Xinjiang Agricultural Sciences ›› 2021, Vol. 58 ›› Issue (10): 1829-1837.DOI: 10.6048/j.issn.1001-4330.2021.10.008
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Cultivation Physiology·Physiology and Biochenistry·Agricultural Product Analysis and Detection • Previous Articles Next Articles
Qiang WANG1,2(), Baike WANG1, Huifang LIU1, Hongwei HAN1, Hongmei ZHUANG1, Juan WANG1, Tao YANG1, Hao WANG1(
), Yong QIN2(
)
Received:
2021-02-04
Online:
2021-10-20
Published:
2021-10-26
Correspondence author:
Hao WANG, Yong QIN
Supported by:
王强1,2(), 王柏柯1, 刘会芳1, 韩宏伟1, 庄红梅1, 王娟1, 杨涛1, 王浩1(
), 秦勇2(
)
通讯作者:
王浩,秦勇
作者简介:
王强(1983-),男,甘肃人,副研究员,研究方向为蔬菜栽培生理与逆境胁迫,(E-mail) wangqiang201004@sina.com
基金资助:
CLC Number:
Qiang WANG, Baike WANG, Huifang LIU, Hongwei HAN, Hongmei ZHUANG, Juan WANG, Tao YANG, Hao WANG, Yong QIN. Advances in Tomato Proteomics Research under Abiotic Stress[J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1829-1837.
王强, 王柏柯, 刘会芳, 韩宏伟, 庄红梅, 王娟, 杨涛, 王浩, 秦勇. 蛋白质组学在番茄非生物逆境胁迫中的研究进展[J]. 新疆农业科学, 2021, 58(10): 1829-1837.
[1] | Juhi C, Patil G B, Humira S, et al. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits[J]. Frontiers in Plant Science, 2015, 6(31):504. |
[2] |
Fukushima, Kusano, Redestig, et al. Integrated omics approaches in plant systems biology[J]. Curr Opin Chem Biol, 2009, 13(5-6):532-538.
DOI PMID |
[3] | Shah T, Xu J, Zou X, et al. Omics Approaches for Engineering Wheat Production under Abiotic Stresses[J]. International Journal of Molecular Sciences, 2018, 19(8). |
[4] | Chaudhary, J.,; Deshmukh, R.,; Mir, Z.A.,; Bhat, J.A., et al. Metabolomics: An emerging technology for soybean improvement. In Biotechnology Products in Everyday Life; Springer: Berlin,[J]. Germany, 2019: 175-186. |
[5] |
Hong J.,; Yang L.,; Zhang D.,; Shi J. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science[J]. Int. J. Mol. Sci, 2016, 17:767.
DOI URL |
[6] |
Wu Q, Song J Y, Sun Y Q, et al. Transcript profiles of Panax quinquefolius from flower,leaf and root bring new insights into genes related to ginsenosides biosynjournal and transcriptional regulation[J]. Physiologia Plantarum, 2010, 138(2) : 134-149.
DOI URL |
[7] | Lian J., Zhang X.C., and Gu J.T. Advance in transcriptomics and its application in olericulture research[J]. Zhongguo Nongxue Tongbao (Chinese Agricultural Science Bulletin), 2015, 31(8):118-122. |
[8] | 刘冠, 赵婷婷, 杨欢欢, 等. 番茄转录组学研究进展[J]. 基因组学与应用生物学, 2016, 35,(10):2802-2807. |
LIU Guan, ZHZO Tingting, YANG Huanhuan, et al. Advances in tomato transcriptomics[J]. Genomics and Applied Biology, 2016, 35(10):2802-2807. | |
[9] | 张国儒, 庞胜群, 郭晓珊, 等. 加工番茄耐盐突变体转录组测序结果分析及验证[J]. 园艺学报, 2017, 44(S1):2574. |
ZHANG Guoru, PANG Shengqun, GUO Xiaoshan, Shan Shu ling. Analysis and validation of transcriptome sequencing results of salt-tolerant mutant in processed tomato[J]. Acta Horticulturae Sinica, 2017, 44(S1):2574. | |
[10] |
Mazzucotelli E, Mastrangelo AA, Crosatti C, et al. Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription[J]. Plant Sci, 2008, 174:420-431.
