Xinjiang Agricultural Sciences ›› 2018, Vol. 55 ›› Issue (8): 1457-1466.DOI: 10.6048/j.issn.1001-4330.2018.08.011

Previous Articles     Next Articles

Research on Identification Method of Mite Infection Cotton Based on of UAV Multi-Spectral Image

CUI Mei-na, DAI Jian-guo, WANG Shou-hui, ZHANG Guo-shun, XUE Jin-li   

  1. College of Information Science and Technology, Shihezi University / Geospatial Information Engineering Technology Research Center, Xinjiang Production and Construction Corps, Shihezi Xinjiang 832000, China
  • Online:2018-08-20 Published:2018-08-20
  • Correspondence author: DAI Jian-guo(1975-),male,the main research directions are remote sensing and agricultural information technology, remote sensing of agricultural disaster.,(E-mail)daijianguo2002@sina.com

基于无人机多光谱影像的棉叶螨识别方法

崔美娜,戴建国,王守会,张国顺,薛金利   

  1. 石河子大学信息科学与技术学院/兵团空间信息工程技术研究中心,新疆石河子 832000
  • 通讯作者: 戴建国(1975-),男,副教授,硕士生导师,研究方向为遥感与农业信息技术、农业灾害遥感,(E-mail)daijianguo2002@sina.com
  • 作者简介:崔美娜(1993-),女,吉林通化人,硕士研究生,研究方向为农业信息系统及技术,(E-mail)mn434584718@sina.com
  • 基金资助:
    国家自然科学基金项目(31460317)

Abstract: 【Objective】 It aims to explore the monitoring method of cotton leaf mites identification in large area of cotton field using the advantage of unmanned aerial vehicle (UAV) remote sensing in spatial resolution and spectral resolution.【Method】 Twenty kinds of spectral indexes were taken as the primary characteristic factors for mite damage monitoring, and the Akaike's Information Criterion was used as the model selection basis. The best modeling features were obtained, and the logistic regression model for monitoring and identification of cotton mite damage in fields was established.【Result】 Among all the spectral indexes, TVI, DVI and RDVI were the best feature factors for mite damage monitoring. The classification accuracy of the logistic regression model based on these three factors was 95%, and the F1 value was 95.1%, which can better realize the identification of cotton mite damage.【Conclusion】 The monitoring model proposed in this paper can realize the rapid identification of cotton spider mites in the region. The research methods and results have provided reference for similar remote sensing monitoring of crop pests.

Key words: cotton spider mites; UAV; remote sensing; logistic regression model; feature selection

摘要: 【目的】利用无人机遥感在空间分辨率和光谱分辨率上的优势,研究大面积棉田棉叶螨监测方法,为类似的农作物虫害遥感监测研究提供参考。【方法】选20种光谱指数作为螨害监测的特征因子,使用赤池信息准则作为模型优选依据,获取最佳建模特征,建立棉田螨害监测识别的logistic回归模型。【结果】在所分析的全部光谱指数中,TVI、DVI和RDVI为螨害监测的最佳特征因子,基于该3个因子构建的logistic回归模型的分类准确率为95%,F1值为95.1%,能够较好地实现棉田螨害识别。【结论】监测模型可以实现区域范围的棉叶螨快速识别。

关键词: 棉叶螨, 无人机, 遥感, logistic回归模型, 特征选择

CLC Number: