Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (3): 574-581.DOI: 10.6048/j.issn.1001-4330.2023.03.007
• Horticultural Special Local Products·Physiology and Biochemistry • Previous Articles Next Articles
LYU Qi1,2(), JIANG Yu1, ZHAO Fengyun1(
), LEI Ye3, YU Kun1, YAO Dongdong1, LI Xujiao1, SHA Riye1, WANG Fangxia1
Received:
2022-08-09
Online:
2023-03-20
Published:
2023-04-18
Correspondence author:
ZHAO Fengyun (1985-), Doctor, Associate Professor, Research area: fruit tree cultivation and physiology and related regulation,(E-mail)Supported by:
吕齐1,2(), 蒋宇1, 赵丰云1(
), 雷叶3, 于坤1, 姚东东1, 李旭娇1, 沙日叶1, 王芳霞1
通讯作者:
赵丰云(1985-),女,山东人,副教授,博士,研究方向为果树栽培与生理及相关调控,(E-mail)zhaofengyunshihezi@163.com
作者简介:
吕齐(1997-),男,新疆人,硕士研究生,研究方向为果树栽培生理与水肥,(E-mail)1549993076@qq.com
基金资助:
CLC Number:
LYU Qi, JIANG Yu, ZHAO Fengyun, LEI Ye, YU Kun, YAO Dongdong, LI Xujiao, SHA Riye, WANG Fangxia. Effects of Biochar on Biomass, Chlorophyll Fluorescence Parameters and Ion Distribution of FIG under Salt Stress[J]. Xinjiang Agricultural Sciences, 2023, 60(3): 574-581.
吕齐, 蒋宇, 赵丰云, 雷叶, 于坤, 姚东东, 李旭娇, 沙日叶, 王芳霞. 施加生物炭对盐胁迫下无花果生物量叶绿素荧光参数及离子分配的影响[J]. 新疆农业科学, 2023, 60(3): 574-581.
处理 Treatment | 新叶 New leaf (g) | 新叶柄 New petiole (g) | 细根(<2 mm) Fine root (g) | 粗根(>2 mm) Thick root (g) |
---|---|---|---|---|
布兰瑞克+CK Brunswick+CK | 1.92±0.18b | 0.20±0.04b | 3.31±0.86ab | 6.83±0.97a |
布兰瑞克+生物炭 Brunswick+Biochar | 3.13±0.419a | 0.27±0.06a | 3.86±0.91a | 7.44±1.09a |
日本紫果+CK Violette Solise+CK | 1.80±0.12b | 0.18±0.05b | 2.45±0.24b | 6.42±0.75a |
日本紫果+生物炭 Violette Solise+Biochar | 2.94±0.35a | 0.25±0.02a | 3.09±0.45ab | 6.71±1.23a |
Tab.1 Effect of applying biochar under salt stress on the biomass of fig plant
处理 Treatment | 新叶 New leaf (g) | 新叶柄 New petiole (g) | 细根(<2 mm) Fine root (g) | 粗根(>2 mm) Thick root (g) |
---|---|---|---|---|
布兰瑞克+CK Brunswick+CK | 1.92±0.18b | 0.20±0.04b | 3.31±0.86ab | 6.83±0.97a |
布兰瑞克+生物炭 Brunswick+Biochar | 3.13±0.419a | 0.27±0.06a | 3.86±0.91a | 7.44±1.09a |
日本紫果+CK Violette Solise+CK | 1.80±0.12b | 0.18±0.05b | 2.45±0.24b | 6.42±0.75a |
日本紫果+生物炭 Violette Solise+Biochar | 2.94±0.35a | 0.25±0.02a | 3.09±0.45ab | 6.71±1.23a |
部位 Position | 处理 Treatment | C(mg/kg) | N(mg/kg) | C/N |
---|---|---|---|---|
叶Leaf | 布兰瑞克+CK | 2.440±0.44a | 0.156±0.03ab | 15.66±0.03b |