DOI URL |
[11] |
Dai S J, Wang T, Yan X F, et al. Proteomics of pollen development and germination[J]. Journal of Proteome Research, 2007, 6(12):4556-4563.
DOI URL |
[12] | Yu J J, Dai S J . Research advances in plant proteomics[J]. Chinese Bulletin of Botany, 2009, 44(4):410-425. |
[13] | Yahui Liu, Song Lu, Kefu Liu, Sheng Wang, Luqi Huang, Lanping Guo. Proteomics: a powerful tool to study plant responses to biotic stress[J]. Plant Methods, 2019,(15):135. |
[14] | 李焕勇, 杨秀艳, 唐晓倩, 等. 植物响应盐胁迫组学研究进展[J]. 西北植物学报, 2016, 36(12):2548-2557. |
LI Huanyong, YANG Xiuyan, TANG Xiaoqian, ZHANG Hua xing. Omics Research Progress of Plants under Salt Stress Acta Bot[J]. Boreal.-Occident Sin, 2016, 36(12):2548-2557. | |
[15] | Kosová K., Vítámvás P., Prášil I. T., and Renaut J. Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response[J]. J. Proteomics, 2011,(74):1301-1322. |
[16] | Ahmad P., Abdel Latef, A. A. H., Rasool, S., Akram, N. A., Ashraf, M., and Gucel, S,. Role of proteomics in crop stress tolerance[J]. Front. Plant Sci, 2016,(7):1336. |
[17] | Janmohammadi M., Zolla L., and Rinalducci S. Low temperature tolerance in plants: changes at the protein level[J]. Phytochemistry, 2015,(117):76-89. |
[18] | Johnová P., Skalák J., Saiz-Fernández, I., and Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions:a proteome-wide perspective. Biochim. Biophys[J]. Acta Proteins Proteomics, 2016: 1864. |
[19] | Ning, F., and Wang, W. “The response of chloroplast proteome to abiotic stress, ” in Drought Stress Tolerance in Plants, eds M. A. Hossain, S. H. Wani, S. Bhattacharjee[J]. D.J. Burritt, and L. S. P. Tran (Verlag: Springer), 2016:232-249. |
[20] | Kosová K., Vítámvás P., Urban M. O., and Prášil I. T. Plant proteome responses to salinity stress - comparison of glycophytes and halophytes[J]. Funct.Plant Biol. 2013,(40):775-786. |
[21] |
Kosová K., Prášil I. T., and Vítámvás P. Protein contribution to plant salinity response and tolerance acquisition[J]. Int. J. Mol. Sci, 2013, 14:6757-6789.doi: 10.3390/ijms14046757.
DOI PMID |
[22] |
Tan, B. C., Lim, Y. S., and Lau, S. E. Proteomics in commercial crops: an overview[J]. J. Proteomics, 2017, 169:176-188.
DOI URL |
[23] |
Agrawal, G. K., Jwa, N. S., and Rakwal, R. Rice proteomics:ending phase I and the beginning of phase II[J]. Proteomics, 2009, 9:935-963.
DOI PMID |
[24] |
Pechanova, O., Takác, T., Samaj, J., and Pechan, T. Maize proteomics: an insight into the biology of an important cereal crop[J]. Proteomics, 2013, 13:637-662.
DOI PMID |
[25] | Komatsu, S., Kamal, A. H., and Hossain, Z. Wheat proteomics:proteome modulation and abiotic stress acclimation[J]. Front. Plant Sci, 2014, 5:684. |
[26] |
Yin, X., Komatsu, S.. Comprehensive analysis of response and tolerant mechanisms in early stage soybean at initial-flooding stress[J]. J. Proteomics, 2017, 169:225-232.
