mail)Supported by:
郭阳1(), 郭俊先1(
), 史勇1, 刘丽2, 方文艳2, 刘彦岑1
通讯作者:
郭俊先(1975-),男,新疆巴里坤人,教授,博士,硕士生/博士生导师,研究方向为农产品无损检测,(E-mail)junxianguo@163.com
作者简介:
郭阳(1995-),男,辽宁沈阳人,硕士研究生,研究方向为农产品无损检测,(E-mail)2744103108@qq.com
基金资助:
CLC Number:
GUO Yang, GUO Junxian, SHI Yong, LIU Li, FANG Wenyan, LIU Yancen. Prediction of SPAD Value in Melon Leaves by Characteristic Wavelength Screening Combined with PCA-LSSVM[J]. Xinjiang Agricultural Sciences, 2023, 60(3): 616-623.
郭阳, 郭俊先, 史勇, 刘丽, 方文艳, 刘彦岑. 特征波长筛选结合PCA-LSSVM对甜瓜叶片SPAD值的预测[J]. 新疆农业科学, 2023, 60(3): 616-623.
样本集 Sample set | 样本数 Sample size | SPAD值 | ||
---|---|---|---|---|
平均值 Mean value | 最大值 Maximum value | 最小值 Minimum value | ||
校正集 Calibration set | 75 | 53.0 | 61.9 | 43.1 |
预测集 Prediction set | 25 | 52.5 | 61.5 | 45.1 |
Tab.1 SPAD value of relative content of chlorophyll in Melon
样本集 Sample set | 样本数 Sample size | SPAD值 | ||
---|---|---|---|---|
平均值 Mean value | 最大值 Maximum value | 最小值 Minimum value | ||
校正集 Calibration set | 75 | 53.0 | 61.9 | 43.1 |
预测集 Prediction set | 25 | 52.5 | 61.5 | 45.1 |
不同光谱预处理 Different Spectral pretreatment | PC | RC | RMSEC | RP | RMSEP | RPD |
---|---|---|---|---|---|---|
Origina | 8 | 0.821 5 | 1.281 6 | 0.563 5 | 1.477 8 | 1.552 1 |
Autoscales | 5 | 0.762 3 | 1.384 4 | 0.740 5 | 1.354 4 | 1.974 1 |
SNVT | 5 | 0.762 3 | 1.384 4 | 0.740 5 | 1.354 4 | 1.974 1 |
SavitZky-Golay | 8 | 0.532 9 | 2.875 7 | 0.601 2 | 2.517 7 | 1.583 7 |
1st deriative | 3 | 0.789 4 | 1.330 9 | 0.766 6 | 1.264 5 | 2.106 3 |
MA | 8 | 0.821 2 | 1.287 8 | 0.563 9 | 1.477 2 | 1.552 8 |
Normalize | 12 | 0.879 6 | 1.011 1 | 0.350 6 | 2.024 5 | 1.243 2 |
Tab.2 PLS model of chlorophyll content with different pretreatment methods
不同光谱预处理 Different Spectral pretreatment | PC | RC | RMSEC | RP | RMSEP | RPD |
---|---|---|---|---|---|---|
Origina | 8 | 0.821 5 | 1.281 6 | 0.563 5 | 1.477 8 | 1.552 1 |
Autoscales | 5 | 0.762 3 | 1.384 4 | 0.740 5 | 1.354 4 | 1.974 1 |
SNVT | 5 | 0.762 3 | 1.384 4 | 0.740 5 | 1.354 4 | 1.974 1 |
SavitZky-Golay | 8 | 0.532 9 | 2.875 7 | 0.601 2 | 2.517 7 | 1.583 7 |
1st deriative | 3 | 0.789 4 | 1.330 9 | 0.766 6 | 1.264 5 | 2.106 3 |
MA | 8 | 0.821 2 | 1.287 8 | 0.563 9 | 1.477 2 | 1.552 8 |
Normalize | 12 | 0.879 6 | 1.011 1 | 0.350 6 | 2.024 5 | 1.243 2 |
处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |
MC-UVE | 0.831 4 | 1.441 9 | 0.739 1 | 2.031 7 |
GA | 0.888 1 | 0.990 4 | 0.720 6 | 1.843 7 |
CARS | 0.881 8 | 0.976 1 | 0.804 5 | 1.810 4 |
MC-UVE+PCA | 0.863 3 | 1.149 0 | 0.749 8 | 1.830 2 |
GA+PCA | 0.867 4 | 1.101 4 | 0.859 0 | 1.129 3 |
