Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (8): 2014-2022.DOI: 10.6048/j.issn.1001-4330.2024.08.022
• Horticultural Special Local Products · Agricultural Product Processing Engineering · Forestry • Previous Articles Next Articles
LI Ruyong1(), REN Jiuming1, LEI Ting1, WANG Kelin1(
), LIU Pengcheng1, LI Jiangtao2
Received:
2024-01-15
Online:
2024-08-20
Published:
2024-09-19
Correspondence author:
WANG Kelin
Supported by:
李汝勇1(), 任久明1, 雷霆1, 王克林1(
), 刘鹏程1, 李江涛2
通讯作者:
王克林
作者简介:
李汝勇(1966-),男,河北南皮人,教授级高级工程师,研究方向为新能源,(E-mail)liry-tlm@petrochina.com.cn
基金资助:
CLC Number:
LI Ruyong, REN Jiuming, LEI Ting, WANG Kelin, LIU Pengcheng, LI Jiangtao. Differences in carbon sink estimation between photosynthetic and biomass methods in the Tarim Desert Highway shelterbelt[J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2014-2022.
李汝勇, 任久明, 雷霆, 王克林, 刘鹏程, 李江涛. 基于光合法和生物量法分析塔里木沙漠公路防护林带碳汇估算差异性[J]. 新疆农业科学, 2024, 61(8): 2014-2022.
样方 编号 Sample number | 植被频度 Vegetation frequency(%) | 平均 株高 Average plant height (m) | 平均冠幅 Average crown width (m) | 平均 胸径 Average breast diameter (cm) | 坐标 Coordinate | 海拔 Altitude (m) | ||||
---|---|---|---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammod- endron | 沙拐枣 Calligonum mongolicum | 柽柳 Tamarix chinensis | 东西 East and West | 南北 South and North | 经度 E Longitude | 纬度 N Latitude | ||||
S1 | 54.85 | 10.30 | 34.85 | 1.47 | 2.01 | 1.96 | 4.29 | 84°18'2.41″ | 40°45'15.64″ | 932 |
S2 | 60.54 | 37.90 | 1.56 | 1.93 | 2.04 | 2.05 | 5.77 | 84°20'11.11″ | 40°10'40.40″ | 951 |
S3 | 78.66 | 19.00 | 2.34 | 1.84 | 2.31 | 1.94 | 3.28 | 83°59'58.32″ | 39°35'13.45″ | 1 020 |
S4 | 76.56 | 13.68 | 9.76 | 1.79 | 1.89 | 1.96 | 2.74 | 83°43'55.20″ | 39°14'27.94″ | 1 066 |
S5 | 62.43 | 35.50 | 2.07 | 2.04 | 2.05 | 1.88 | 3.23 | 83°35'29.07″ | 39°0'41.45″ | 1 096 |
S6 | 75.65 | 18.81 | 5.54 | 1.15 | 1.78 | 1.56 | 1.92 | 83°26'41.32″ | 38°47'27.80″ | 1 142 |
S7 | 70.60 | 22.00 | 7.40 | 1.19 | 1.35 | 1.54 | 2.56 | 83°16'35.85″ | 38°32'41.31″ | 1 164 |
S8 | 67.85 | 30.95 | 1.20 | 1.67 | 2.02 | 1.84 | 2.77 | 83°8'27.49″ | 38°10'50.59″ | 1 217 |
S9 | 72.50 | 24.22 | 3.28 | 1.16 | 1.24 | 1.30 | 1.82 | 83°1'20.77″ | 37°49'52.84″ | 1 269 |
S10 | 72.68 | 14.50 | 12.82 | 1.99 | 2.05 | 1.70 | 4.31 | 82°54'17.15″ | 37°39'24.41″ | 1 314 |
Tab.1 Quadrat vegetation characteristics