DOI URL |
[27] |
Kosová K., Vítámvás, P., Urban, M. O., Klíma, M., Roy, A., and Prášil, I. T. Biological networks underlying abiotic stress tolerance in temperate crops - a proteomic perspective[J]. Int. J. Mol. Sci, 2015, 16:20913-20942.
DOI PMID |
[28] |
Ghatak, A., Chaturvedi, P., Paul, P., Agrawal, G. K., Rakwal, R., Kim, S. T., et al. Proteomics survey of Solanaceae family: current status and challenges ahead[J]. J. Proteomics, 2017, 169:41-57.
DOI URL |
[29] |
Cuartero J, Bolarin MC, Asins MJ, Moreno V. Increasing salt tolerance in the tomato[J]. Journal of Experimental Botany, 2006, 57:1045-1058.
PMID |
[30] |
Chen C, Plant A. Salt-induced protein synjournal in tomato roots: the role of ABA[J]. Journal of Experimental Botany, 1999, 50:677-687.
DOI URL |
[31] |
Amini F, Ehsanpour A, Hoang Q, Shin J. Protein pattern changes in tomato under in vitro salt stress[J]. Russian Journal of Plant Physiology, 2007, 54:464-471.
DOI URL |
[32] |
Chen S, Gollop N, Heuer B. Proteomic analysis of salt stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine[J]. Journal of Experimental Botany, 2009, 60:2005-2019.
DOI URL |
[33] | M. Juan, R.M. Rivero, L. Romero, J.M. Ruiz, Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars[J]. Environ. Exp. Bot, 2005, (54):193-201. |
[34] | A. Manaa, H. Mimouni, S. Wasti, E. Gharbi, S. Aschi-Smiti, M. Faurobert, H. Ben Ahmed, Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress, Plant Omics, 2013, (6):268-277. |
[35] | F. Amini, A. Ehsanpour, Q. Hoang, J. Shin, Protein pattern changes in tomato under in vitro salt stress[J]. Russ. J. Plant Physiol, 2007, (54):464-471. |
[36] | P. Parihar, S. Singh, R. Singh, V.P. Singh, S.M. Prasad, Effect of salinity stress on plants and its tolerance strategies: a review[J]. Environ. Sci. Pollut. Res, 2015, (22):4056-4075. |
[37] | M. Meng, M. Geisler, H. Johansson, E.J. Mellerowicz, S. Karpinski, L.A. Kleczkowski, Differential tissue/organ-dependent expression of two sucrose-and cold-responsive genes for UDP-glucose pyrophosphorylase in Populus[J]. Gene, 2007, (389):186-195. |
[38] | L. Ordin, M.A. Hall, Cellulose synjournal in higher plants from UDP glucose[J]. Plant Physiol, 1968, (43):473. |
[39] | R. Viola, P. Nyvall, M. Pedersén, The unique features of starch metabolism in red algae[J]. Proc. R. Soc. Lond. B Biol. Sci, 2001, (268):1417-1422. |
[40] | S. Chen, N. Gollop, B. Heuer, Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine[J]. J. Exp. Bot, 2009, (60):2005-2019. |
[41] | Biao Gong, Cunjia Zhang, Xiu Li, Dan Wen, Shuoshuo Wang, Qinghua Shi, Xiufeng Wang, Identification of NaCl and NaHCO3stress responsive proteins in tomato roots using iTRAQ-based analysis[J]. Biochemical and Biophysical Research Communications, 2014, (446):417-422. |
[42] | Arafet Manaa, Mireille Faurobert, Benoıt Valot, Jean-Paul Bouchet, Dominique Grasselly, Mathilde Causse, and Hela Ben Ahmed, Effect of Salinity and Calcium on Tomato Fruit Proteome[J]. OMICS A Journal of Integrative Biology, 2013,(17):338-352. |
[43] | Tang H., Zhang X., Gong B., Yan Y., Shi Q., Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment,[J]. Food Chemistry, doi: https://doi.org/10.1016/j.foodchem.2019.126009. |
[44] |
A. J. Ogden, J. J. Bhatt, H. M. Brewer, J. Kintigh, S. M. Kariuki, S. Rudrabhatla, J. N. Adkins, and W. R. CurtisInt, Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature[J]. J. Mol. Sci, 2020, 21:4461; doi: 10.3390/ijms21124461.