CARS+PCA | 0.875 6 | 1.032 8 | 0.872 6 | 1.252 6 |
Tab.3 Modeling and prediction of spectral variables combined with ELM
处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |
MC-UVE | 0.831 4 | 1.441 9 | 0.739 1 | 2.031 7 |
GA | 0.888 1 | 0.990 4 | 0.720 6 | 1.843 7 |
CARS | 0.881 8 | 0.976 1 | 0.804 5 | 1.810 4 |
MC-UVE+PCA | 0.863 3 | 1.149 0 | 0.749 8 | 1.830 2 |
GA+PCA | 0.867 4 | 1.101 4 | 0.859 0 | 1.129 3 |
CARS+PCA | 0.875 6 | 1.032 8 | 0.872 6 | 1.252 6 |
处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |
MC-UVE | 0.953 7 | 0.003 4 | 0.812 9 | 0.010 8 |
GA | 0.576 3 | 0.027 4 | 0.526 2 | 0.032 8 |
CARS | 0.903 5 | 0.006 8 | 0.893 1 | 0.008 6 |
MC-UVE+PCA | 0.877 3 | 0.009 2 | 0.793 8 | 0.011 8 |
GA+PCA | 0.897 0 | 0.007 2 | 0.883 0 | 0.008 3 |
CARS+PCA | 0.878 1 | 0.008 5 | 0.843 1 | 0.010 5 |
Tab.4 Modeling and prediction effect of spectral variable processing combined with SVM
处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |
MC-UVE | 0.953 7 | 0.003 4 | 0.812 9 | 0.010 8 |
GA | 0.576 3 | 0.027 4 | 0.526 2 | 0.032 8 |
CARS | 0.903 5 | 0.006 8 | 0.893 1 | 0.008 6 |
MC-UVE+PCA | 0.877 3 | 0.009 2 | 0.793 8 | 0.011 8 |
GA+PCA | 0.897 0 | 0.007 2 | 0.883 0 | 0.008 3 |
CARS+PCA | 0.878 1 | 0.008 5 | 0.843 1 | 0.010 5 |
处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |
MC-UVE | 0.990 0 | 0.000 1 | 0.792 3 | 0.012 4 |
GA | 0.674 3 | 0.021 7 | 0.633 1 | 0.023 6 |
CARS | 0.890 0 | 0.007 1 | 0.873 1 | 0.008 7 |
MC-UVE+PCA | 0.993 1 | 0.000 7 | 0.744 7 | 0.014 3 |
GA+PCA | 0.955 8 | 0.004 3 | 0.939 7 | 0.005 1 |
CARS+PCA | 0.986 6 | 0.001 1 | 0.776 9 | 0.017 7 |
Tab.5 Modeling and prediction effect of spectral variable processing combined with LSSVM
处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |
MC-UVE | 0.990 0 | 0.000 1 | 0.792 3 | 0.012 4 |
GA | 0.674 3 | 0.021 7 | 0.633 1 | 0.023 6 |
CARS | 0.890 0 | 0.007 1 | 0.873 1 | 0.008 7 |
MC-UVE+PCA | 0.993 1 | 0.000 7 | 0.744 7 | 0.014 3 |
GA+PCA | 0.955 8 | 0.004 3 | 0.939 7 | 0.005 1 |
CARS+PCA | 0.986 6 | 0.001 1 | 0.776 9 | 0.017 7 |
[1] |
丁永军, 李民赞, 郑立华, 等. 基于近红外光谱小波变换的温室番茄叶绿素含量预测[J]. 光谱学与光谱分析, 2011, 31(11):2936-2937.
PMID |
DING Yongjun, LI Minzan, ZHENG Lihua, et al. Prediction of chlorophyll content in greenhouse tomato based on wavelet transform of near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(11): 2936-2937.
PMID |
|
[2] |
Mareco R A, Antezanavera S A, Nascimento H C S. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings on six Amazonian tree species[J]. Photosynthetica, 2009, 47(2):184-190.