布兰瑞克+生物炭 | 2.366±0.75a | 0.167±0.03a | 14.14±0.07b | |
日本紫果+CK | 2.356±0.43a | 0.113±0.06b | 20.84±0.13a | |
日本紫果+生物炭 | 2.595±0.20a | 0.164±0.02a | 15.84±0.22b | |
细根Fine root | 布兰瑞克+CK | 2.600±0.34a | 0.056±0.09c | 46.20±0.63a |
布兰瑞克+生物炭 | 2.576±0.53a | 0.064±0.06b | 40.18±0.43b | |
日本紫果+CK | 2.457±0.72a | 0.079±0.02a | 31.38±0.71c | |
日本紫果+生物炭 | 2.582±0.12a | 0.063±0.02b | 40.55±0.91b |
Tab.2 Effects of biochar on absorption of C, N in FIG plants under brackish water irrigation
部位 Position | 处理 Treatment | C(mg/kg) | N(mg/kg) | C/N |
---|---|---|---|---|
叶Leaf | 布兰瑞克+CK | 2.440±0.44a | 0.156±0.03ab | 15.66±0.03b |
布兰瑞克+生物炭 | 2.366±0.75a | 0.167±0.03a | 14.14±0.07b | |
日本紫果+CK | 2.356±0.43a | 0.113±0.06b | 20.84±0.13a | |
日本紫果+生物炭 | 2.595±0.20a | 0.164±0.02a | 15.84±0.22b | |
细根Fine root | 布兰瑞克+CK | 2.600±0.34a | 0.056±0.09c | 46.20±0.63a |
布兰瑞克+生物炭 | 2.576±0.53a | 0.064±0.06b | 40.18±0.43b | |
日本紫果+CK | 2.457±0.72a | 0.079±0.02a | 31.38±0.71c | |
日本紫果+生物炭 | 2.582±0.12a | 0.063±0.02b | 40.55±0.91b |
部位 Position | 处理 Treatment | Na+ (mg/kg) | K+ (mg/kg) | Ca2+(mg/kg) | Cl- (mg/kg) | K+ / Na + | Ca2+/ Na+ |
---|---|---|---|---|---|---|---|
叶 Leaf | 布兰瑞克+CK | 2 204.55±0.44a | 11 421.18±0.44a | 6 337.47±0.44a | 12 811.50±0.44a | 5.18 | 2.87 |
布兰瑞克+生物炭 | 1 793.86±0.44a | 18 489.95±0.44a | 10 634.91±0.44a | 7 546.10±0.44a | 10.31 | 5.93 | |
日本紫果+CK | 2 686.56±0.44a | 11 847.56±0.44a | 5 145.15±0.44a | 13 154.30±0.44a | 4.41 | 1.92 | |
日本紫果+生物炭 | 1 753.75±0.44a | 12 058.34±0.44a | 9 699.33±0.44a | 9 750.40±0.44a | 6.88 | 5.53 | |
细根 Fine root | 布兰瑞克+CK | 4 119.70±0.44a | 11 182.38±0.44a | 25 345.69±0.44a | 3 715.70±0.44a | 2.71 | 6.15 |
布兰瑞克+生物炭 | 2 732.87±0.44a | 13 000.87±0.44a | 49 543.95±0.44a | 2 361.30±0.44a | 4.76 | 18.13 | |
日本紫果+CK | 4 498.72±0.44a | 10 363.52±0.44a | 15 099.57±0.44a | 3 242.90±0.44a | 2.30 | 3.36 | |
日本紫果+生物炭 | 2 725.76±0.44a | 12 475.67±0.44a | 35 423.43±0.44a | 2 943.90±0.44a | 4.58 | 13.00 |
Tab.3 Effects of biochar on Na+, K+, Ca2+ and Cl- distribution in FIG plants under salt stress
部位 Position | 处理 Treatment | Na+ (mg/kg) | K+ (mg/kg) | Ca2+(mg/kg) | Cl- (mg/kg) | K+ / Na + | Ca2+/ Na+ |
---|---|---|---|---|---|---|---|
叶 Leaf | 布兰瑞克+CK | 2 204.55±0.44a | 11 421.18±0.44a | 6 337.47±0.44a | 12 811.50±0.44a | 5.18 | 2.87 |