样方 编号 Sample number | 植被频度 Vegetation frequency(%) | 平均 株高 Average plant height (m) | 平均冠幅 Average crown width (m) | 平均 胸径 Average breast diameter (cm) | 坐标 Coordinate | 海拔 Altitude (m) | ||||
---|---|---|---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammod- endron | 沙拐枣 Calligonum mongolicum | 柽柳 Tamarix chinensis | 东西 East and West | 南北 South and North | 经度 E Longitude | 纬度 N Latitude | ||||
S1 | 54.85 | 10.30 | 34.85 | 1.47 | 2.01 | 1.96 | 4.29 | 84°18'2.41″ | 40°45'15.64″ | 932 |
S2 | 60.54 | 37.90 | 1.56 | 1.93 | 2.04 | 2.05 | 5.77 | 84°20'11.11″ | 40°10'40.40″ | 951 |
S3 | 78.66 | 19.00 | 2.34 | 1.84 | 2.31 | 1.94 | 3.28 | 83°59'58.32″ | 39°35'13.45″ | 1 020 |
S4 | 76.56 | 13.68 | 9.76 | 1.79 | 1.89 | 1.96 | 2.74 | 83°43'55.20″ | 39°14'27.94″ | 1 066 |
S5 | 62.43 | 35.50 | 2.07 | 2.04 | 2.05 | 1.88 | 3.23 | 83°35'29.07″ | 39°0'41.45″ | 1 096 |
S6 | 75.65 | 18.81 | 5.54 | 1.15 | 1.78 | 1.56 | 1.92 | 83°26'41.32″ | 38°47'27.80″ | 1 142 |
S7 | 70.60 | 22.00 | 7.40 | 1.19 | 1.35 | 1.54 | 2.56 | 83°16'35.85″ | 38°32'41.31″ | 1 164 |
S8 | 67.85 | 30.95 | 1.20 | 1.67 | 2.02 | 1.84 | 2.77 | 83°8'27.49″ | 38°10'50.59″ | 1 217 |
S9 | 72.50 | 24.22 | 3.28 | 1.16 | 1.24 | 1.30 | 1.82 | 83°1'20.77″ | 37°49'52.84″ | 1 269 |
S10 | 72.68 | 14.50 | 12.82 | 1.99 | 2.05 | 1.70 | 4.31 | 82°54'17.15″ | 37°39'24.41″ | 1 314 |
Fig.1 Comparisons of diurnal variation characteristics of photosynthetic rate, daily average photosynthetic rate and carbon sequestration of three kinds of woody plants in desert highway shelter forest
模型 Model | 树种 Tree species | 自变量 Independent variable | R2 | SEE | P |
---|---|---|---|---|---|
一次函数 W=a+bX | 柽柳 | LH | 0.934 | 0.270 | <0.001 |
梭梭 | 0.617 | 2.543 | <0.001 | ||
沙拐枣 | 0.912 | 0.333 | 0.036 | ||
柽柳 | V | 0.937 | 0.170 | <0.001 | |
梭梭 | 0.925 | 0.225 | <0.001 | ||
沙拐枣 | 0.875 | 0.273 | 0.002 | ||
指数函数 W=aebX | 柽柳 | LH | 0.661 | 3.753 | 0.002 |
梭梭 | 0.610 | 2.732 | 0.1518 | ||
沙拐枣 | 0.861 | 1.200 | <0.001 | ||
柽柳 | V | 0.902 | 1.155 | <0.001 | |
梭梭 | 0.880 | 2.719 | 0.003 | ||
沙拐枣 | 0.899 | 2.231 | 0.011 | ||
幂函数 W=aXb | 柽柳 | LH | 0.931 | 0.862 | <0.001 |
梭梭 | 0.898 | 0.833 | <0.001 | ||
沙拐枣 | 0.956 | 0.742 | <0.001 | ||
柽柳 | V | 0.941 | 0.634 | <0.001 | |
梭梭 | 0.965 | 0.929 | <0.001 | ||
沙拐枣 | 0.799 | 0.923 | <0.001 |
Tab.2 Parameters of biomass regression model of three kinds of woody plants in desert highway shelterbelt
模型 Model | 树种 Tree species | 自变量 Independent variable | R2 | SEE | P |