DOI URL |
[45] |
R. Tamburino, M. Vitale, A. Ruggiero, M. Sassi, L. Sannino, S. Arena, A. Costa, Gi. Batelli, N. Zambrano, A. Scaloni, S. Grillo, N, Scotti,Chloroplast proteome response to drought stress and recovery in tomato[J]. BMC Plant Biology, 2017,(17):40, DOI 10.1186/s12870-017-0971-0.
DOI |
[46] | S. Zhou, M. Palmer, J. Zhou, S. Bhatti, K.J. Howe, T. Fish, T.W. Thannhauser, Differential root proteome expression in tomato genotypes with contrasting drought tolerance exposed to dehydration[J]. J. Am. Soc. Hortic. Sci, 2013, (138):131-141. |
[47] | M. Marjanovic, R. Stikic, B. Vucelic-Radovic, S. Savic, Z. Jovanovic, N. Bertin, M. Faurobert, Growth and proteomic analysis of tomato fruit under partial root-zone drying[J]. Omi. a J. Integr. Biol, 2012, (16):343-356. |
[48] | Singh RP, Prasad PVV, Reddy KR. Impacts of changing climate and climate variability on seed production and seed industry[J]. Adv Agron, 2013, 118:49-110. |
[49] | A. Wahid, S. Gelani, M. Ashraf, M.R. Foolad, Heat tolerance in plants: an overview[J]. Environ. Exp. Bot, 2007, (61):199-223. |
[50] | J. Berry, O. Bjorkman, Photosynthetic response and adaptation to temperature in higher plants, Annu. Rev[J]. Plant Physiol. 1980, (31):491-543. |
[51] |
Sato S, Peet MM, Thomas JF. Determining critical pre- and postanjournal periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures[J]. J Exp Bot, 2002, 53:1187-1195.
DOI URL |
[52] |
Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentumby disrupting specific physiological processes in male reproductive development[J]. Ann Bot, 2006, 97:731-738.
DOI URL |
[53] |
Wahid A, Gelani S, Ashrafa M, Foolad MR. Heat tolerance in plants: an overview[J]. Environ Exp Bot, 2007, 61:199-223.
DOI URL |
[54] | P. Chaturvedi, H. Doerfler, S. Jegadeesan, A. Ghatak, E. Pressman, M.A. Castillejo, S. Wienkoop, V. Egelhofer, N. Firon, W. Weckwerth, Heat-treatment responsive proteins in different developmental stages of tomato pollen detected by targeted Mass Accuracy Precursor Alignment (tMAPA)[J]. J. Proteome Res, 2015,(14):4463-4471. |
[55] |
Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants[J]. BMC Genomics, 2011, 12:384.
DOI URL |
[56] |
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, et al. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers,hormones, and sugars in the heat stress response[J]. J Exp Bot, 2009, 60:3891-3908.
DOI PMID |
[57] |
Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C. Developmental and heat stress regulated expression of HsfA2 and small heat shock proteins in tomato anthers[J]. J Exp Bot, 2010, 61:453-462.
DOI URL |
[58] |
Mazzeo M F, Cacace G, Iovieno P, Massarelli I, Grillo S, Siciliano RA. Response mechanism sinduced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: Aproteomic perspective[J]. PLoSONE, 2018, 13(7):e0201027. https://doi.org/10.1371/journal.pone.0201027.