DOI URL |
[3] | 崔小涛, 常庆瑞, 屈春燕, 等. 基基于高光谱和MLSR-GA-BP神经网络模型油菜叶片SPAD值遥感估算[J]. 东北农业大学学报, 2020, 51(8):74-84. |
CUI Xiaotao, CHANG Qingrui, QU Chunyan, et al. Estimation of SPAD value of rape leaves based on hyperspectral and MLSR-GA-BP Neural Network Model[J]. Journal of Northeast Agricultural University, 2020, 51(8): 74-84. | |
[4] | 刘宁, 邢子正, 乔浪, 等. 基于模型集群的马铃薯叶绿素检测光谱变量筛选讨论[J]. 光谱学与光谱分析, 2020, 40(7),2259-2266. |
LIU Ning, XING Zizheng, QIAO Lang, et al. Discussion on the selection of spectral variables for chlorophyll detection in potato based on model cluster[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2259-2266. | |
[5] | 李雪, 杨瑞楠, 原喆, 等. 油菜籽叶绿素含量近红外光谱快速检测[J]. 中国油料作物学报, 2019, 41(1),126-129. |
LI Xue, YANG Yuinan, YUAN Zhe, et al. Rapid determination of chlorophyll content in rapeseed by near infrared spectroscopy[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(1):126-129. | |
[6] | 王璐, 李凯伟, 关海鸥, 等. 基于多维度光谱特征波长提取大豆冠层SPAD值估算模型[J]. 江苏大学学报(自然科学版), 2020, 41(3),334-372. |
WANG Lu, LI Kaiwei, GUAN Haiou, et al. Estimating model for SPAD value of soybean canopy based on multi-dimensional spectral characteristic wavelength[J]. Journal of Jiangsu University, 2020, 41(3): 334-372. | |
[7] | 吴文强, 常庆瑞, 陈涛, 等. 基于PCA-BP神经网络算法桃树叶片SPAD值高光谱估算[J]. 西北林学院学报, 2019, 34(5),134-140, 224. |
WU Wenqiang, CHANG Qingrui, CHEN Tao, et al. Hyperspectral estimation of SPAD value of peach leaves based on PCA-BP neural network algorithm[J]. Journal of Northwest Forestry University, 2019, 34(5):134-140, 224. | |
[8] | 陈晓, 李修华, 王策, 等. 基于反射光谱全波段与双波段甘蔗叶片叶绿素预测模型比较[J]. 中国农业大学学报, 2018, 23(8),118-124. |
CHEN Xiao, LI Xiuhua, WANG Ce, et al. Comparison of full-band and dual-band models for predicting chlorophyll content in sugarcane leaves based on reflectance[J]. Journal of China Agricultural University, 2018, 23(8):118-124. | |
[9] | 康丽, 高睿, 孔庆明, 等. 水稻叶片SPAD值高光谱成像估测[J]. 东北农业大学学报, 2020, 51(10),89-96. |
KANG Li, GAO Rui, GONG Qingming, et al. Estimation of SPAD value of rice leaves by hyperspectral imaging[J]. Journal of Northeast Agricultural University, 2020, 51(10): 89-96. | |
[10] | 毛博慧, 孙红, 毛罕平. 等. 基于正交变换与SPXY样本划分的冬小麦叶绿素诊断[J]. 农业机械学报, 2017, 48(S1): 160-165. |
MAO Bohui, SUN Hong, LIU Haojie, et al. Diagnosis of chlorophyll in winter wheat based on orthogonal transformation and SPXY samples[J]. Journal of Agricultural Machinery, 2017, 48(S1):160-165. | |
[11] |
王小燕, 王锡昌, 刘源. 等. 基于SVM 算法的近红外光谱技术在鱼糜水分和蛋白质检测中的应用[J]. 光谱学与光谱分析, 2012, 32(9): 2418-2421.
PMID |
WANG Xiaoyan, WANG Xichang, LIU Yuan, et al. Application of SVM Algorithm based near-infrared spectroscopy in detection of water and protein in Surimi[J]. Spectroscopy and Spectral Analysis, 2012, 32(9):2418-2421.
PMID |
|
[12] | 何勇, 刘飞, 李晓丽. 等. 光谱及成像技术在农业中的应用[M]. 北京: 科学出版社, 2016: 97-98. |
HE Yong, LIU Fei, LI Xiaoli, et al. Application of spectroscopy and imaging technology in agriculture[M]. Beijing: Science Press, 2016: 97-98. | |
[13] |
朱哲燕, 刘飞, 张初. 等. 基于中红外光谱技术的香菇蛋白质含量测定[J]. 光谱学与光谱分析, 2014, 34(7): 1844-1848.
PMID |
ZHU Zheyan, LIU Fei, ZHANG Chu, et al. Determination of Lentinus edodes protein content based on mid infrared spectroscopy[J]. Spectroscopy and spectral analysis, 2014, 34(7): 1844-1848.
PMID |
|
[14] | 孙俊, 从孙丽, 毛罕平. 等. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型[J]. 农业工程学报, 2017, 33(5): 178-184. |
SUN Jun, CONG Sunli, MAO Hanping, et al. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 178-184. | |
[15] |
Farrés M, Platikanov S, Tsakovski S, et al. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation[J]. Journal of Chemometrics, 2015, 29(10):528-536.