---|---|---|---|---|---|
一次函数 W=a+bX | 柽柳 | LH | 0.934 | 0.270 | <0.001 |
梭梭 | 0.617 | 2.543 | <0.001 | ||
沙拐枣 | 0.912 | 0.333 | 0.036 | ||
柽柳 | V | 0.937 | 0.170 | <0.001 | |
梭梭 | 0.925 | 0.225 | <0.001 | ||
沙拐枣 | 0.875 | 0.273 | 0.002 | ||
指数函数 W=aebX | 柽柳 | LH | 0.661 | 3.753 | 0.002 |
梭梭 | 0.610 | 2.732 | 0.1518 | ||
沙拐枣 | 0.861 | 1.200 | <0.001 | ||
柽柳 | V | 0.902 | 1.155 | <0.001 | |
梭梭 | 0.880 | 2.719 | 0.003 | ||
沙拐枣 | 0.899 | 2.231 | 0.011 | ||
幂函数 W=aXb | 柽柳 | LH | 0.931 | 0.862 | <0.001 |
梭梭 | 0.898 | 0.833 | <0.001 | ||
沙拐枣 | 0.956 | 0.742 | <0.001 | ||
柽柳 | V | 0.941 | 0.634 | <0.001 | |
梭梭 | 0.965 | 0.929 | <0.001 | ||
沙拐枣 | 0.799 | 0.923 | <0.001 |
Fig.2 Biomass model fitting Note: C is crown area ( m2), L is crown width (m), H is plant height (m) and V = C·H is plant volume ( m3); a, b are linear function models ; c and d are exponential function models ; e and f are power function models
树种 Tree species | 单位叶面积年固碳量 Carbon sequestration per unit area per year ( kg/(m2·a)) | 植被覆盖面积 The area covered by vegetation (hm2) | 种植时长 Planting duration (a) | 年均固碳量 Average annual carbon sequestration ( t/a) | 总固碳量 Total carbon sequestration (t) |
---|---|---|---|---|---|
柽柳Tamarix chinensis | 2.20 | 166.06 | 16 | 3 653.32 | 58 453.12 |
梭梭Haloxylon ammodendron | 1.95 | 1291.36 | 16 | 25 181.52 | 402 904.32 |
沙拐枣Calligonum mongolicum | 2.02 | 328.20 | 16 | 6 629.64 | 106 074.24 |
合计Total | 35 464.48 | 567 431.68 |
Tab.3 Estimation of total carbon sequestration by photosynthetic carbon fixation method of three kinds of woody plants in desert highway shelterbelt
树种 Tree species | 单位叶面积年固碳量 Carbon sequestration per unit area per year ( kg/(m2·a)) | 植被覆盖面积 The area covered by vegetation (hm2) | 种植时长 Planting duration (a) | 年均固碳量 Average annual carbon sequestration ( t/a) | 总固碳量 Total carbon sequestration (t) |
---|---|---|---|---|---|
柽柳Tamarix chinensis | 2.20 | 166.06 | 16 | 3 653.32 | 58 453.12 |
梭梭Haloxylon ammodendron | 1.95 | 1291.36 | 16 | 25 181.52 | 402 904.32 |
沙拐枣Calligonum mongolicum | 2.02 | 328.20 | 16 | 6 629.64 | 106 074.24 |
合计Total | 35 464.48 | 567 431.68 |
树种 Tree species | 生物量 Biomass (kg/株) | 株数 Number of plants (104株) | 总生物量 Total biomass (t) | 碳含量 Carbon content (kg/kg) | CO2/C (g/mol) | 碳储量 Carbon storage (t) | 总固碳量 Total carbon sequestration (t) |
---|---|---|---|---|---|---|---|