布兰瑞克+生物炭 | 1 793.86±0.44a | 18 489.95±0.44a | 10 634.91±0.44a | 7 546.10±0.44a | 10.31 | 5.93 | |
日本紫果+CK | 2 686.56±0.44a | 11 847.56±0.44a | 5 145.15±0.44a | 13 154.30±0.44a | 4.41 | 1.92 | |
日本紫果+生物炭 | 1 753.75±0.44a | 12 058.34±0.44a | 9 699.33±0.44a | 9 750.40±0.44a | 6.88 | 5.53 | |
细根 Fine root | 布兰瑞克+CK | 4 119.70±0.44a | 11 182.38±0.44a | 25 345.69±0.44a | 3 715.70±0.44a | 2.71 | 6.15 |
布兰瑞克+生物炭 | 2 732.87±0.44a | 13 000.87±0.44a | 49 543.95±0.44a | 2 361.30±0.44a | 4.76 | 18.13 | |
日本紫果+CK | 4 498.72±0.44a | 10 363.52±0.44a | 15 099.57±0.44a | 3 242.90±0.44a | 2.30 | 3.36 | |
日本紫果+生物炭 | 2 725.76±0.44a | 12 475.67±0.44a | 35 423.43±0.44a | 2 943.90±0.44a | 4.58 | 13.00 |
处理 Treatment | K+选择 性运输 SK, Na | Ca2+选择 性运输 SCa, Na |
---|---|---|
布兰瑞克+CK Brunswick+CK | 1.91 | 0.47 |
布兰瑞克+生物炭 Brunswick+Biochar | 2.17 | 0.33 |
日本紫果+CK Violette Solise+CK | 1.91 | 0.57 |
日本紫果+生物炭 Violette Solise+Biochar | 1.50 | 0.43 |
Tab.4 Effects of biochar on the Selective transport coefficients of K+ and Ca2+ in FIG plants under salt stress
处理 Treatment | K+选择 性运输 SK, Na | Ca2+选择 性运输 SCa, Na |
---|---|---|
布兰瑞克+CK Brunswick+CK | 1.91 | 0.47 |
布兰瑞克+生物炭 Brunswick+Biochar | 2.17 | 0.33 |
日本紫果+CK Violette Solise+CK | 1.91 | 0.57 |
日本紫果+生物炭 Violette Solise+Biochar | 1.50 | 0.43 |
[1] | 张陆阳. 中国葡萄种植面积超越法国[J]. 中外葡萄与葡萄酒, 2015, (5): 64. |
ZHANG Luyang. The planting area of Grape in China exceeded that of France[J]. Chinese and Foreign Grape and Wine, 2015(5): 64. | |
[2] |
Amini S., Ghadiri H., Chen C., et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review[J]. Soils Sediments 16 (3), 939-953.
DOI URL |
[3] | 史祥宾. 巨峰葡萄需氮规律及不同砧木的氮素吸收利用特征[D]. 泰安: 山东农业大学, 2012. |
SHI Xiangbin. Nitrogen requirement rule of Jufeng Grape and Nitrogen absorption and utilization characteristics of different rootstocks[D]. Tai’an: Shandong Agricultural University, 2012. | |
[4] | 史祥宾, 杨阳, 翟衡, 等. 不同时期施用氮肥对巨峰葡萄氮素吸收、分配及利用的影响[J]. 植物营养与肥料学报, 2011, (6): 1444-1450. |
SHI Xiangbin, YANG Yang, ZHAI Heng, et al. Effects of Nitrogen Fertilizer on Nitrogen Uptake, Distribution and Utilization of Jufeng Grape[J]. Plant Nutrition and Fertilizer Science, 2011, (6): 1444-1450. | |
[5] |
Carrari F, Fernie A R. Metabolic regulation underlying tomato fruit development[J]. Journal of Experimental Botany, 2006, 57(9):1883-1897.