DOI URL |
[16] |
Pereira A F C, Pontes M J C, Neto F F G, et al. NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection[J]. Food Research International, 2008, 41(4):341-348.
DOI URL |
[17] | 孟庆龙, 尚静, 黄人帅. 等. 基于主成分回归的苹果可溶性固形物含量预测模型[J]. 保鲜与加工, 2020, 20(5): 185-189. |
MENG Qinglong, SHANG Jing, HUANG Renshuai, et al. Prediction model of soluble solid content of apple based on principal component regression[J]. Preservation and Processing, 2020, 20(5): 185-189. |
[1] | LI Junhua, MAO Jiancai, YANG Junyan, WANG Haojie. Analysis of the Current Situation of the Jiashi Melon Industry and discussion of Development Countermeasures [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 101-105. |
[2] | ZHANG Hao, LIANG Qigan, ZHANG Xuejun, FU Xiaofa, CHEN Jihao, ZHOU Bo, HUANG Yuan. The resistance analysis of Cucumis metuliferus and its effect of grafting on melon quality [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1963-1968. |
[3] | CHEN Jihao, ZHANG Hao, LIANG Qigan, FU Xiaofa, ZHANG Xuejun, MAO Jiancai. Effects of optimal fertilization and organic fertilizer application on the yield and quality of oriental melon [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1969-1975. |
[4] | Kadierayi Maimaiti, ZHOU Tingting, HAN Sheng, Meilikehan Rexiti, Yushanjiang Maimaiti. Establishment of genetic transformation and regeneration systems for different melon varieties and rapid acquisition of gene edited plants [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1666-1672. |
[5] | WU Fengyang, HUANG Wenqian, TIAN Xi, YANG Yulin. Research on recognition and localization of unordered stacked watermelons based on machine vision [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1805-1813. |
[6] | YANG Junyan, YAN Miao, WU Haibo, YANG Wenli, WANG Haojie, MAO Jiancai, ZHAI Wenqiang, LI Junhua. The impact of high temperature on different thick -skinned melon varieties and comprehensive evaluation of its heat resistance [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1386-1396. |
[7] | LIU Yang, ZHANG Zhengxiao, BAI Yujia, FENG Zuoshan. Effects of Alternaria alternata infection on active oxygen metabolism in different tissues of melon [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1397-1406. |
[8] | GAO Mutian, XIAO Yanmei, LIAO Zhijie, HUANG Cheng. Comprehensive evaluation of kernel and quality traits in maize-teosinte introgression line population [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 885-891. |
[9] | MA Ling, SHEN Qi, KANG Qi, ZHANG Zhongxiang, JIA Hongtao, WANG Cheng. Change and association analysis of five heavy metals in melon plants at different growth stages [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 892-899. |
[10] | YANG Wenli, XU Lirong, LIU Bin, LING Yueming, LI Meihua, YANG Yong, FAN Rong, LI Yushun, ZHANG Yongbin, ZHANG Xuejun. Effects of salt stress on ion balance, membrane lipid peroxidation, and osmotic regulation substance accumulation in thin skin muskmelon ‘Huishu’ [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 900-907. |
[11] | LIANG Qigan, ZHANG Hao, HU Guozhi, CHEN Jihao, FENG Tongxin, CAO Qing, WANG Min, FU Xiaofa, YAN Miao, GAO Qiang, ZHANG Xuejun, ZHOU Bo, WANG Haojie. Growth,yield and quality of muskmelon in fertilization control facilities [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 599-606. |
[12] | ZHANG Wei, YANG Guohui, YU Hui. Effects of 2,4-epibrassinolide on growth and related genes expression of watermelon seedlings under drought Stress [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 615-622. |
[13] | LI Hui, BI Ying, WANG Xinyu, LEI Yaxin, ZHANG Qi, HUANG Shuai, Rezha kuwangdeke, WANG Jing. Effects of regulation of walnut green peel polyphenols on postharvest active oxygen metabolism and reduction of rotten in Hami melon [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2966-2975. |
[14] | LI Chunyu, TAN Zhanming, CHENG Yunxia, GAO Yuan, MA Quanhui, LI Zhiguo, MA Xing. Effects of water and fertilizer coupling on diurnal changes of chlorophyll content and photosynthetic characteristics of sand-cultivated tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3006-3013. |
[15] | XU Bin, WANG Zheng, SONG Zhanteng, Merhaba Paerhati, ZHU Jingrong, CHE Fengbin, LI Yonghai, WU Fengyan, MIAO Fuhong. Analysis and comprehensive evaluation of the fruit quality of 11 wild seabuckthorn germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3020-3031. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||