柽柳Tamarix chinensis | 8.72 | 147 | 12 818.4 | 0.5 | 3.667 | 6 409.2 | 23 500.4 |
梭梭Haloxylon ammodendron | 19.62 | 1260 | 247 212 | 0.5 | 3.667 | 123 606 | 453 222 |
沙拐枣Calligonum mongolicum | 11.67 | 413 | 48 197.1 | 0.5 | 3.667 | 24 098.55 | 88 361.35 |
合计Total | 154 113.75 | 565 083.75 |
Tab.4 Estimation of total carbon sequestration by biomass method of three kinds of woody plants in desert highway shelterbelt
树种 Tree species | 生物量 Biomass (kg/株) | 株数 Number of plants (104株) | 总生物量 Total biomass (t) | 碳含量 Carbon content (kg/kg) | CO2/C (g/mol) | 碳储量 Carbon storage (t) | 总固碳量 Total carbon sequestration (t) |
---|---|---|---|---|---|---|---|
柽柳Tamarix chinensis | 8.72 | 147 | 12 818.4 | 0.5 | 3.667 | 6 409.2 | 23 500.4 |
梭梭Haloxylon ammodendron | 19.62 | 1260 | 247 212 | 0.5 | 3.667 | 123 606 | 453 222 |
沙拐枣Calligonum mongolicum | 11.67 | 413 | 48 197.1 | 0.5 | 3.667 | 24 098.55 | 88 361.35 |
合计Total | 154 113.75 | 565 083.75 |
Fig.3 Comparisons of measured biomass and predicted biomass of three types of woody plants Note: a represents T. ramosissima, b represents H. ammodendron, and c represents C. mongolicum. The dotted line in the figure represents the upper and lower limits of the 95 % confidence interval. R2 is the determination coefficient of the regression model, RS is the total relative error, and RMA is the average relative error
[1] | 蒋蕾. 基于GIS大兴安岭过伐林多功能评价体系[D]. 哈尔滨: 东北林业大学, 2016. |
JIANG Lei. Multifunction Evaluation System of Overcutting Forest in Daxing’an Mountains Based on GIS Technique[D]. Harbin: Northeast Forestry University, 2016. | |
[2] | 刘彦青. 发挥森林固碳功能减缓全球气候变暖[J]. 中国林业, 2011,(20): 55. |
LIU Yanqing. Give full play to the function of forest carbon fixation and slow down global warming[J]. Forestry of China, 2011,(20): 55. | |
[3] | 贾存, 郭明明, 王倩, 等. 华北落叶松人工林和天然林径向生长对气候变化的响应[J]. 中南林业科技大学学报, 2022, 42(1): 120-128. |
JIA Cun, GUO Mingming, WANG Qian, et al. Response of the radial growth of Larix principis-rupprechtii plantations and natural forests to climate change[J]. Journal of Central South University of Forestry & Technology, 2022, 42(1): 120-128. | |
[4] | 陈广生, 曾德慧, 陈伏生, 等. 干旱和半干旱地区灌木下土壤 “肥岛”研究进展[J]. 应用生态学报, 2003, 14(12): 2295-2300. |
CHEN Guangsheng, ZENG Dehui, CHEN Fusheng, et al. A research review on “fertile islands” of soils under shrub canopy in arid and semi-arid regions[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2295-2300.
PMID |
|
[5] | 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014,(1): 1-2. |
State Forestry Administration. The eighth national forest resources inventory results[J]. Forest Resources Management, 2014,(1): 1-2. | |
[6] | 陈敏利, 王旭荣. 重视森林资源保护强化森林资源管理[J]. 花卉, 2018,(6): 210-211. |
CHEN Minli, WANG Xurong. Attach importance to forest resources protection and strengthen forest resources management[J]. Flowers, 2018,(6): 210-211. | |
[7] | 胡三. 加强森林资源管理不断提升森林质量[J]. 绿色中国, 2019,(24): 22-25. |
HU San. Strengthen management of forest resources and improve the quality of forests[J]. Green China, 2019,(24): 22-25. | |
[8] | 邓乾星, 耿海龙, 赵冬立, 等. 塔中沙漠公路零碳示范工程案例研究[J]. 石油石化节能, 2023, 13(5): 15-21. |
DENG Qianxing, GENG Hailong, ZHAO Dongli, et al. Research on the case of zero carbon demonstrate project in Tazhong Desert highway[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2023, 13(5): 15-21. | |
[9] | 杜虎林, 王涛, 肖洪浪, 等. 塔里木沙漠公路防护林带根灌节水试验研究[J]. 中国沙漠, 2010, 30(3): 522-527. |
DU Hulin, WANG Tao, XIAO Honglang, et al. Root irrigation experiments used in the protective forest belt along the Tarim Desert highway[J]. Journal of Desert Research, 2010, 30(3): 522-527. | |
[10] | 雷加强, 王雪芹, 王德. 塔里木沙漠公路风沙危害形成研究[J]. 干旱区研究, 2003, 20(1): 1-6. |
LEI Jiaqiang, WANG Xueqin, WANG De. The formation of the blown sand disaster to the Tarim Desert highway, Xinjiang, China[J]. Arid Zone Research, 2003, 20(1): 1-6. | |
[11] | 单立山, 张希明, 王有科, 等. 水分条件对塔里木沙漠公路防护林植物幼苗生长及生物量分配的影响[J]. 科学通报, 2008, 53(S2): 82-88. |
SHAN Lishan, ZHANG Ximing, WANG Youke, et al. Effects of water conditions on seedling growth and biomass distribution of shelterbelt in Tarim Desert highway[J]. Chinese Science Bulletin, 2008, 53(S2): 82-88. | |
[12] | 李涛, 姬学龙, 许浩, 等. 塔里木沙漠公路防护林造林树种生长动态研究[J]. 内蒙古林业科技, 2006, 32(3): 8-11. |
LI Tao, JI Xuelong, XU Hao, et al. Study on dynamic growth of forestation trees on talimu desert highway[J]. Inner Mongolia Forestry Science and Technology, 2006, 32(3): 8-11. | |
[13] | 刘静, 王连喜, 戴小笠, 等. 枸杞叶片净光合速率与其它生理参数及环境微气象因子的关系[J]. 干旱地区农业研究, 2003, 21(2): 95-98. |
LIU Jing, WANG Lianxi, DAI Xiaoli, et al. Relationship between leaf net photosynthesis rate of Lyciumbarbarum L. and it’s environmental micrometeorological factors[J]. Agricultural Research in the Arid Areas, 2003, 21(2): 95-98. | |
[14] | 马媛, 李钢铁, 潘羿壅, 等. 浑善达克沙地3种灌木生物量的预测模型[J]. 干旱区资源与环境, 2017, 31(6): 198-201. |
MA Yuan, LI Gangtie, PAN Yiyong, et al. Prediction model for biomass of 3 shrubs in Hunshandake sandy land[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 198-201. | |
[15] | 黄劲松, 邸雪颖. 帽儿山地区6种灌木地上生物量估算模型[J]. 东北林业大学学报, 2011, 39(5): 54-57. |
HUANG Jinsong, DI Xueying. Estimation model for biomass of typical shrubs in Maoershan Area, Heilongjiang[J]. Journal of Northeast Forestry University, 2011, 39(5): 54-57. | |
[16] |
陶冶, 张元明. 荒漠灌木生物量多尺度估测——以梭梭为例[J]. 草业学报, 2013, 22(6): 1-10.
DOI |
TAO Ye, ZHANG Yuanming. Multi-scale biomass estimation of desert shrubs: a case study of Haloxylonammodendron in the Gurbantunggut Desert, China[J]. Acta PrataculturaeSinica, 2013, 22(6): 1-10. | |
[17] |
郑雪婷, 仪律北, 李强峰, 等. 青藏高原典型人工林幼树生物量模型构建[J]. 应用生态学报, 2022, 33(11): 2923-2935.
DOI |
ZHENG Xueting, YI Lyubei, LI Qiangfeng, et al. Developing biomass estimation models of young trees in typical plantation on the Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2923-2935.
DOI |
|
[18] | IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[M]. UK: Cambridge University Press, 2006. |
[19] | 李峰, 刘桂英, 王力刚. 黑龙江省森林碳汇价值评价及碳汇潜力分析[J]. 防护林科技, 2011,(1): 87-88. |
LI Feng, LIU Guiying, WANG Ligang. Evaluation of forest carbon sink value and analysis of carbon sink potential in Heilongjiang Province[J]. Protection Forest Science and Technology, 2011,(1): 87-88. | |
[20] | 贾宏涛, 赵成义, 盛钰, 等. 干旱区退耕还林高固碳效率树种筛选[J]. 新疆农业大学学报, 2009, 32(3): 29-31. |
JIA Hongtao, ZHAO Chengyi, SHENG Yu, et al. Screening of tree species with high-efficiency carbon sequestration for returning cultivated land to forest in arid area[J]. Journal of Xinjiang Agricultural University, 2009, 32(3): 29-31. | |
[21] | 徐玮玮, 李晓储, 汪成忠, 等. 扬州古运河风光带绿地树种固碳释氧效应初步研究[J]. 浙江林学院学报, 2007, 24(5): 575-580. |
XU Weiwei, LI Xiaochu, WANG Chengzhong, et al. Carbon fixation and oxygen release of landscaping trees along the Grand Canal in Yangzhou[J]. Journal of Zhejiang Forestry College, 2007, 24(5): 575-580. | |
[22] | 赵成义, 宋郁东, 王玉潮, 等. 几种荒漠植物地上生物量估算的初步研究[J]. 应用生态学报, 2004, 15(1): 49-52. |
ZHAO Chengyi, SONG Yudong, WANG Yuchao, et al. Estimation of aboveground biomass of desert plants[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 49-52.
PMID |
|
[23] | 赵梦颖, 孙威, 罗永开, 等. 内蒙古26种常见温带灌木的生物量模型[J]. 干旱区研究, 2019, 36(5): 1219-1228. |
ZHAO Mengying, SUN Wei, LUO Yongkai, et al. Models for estimating the biomass of 26 temperate shrub species in Inner Mongolia, China[J]. Arid Zone Research, 2019, 36(5): 1219-1228. | |
[24] |
杨昊天, 李新荣, 王增如, 等. 腾格里沙漠东南缘4种灌木的生物量预测模型[J]. 中国沙漠, 2013, 33(6): 1699-1704.
DOI |
YANG Haotian, LI Xinrong, WANG Zengru, et al. Biomass estimation models of four shrub species at southeastern edge of the tengger desert[J]. Journal of Desert Research, 2013, 33(6): 1699-1704.
DOI |
|
[25] | 党晓宏, 高永, 虞毅, 等. 库布其沙漠北缘8种荒漠灌丛生物量预测模型研究[J]. 干旱区资源与环境, 2016, 30(5): 168-174. |
DANG Xiaohong, GAO Yong, YU Yi, et al. The biomass estimation models for eight desert shrub species in northern edge of the Hobq Desert[J]. Journal of Arid Land Resources and Environment, 2016, 30(5): 168-174. | |
[26] |
WEI Xiaoping, ZHAO Changming, WANG Genxuan, et al. Estimation of above-and below-ground biomass of dominant desert plant species in an oasis-desert ecotone of Minqin, China[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 878-883.
DOI |
[1] | HUANG Yaru, MA Yingbin, LI Yonghua, DUAN Ruibing, LIU Yuan, DONG Xue, HAN Chunxia, HAO Xuting. Relationships between Soil Factors and Sap Flow of Tamarix chinensis Lour. at Different Time Scales [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1697-1707. |
[2] | SHI Kaiqi, WANG Heping, LI Bin, CHEN Yong, YANG Jianjun, CHENG Ping. Diurnal Changes in Photosynthesis of Different Introduced Fraxinus SPP Varieties [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1708-1715. |
[3] | GE Yao, WANG Zhenxi. Soil Factors Effects on Herbaceous Species Diversity in Picea schrenkiana Forest of Different Forest type [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 134-144. |
[4] | LIU Xiaoju, PAN Cunde. Analysis of Fire Severity of Kanas Taiga [J]. Xinjiang Agricultural Sciences, 2020, 57(9): 1704-1712. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||