DOI URL |
[59] | S. Zhou, R.J. Sauvé, Z. Liu, S. Reddy, S. Bhatti, Heat-induced proteome changes in tomato leaves[J]. J. Am. Soc. Hortic. Sci, 2012, (136):2012. |
[60] |
Muneer S, Ko CH, Wei H, Chen Y, Jeong BR. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress[J]. PLoS ONE, 2016, 11(6):e0157439. doi: 10.1371/journal.pone.0157439.
DOI URL |
[61] | D. Ghosh, J. Xu, Abiotic stress responses in plant roots: a proteomics perspective[J]. Front. Plant Sci, 2014, (5):6. |
[62] | M.O. Vega-García, G. López-Espinoza, J.C. Ontiveros, J.J. Caro-Corrales, F.D. Vargas, J.A. López-Valenzuela, Changes in protein expression associated with chilling injury in tomato fruit[J]. J. Am. Soc. Hortic. Sci, 2010, (135):83-89. |
[63] | P. Sanchez-Bel, I. Egea, M.T. Sanchez-Ballesta, L. Sevillano, M. del Carmen Bolarin, F.B. Flores, Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery[J]. Plant Cell Physiol, 2012, (53):470-484. |
[64] | Page D., Gouble B., Valot B., Bouchet J.P., Callot C., Kretzschmar A. et al. Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage[J]. Planta, 2010,(232):483-500. |
[65] | Vega-Garcia, M.O., Lopez-Espinoza, G., Chavez Ontiveros, J., Caro-Corrales, J.J., Delgado Vargas, F., and Lopez-Valenzuela, J.A. hanges in protein expression associated with chilling injury in tomato fruit[J]. J. Amer. Soc. Hort. Sci, 2010,(135):83-89. |
[66] | E. Hattrup, K.A. Neilson, L. Breci, P.A. Haynes, Proteomic analysis of shade-avoidance response in tomato leaves, J. Agric[J]. Food Chem, 2007, (55):8310-8318. |
[67] | N. Ahsan, D.G. Lee, S.H. Lee, K.W. Lee, J.D. Bahk, B.H. Lee, A proteomic screen and identification of waterlogging-regulated proteins in tomato roots[J]. Plant Soil, 2007,(295):37-51. |
[68] | S.T. Kim, K.S. Cho, Y.S. Jang, K.Y. Kang, Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays[J]. Electrophoresis, 2001, (22):2103-2109. |
[69] |
Gong, B.,; Zhang, C.,; Li, X.,; Wen, D.,; Wang, S.,; Shi, Q.,; Wang, X. Identification of nacl and nahco3 stress responsive proteins in tomato roots using itraq-based analysis[J]. Biochem. Biophys. Res. Commun, 2014, 446:417-422.
DOI URL |
[70] |
Muneer, S.,; Ko, C.H.,; Wei, H.,; Chen, Y.,; Jeong, B.R. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress[J]. PLoS ONE, 2016, 11, e0157439.
DOI URL |
[71] | Tamburino, R.,; Vitale, M.,; Ruggiero, A.,; Sassi, M.,; Sannino, L.,; Arena, S.,; Costa, A.,; Batelli, G.,; Zambrano, N.,; Scaloni, A.; et al. Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.)[J]. BMC Plant Boil, 2017, 17:40. |
[72] | Sang, Q.,; Shan, X.,; An, Y.,; Shu, S.,; Sun, J.,; Guo, S. Proteomic Analysis Reveals the Positive Effect of Exogenous Spermidine in Tomato Seedlings’ Response to High-Temperature Stress[J]. Front. Plant Sci, 2017, 8:555. |
[73] |
Tanveer, Alam, et al. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress[J]. Food Chemistry, 2019, 289:500-511.
DOI PMID |
[74] |
吴琼, 隋欣桐, 田瑞军. 高通量蛋白质组学分析研究进展[J]. 色谱, 2021, 39(2):112-117.