DOI PMID |
[6] | 赵婷, 杨建宁, 吴玉霞, 等. 外源H2S处理对盐碱胁迫下垂丝海棠幼苗生理特性的影响[J]. 果树学报, 2020, 37(8):1156-1167. |
ZHAO Ting, YANG Jianning, WU Yuxia, et al. Effects of exogenous H2S on physiological characteristics of Malus sinensis seedlings under saline-alkali stress[J]. Journal of Fruit Science, 2020, 37(8):1156-1167. | |
[7] | Partey S T, Saito K, Preziosi R F, et al. Biochar use in a legume rice rotation system: effects on soil fertility and crop performance[J]. Archives of Agronomy & Soil Science, 2016, 62(2):199-215 |
[8] | Subedi R, Bertora C, Zavattaro L, et al. Crop response to soils amended with biochar: expected benefits and unintended risks[J]. Italian Journal of Agronomy, 2017, 11(794):161-173. |
[9] |
Thomas S C, Frye S, Gale N, et al. Biochar mitigates negative effects of salt additions on two herbaceous plant species.[J]. Journal of Environmental Management, 2013, 129(18):62-68.
DOI URL |
[10] |
Farhangi-Abriz S, Torabian S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress[J]. Symbiosis, 2017, 74(3):1-9.
DOI URL |
[11] | 于坤, 郁松林, 许雯博, 等. 干旱区膜下滴灌不同灌水和施氮水平对‘赤霞珠’葡萄幼苗氮素代谢和根系发育的影响[J]. 果树学报, 2013, 30(6):975-982. |
YU Kun, YU Songlin, XU Wenbo, et al. Effects of drip irrigation and nitrogen application on nitrogen metabolism and root development of Cabernet Sauvignon seedlings in arid region[J]. Journal of Fruit Science, 2013, 30(6):975-982. | |
[12] |
Wu W X, Ye Q F, Min H, et al. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil[J]. Soil Biology and Biochemistry, 2004, 36: 289-295.
DOI URL |
[13] | Greenway H, Armstrong W, Colmer T. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Annals of Botany, 2006, 98:-32. |
[14] | Lashari M S, Ye Y, Ji H, et al. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment[J]. Journal of the Science of Food & Agriculture, 2015, 95(6):1321-1327. |
[15] |
Saifullah, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: Challenges and opportunities[J]. Science of the Total Environment, 2017, 625:320-335.
DOI URL |
[16] | Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin[J]. Choice Reviews Online, 2013, 50(9) : 50-4995. |
[17] |
尤超, 沈虹, 张营营, 等. 不同无花果品种耐盐性与生理生化特征研究[J]. 中国农学通报, 2017, 33(1):64-71.
DOI |
LONG Chao, SHEN Hong, ZHANG Yingying, et al. Salt tolerance and physiological-biochemical characterstics of different Fig cultivars[J]. Chinese Agricultlulral Science Bulletin, 2017, 33(1):64-71. | |
[18] | Genty B, Briantais J M, Baker N R. The relationship be-tween the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989, 990(1):87-92. |
[19] |
Awal Mohd Abdul. Analysis of Advantages of Gold (Au) Wash Solution for Chemical Analysis of Soil and Water Samples in Sundarbans by IPC-MS[J]. American Journal of Biomedical and Life Sciences, 2014, 2(5):108.
DOI URL |
[20] | 刘永强, 于泓. 离子色谱法在离子液体阴阳离子分析中的应用[J]. 分析测试学报, 2015, 34(6):734-743. |
LIU Yongqiang, YU Hong. Application of Ion Chromatography in the Analysis of Yin and Yang Ions in Ionic Liquid[J]. Journal of Analysis and Measurement, 2015, 34(6):734-743. | |
[21] | 鲍世德. 土壤农用化学分析方法[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Analysis Methods for Soil Agro-Chemistry[M]. Beijing: China Agriculture Press, 2000. | |
[22] | PITMAN MG. Transport across the root and shoot/root interactions[M].STAPLES R C, TOENNIESSEN G H.Salinity tolerance in plants, strategies for crop improvement. New York: John Wiley and Sons, 1984:93-123. |
[23] |
Munns R, Termaat A. Whole plant responses to salinity[J]. Functional Plant Biology, 1986, 13(1): 143-160.
DOI URL |
[24] | 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999,(4): 444-448. |
ZHANG Shouren. The significance and discussion of chlorophyll fluorescence kinetic parameters[J]. Chinese Bulletin of Botany, 1999,(4): 444-448. | |
[25] |
M. Rejili, A.M. Vadel, A. Guetet, et al. Effect of NaCl on the growth and the ionic balance K+ /Na+ of two populations of Lotus creticus (L.) (Papilionaceae)[J]. South African Journal of Botany, 2007, 73(4): 623-631.
DOI URL |
[26] | 李俊敏, 刘朝晖, 尚忠林. 细胞膜上的离子通道[J]. 河北师范大学学报, 2005, 29(5): 519-522. |
LI Junming, LIU Zhaohui, SHANG Zhonglin. Ion channel on cell membrane[J]. Journal of Hebei Normal University, 2005, 29(5): 519-522. | |
[27] |
Usman A, Al-Wabel M I, Yong S O, et al. Conocarpus Biochar Induces Changes in Soil Nutrient Availability and Tomato Growth Under Saline Irrigation[J]. Pedosphere, 2016, 26(1):27-38.
DOI URL |
[28] | S. S. Akhtar, M. N. Andersen, F. Liu. Biochar Mitigates Salinity Stress in Potato[J]. Journal of Agronomy and Crop Science, 2015, 201(5):526-539. |
[29] |
Gayoung Yoo, Hyunjin Kim, Jong Yun Choi. Soil Aggregate Dynamics Influenced by Biochar Addition using the 13C Natural Abundance Method[J]. Soil Science Society of America Journal, 2017, 81(3):612-621.
DOI URL |
[30] | 张瑞, 贾旭梅, 朱祖雷, 等. ‘烟富六号’苹果在不同砧木上响应盐碱胁迫的光合及生理特性[J]. 果树学报, 2019, 36(6):718-728. |
ZHANG Rui, JIA Xumei, ZHU Zulei, et al. Photosynthetic and Physiological Characteristics of 'Yanfu No. 6' Apple Responding to Saline-Alkali Stress on Different rootstocks[J]. Journal of Fruit Science, 2019, 36(6):718-728. | |
[31] | 黄清荣, 祁琳, 柏新富. 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响[J/OL]. 生态学报, 2018(2):1-9[2018-01-29]. |
HUANG Qingrong, QI Lin, BAI Xinfu. Effects of root environment oxygen Supply on photosynthesis and ion absorption of cotton seedlings under salt stress[J/OL]. Acta Ecologica Sinica, 2018(2):1-9[2018-01-29]. | |
[32] |
López-Aguilar R, Orduйo-Cruz A, Lucero-Arce A, et al. Response to salinity of three grain legumes for potential cultivation in arid areas[J]. Soil Science and Plant Nutrition, 2003, 49(3): 329-336.
DOI URL |
[33] |
Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45 (2): 437-448.
DOI URL |
[34] | 尚培培, 李丰先, 周宇飞, 等. 混合碱(NaHCO3和NaCO3)胁迫对高粱幼苗渗透调节和离子平衡的影响. 生态学杂志, 2015, 34(7):1924-1929. |
SHANG Peipei, LI Fengxian, ZHOU Yufei, et al. Effects of mixed alkali (NaHCO3 and NaCO3) stress on osmotic regulation and ion balance of Sorghum seedlings[J]. Chinese Journal of Ecology, 2015, 34 (7): 1924-1929. | |
[35] |
Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture, Ecosystems & Environment, 1992, 38(4): 275-300.
DOI URL |
[1] | XIAO Shuting, YAN An, WANG Weixia, ZHANG Qingqing, HOU Zhengqing, MA Mengqian, SUN Zhe. Analysis of spatial and temporal variations of aboveground biomass and the factors affecting it in a typical forest area in the central Tianshan Mountains [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2237-2244. |
[2] | LI Ruyong, REN Jiuming, LEI Ting, WANG Kelin, LIU Pengcheng, LI Jiangtao. Differences in carbon sink estimation between photosynthetic and biomass methods in the Tarim Desert Highway shelterbelt [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2014-2022. |
[3] | YANG Mei, ZHAO Hongmei, Dilireba Xiamixiding, YANG Weijun, ZHANG Jinshan, HUI Chao. Effects of nitrogen fertilizer reduction and biochar application on population structure, photosynthetic characteristics and yield of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1582-1589. |
[4] | SHAO Yajie, LI Ke, DING Wenhao, LIN Tao, CUI Jianping, GUO Rensong, WANG Liang, WU Fengquan, WANG Xin, TANG Qiuxiang. Study on cotton biomass estimation based on multi-spectral imaging features of unmanned aerial vehicle [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1328-1335. |
[5] | GENG Meiju, WANG Xinhui, LIU Xiaoying, LYU Pei. Effects of sealing on fungal communities in desert grasslands [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1250-1258. |
[6] | Bahayiding Wupuer, Abulaike Niyazi, Huxidan Maimaiti, LYU Xiaolong, WANG Haomiao, MA Huiqin. Mutagenesis effect of 60Co-γ radiation on the annual branches of different fig varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 373-381. |
[7] | Reyihan Abulizi, HE Xuemin, YANG Huan, HUANG Pengcheng, FENG Haipeng, WANG Yongzhi. Characteristics of chlorophyll-fluorescence parameters of Suaeda microphylla Pall.and their responses to soil factors in different water-salt habitats [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 485-494. |
[8] | LI Yali, Halihashi , TANG Yali, DUAN jingjing, LI Qingjun. Effect of NP reduction and K synergism on yield and nutrient absorption of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3014-3019. |
[9] | HOU Zhengqing, YAN An, XIE Kaiyun, YUAN Yilin, XIA Wenqiu, XIAO Shuting, ZHANG Zhenfei, SUN Zhe. Estimation of aboveground biomass of Diarthron tianschanicum based on vegetation index fusion [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2787-2796. |
[10] | HOU Zhengqing, YAN An, XIE Kaiyun, YUAN Yilin, XIA Wenqiu, XIAO Shuting, ZHANG Zhenfei, SUN Zhe. Estimation of above ground biomass of drone Diarthron tianschanicum based on multi feature fusion [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2527-2536. |
[11] | CHEN Chuanxin, ZHNAG Yongqiang, NIE Shihui, KONG Depeng, Sailihan Sai, XU Qijiang, LEI Junjie. Effects of biomass charcoal application rate on the growth, development, and yield of winter wheat under drip irrigation [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2146-2151. |
[12] | MA Xinchao, XUAN Zhengying, MIN Haozhe, QI Zhiwen, CHENG Hongyu, TAN Zhanming, WANG Xufeng. Effects of water and nitrogen coupling on diurnal changes of photosynthesis and chlorophyll fluorescence parameters of cucumber in sandy culture [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1966-1974. |
[13] | DING Yu, ZHANG Jianghui, BAI Yungang, LIU Hongbo, ZHENG Ming, ZHAO Jinghua, XIAO Jun, HAN Zhengyu. Effects of different dry sowing and wet-out water treatments on cotton physiology, growth characteristics and yield under double film conditions [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 810-822. |
[14] | XIA Tingting, Subinuer Wumaierjiang, YU Zhaowen, LI Hong, LYU Wenjun, Tuerxunnayi Reyimu. Effects of different utilization methods on the biomass distribution of mountain meadows in the middle of northern slope of Tianshan Mountain [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 974-981. |
[15] | QIN Guoli, WANG Weiran, WANG Meng, YANG Jing, HUANG Xinglei, LIU Zhiqing, ZHU Jiahui, Alifu Aierxi, KONG Jie, CHEN Guodong. Effects of agronomic characters and photosynthetic parameters of glyphosate on sea island cotton [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2861-2868. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||