PMID |
WU Qiong, SUI Xintong, TIAN Ruijun, Advances in high-throughput proteomic analysis[J]. Chinese Journal of Chromatography, 2021, 39(2):112-117.
DOI PMID |
|
[75] |
Neilson K A,. Ali N.A,. Muralidharan S. et al Less label, more free: approaches in label-free quantitative mass spectrometry.[J]. Proteomics, 2011, 11(4):535-553.
DOI PMID |
[76] |
Mora L, Bramley P M, Fraser P D. Development and optimisation of a label‐free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit[J]. Proteomics, 2013, 13(12-13):2016-2030.
DOI URL |
[1] | XU Maomao, GAO Jie, LI Junming, LI Xin, LIU Lei, PAN Feng. Population diversity analysis of 20 commercial tomato cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2191-2196. |
[2] | TIAN Haiyan, ZHANG Zhanqin, XIE Jianhui, WANG Jianjiang, YANG Xiangkun. Study on the relationship between Lycopene and main quality characters of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2197-2202. |
[3] | TIAN Chao, LI Yushan, MA Yue, SONG Yu. Effects of different concentrations of sophora alopecuroides extract on the growth and soil fertility of continuous cropping tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2203-2210. |
[4] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[5] | XI Rui, CHEN Yijia, LI Ning, YU Qinghui, WANG Qiang, QIN Yong. Effects of exogenous 2, 4-epibrassinolide on seed germination of different salt-sensitive tomatoes under salt stress [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1983-1992. |
[6] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
[7] | ZHANG Fulin, LI Ning, LIU Yuxiang, CHEN Yijia, YU Qinghui, YAN Huizhuan. Effects of exogenous 2,4-Epibrassinolide and melatonin on fruit quality and peel morphology of cherry tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1738-1747. |
[8] | RUAN Xiangyang, PU Min, XIAO Lele, LUO Linyi, CHEN Ruijie, LI Ran, CHEN Guoyong, YE Jun. Effect of magnesium sulfate fertilizer application strategy on the yield and quality of processed tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 916-925. |
[9] | LI Chunyu, TAN Zhanming, CHENG Yunxia, GAO Yuan, MA Quanhui, LI Zhiguo, MA Xing. Effects of water and fertilizer coupling on diurnal changes of chlorophyll content and photosynthetic characteristics of sand-cultivated tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3006-3013. |
[10] | LI Yali, Halihashi , TANG Yali, DUAN jingjing, LI Qingjun. Effect of NP reduction and K synergism on yield and nutrient absorption of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3014-3019. |
[11] | LIU Huifang, WANG Qiang, HAN Hongwei, ZHUANG Hongmei, WANG Hao, CHANG Yanan. Effects of salt, alkali and complex salt alkali stress on the photosynthetic characteristics and antioxidant enzyme activity of tomato seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2658-2666. |
[12] | ZHAO Wenxuan, CHENG Yunxia, TAN Zhanming, LI Chunyu, SHU Sheng, Ayimaimu Shawuti, YANG Liyu, MIAO Xianjun. Comparison of chlorophyll fluorescence and photosynthetic characteristics of different processed tomato varieties based on principal component analysis [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2667-2675. |
[13] | LI Chunyu, TAN Zhanming, CHENG Yunxia, SHU Sheng, MA Quanhui, HE Miao, DUAN Yifan, WU Hui. Comparative analysis of agronomic traits of different processing tomato varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2676-2683. |
[14] | LIU Jiahui, LI Hong, WANG Jingjing, CHANG Chiyin. Evaluation of high quality development of tomato products export trade in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2593-2600. |
[15] | WANG Dandan, LI Yan, ZHANG Qingyin, Li Shidong, PANG Yongchao, MA Kunzhi, MA Long, NIU Ruisheng, ZHONG Zengming, QI Lianfen, SHI Jianhua. Effects of different microbial treatments on tomato soil microbial diversity [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2248-2257. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 213
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||