新疆农业科学 ›› 2025, Vol. 62 ›› Issue (3): 706-714.DOI: 10.6048/j.issn.1001-4330.2025.03.020
张晓乐1(), 吾尔恩·阿合别尔迪1,2(
), 恩特马克·布拉提白1, 木古丽·木哈西1,2, 袁青青1, 白茹1
收稿日期:
2024-07-09
出版日期:
2025-03-20
发布日期:
2025-05-14
通信作者:
吾尔恩·阿合别尔迪(1979-),男,新疆人,副教授,博士,硕士生导师,研究方向为分子微生物学,(E-mail) oren79@163.com作者简介:
张晓乐(1997-),女,辽宁人,硕士研究生,研究方向为微生物学,(E-mail) 1547574469@qq.com
基金资助:
ZHANG Xiaole1(), Wueren Ahebieerdi1,2(
), Entemake Bulatibai1, Muguli Muhaxi1,2, YUAN Qingqing1, BAI Ru1
Received:
2024-07-09
Published:
2025-03-20
Online:
2025-05-14
Supported by:
摘要:
【目的】探究不同连作年限薰衣草根际土壤细菌群落结构和多样性特征以及演变规律,为薰衣草土壤科学管理及增产提供参考。【方法】采集新疆伊犁哈萨克自治州霍城县不同连作年限以及未种植薰衣草土壤样品各3组,对16S rDNA序列进行 Illumina高通量测序。比较各样品组细菌多样性和群落分布规律及与种植年限的关联。【结果】随着连作年限的增加Shannon 指数和 Chao1指数均先降低后增高。在门水平上,酸杆菌门、变形菌门、放线菌门为优势菌门。在属水平上优势菌属为酸杆菌门中未被分类的一个属、鞘氨醇单胞菌属和嗜酸性杆菌属,不同年限的薰衣草土壤间细菌群组成相近,但相对丰度有所差异。Beta多样性与未种植土壤相比亦发生显著变化,其中第1年与第5年相似,均与第3年有较大差异。【结论】薰衣草连作种植造成根际土壤细菌群落结构和多样性改变。
中图分类号:
张晓乐, 吾尔恩·阿合别尔迪, 恩特马克·布拉提白, 木古丽·木哈西, 袁青青, 白茹. 薰衣草不同连作年限根际土壤细菌多样性及群落结构的变化[J]. 新疆农业科学, 2025, 62(3): 706-714.
ZHANG Xiaole, Wueren Ahebieerdi, Entemake Bulatibai, Muguli Muhaxi, YUAN Qingqing, BAI Ru. Changes in bacterial diversity and community structure in rhizosphere soil of lavender with different continuous cropping years[J]. Xinjiang Agricultural Sciences, 2025, 62(3): 706-714.
样本 Sample | 原始序列数 Raw tags | 有效序列数 Effective tags | 有效序列比例 Effective(%) | OTU数量 Number of OTU | 覆盖度 Goods-coverage |
---|---|---|---|---|---|
L0 | 95 166±11 883a | 66 833±2 505a | 71.12±7.26a | 3 701±42a | 0.990ab |
L1 | 90 524±9 124a | 68 385±2 469a | 77.07±9.45a | 3 869±218a | 0.990a |
L3 | 91 256±225a | 63 631±2 447a | 69.56±2.85a | 3 345±140b | 0.991±0.001b |
L5 | 84 562±6 163a | 64 800±2 678a | 77.4±5.98a | 3 810±149a | 0.989a |
表1 样品测序数据统计
Tab.1 Sequencing data statistics of the samples
样本 Sample | 原始序列数 Raw tags | 有效序列数 Effective tags | 有效序列比例 Effective(%) | OTU数量 Number of OTU | 覆盖度 Goods-coverage |
---|---|---|---|---|---|
L0 | 95 166±11 883a | 66 833±2 505a | 71.12±7.26a | 3 701±42a | 0.990ab |
L1 | 90 524±9 124a | 68 385±2 469a | 77.07±9.45a | 3 869±218a | 0.990a |
L3 | 91 256±225a | 63 631±2 447a | 69.56±2.85a | 3 345±140b | 0.991±0.001b |
L5 | 84 562±6 163a | 64 800±2 678a | 77.4±5.98a | 3 810±149a | 0.989a |
样本 Sample | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | Ace指数 Ace index |
---|---|---|---|---|
L0 | 9.801±0.113ac | 0.997±0.001a | 3 635.526±43.744ab | 3 726.847±67.421a |
L1 | 9.680±0.267ac | 0.997±0.002ab | 3 854.589±342.052b | 3 907.551±395.014a |
L3 | 9.282±0.357b | 0.995±0.002b | 3 359.662±184.162a | 3 387.528±146.537b |
L5 | 9.639±0.025bc | 0.996±0.001ab | 3 757.002±138.369b | 3 815.712±163.43a |
表2 样本细菌的Alpha多样性指数
Tab.2 The Alpha diversity index of bacteria samples
样本 Sample | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | Ace指数 Ace index |
---|---|---|---|---|
L0 | 9.801±0.113ac | 0.997±0.001a | 3 635.526±43.744ab | 3 726.847±67.421a |
L1 | 9.680±0.267ac | 0.997±0.002ab | 3 854.589±342.052b | 3 907.551±395.014a |
L3 | 9.282±0.357b | 0.995±0.002b | 3 359.662±184.162a | 3 387.528±146.537b |
L5 | 9.639±0.025bc | 0.996±0.001ab | 3 757.002±138.369b | 3 815.712±163.43a |
[1] | Crišan I, Ona A, Vârban D, et al. Current trends for lavender (Lavandula angustifolia mill.) crops and products with emphasis on essential oil quality[J]. Plants, 2023, 12(2): 357. |
[2] | Talebi S M, Askary M, Amiri R, et al. Effects of nanoparticles treatments and salinity stress on the genetic structure and physiological characteristics of Lavandula angustifolia Mill[J]. Brazilian Journal of Biology = Revista Brasleira de Biologia, 2022, 82: e261571. |
[3] | Yang Y, Wang N, Guo X Y, et al. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing[J]. PLoS One, 2017, 12(5): e0178425. |
[4] | Deng Q, Cheng X L, Hui D F, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in Central China[J]. Science of the Total Environment, 2016, 541: 230-237. |
[5] | 程惠芳, 刘志刚, 雷学恒, 等. 薰衣草精油通过抑制凋亡、上调海马BDNF/proBDNF表达改善大鼠卒中后抑郁[J]. 河北医科大学学报, 2023, 44(11): 1248-1254. |
CHENG Huifang, LIU Zhigang, LEI Xueheng, et al. Lavender essential oil improves post-stroke depression in rats by inhibiting apoptosis and up-regulating BDNF/proBDNF expression in hippocampus[J]. Journal of Hebei Medical University, 2023, 44(11): 1248-1254.
DOI |
|
[6] | Akhondzadeh S, Kashani L, Fotouhi A, et al. Comparison of Lavandula angustifolia mill. tincture and imipramine in the treatment of mild to moderate depression: a double-blind, randomized trial[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2003, 27(1): 123-127. |
[7] | 于瑞霞. 薰衣草抑菌活性研究[D]. 佳木斯: 佳木斯大学, 2018. |
YU Ruixia. Study on antibacterial activity of lavender[D]. Jiamusi: Jiamusi University, 2018. | |
[8] | 于芯宜, 徐家延, 陈方圆, 等. 5种植物精油抗菌性能研究及特征成分分析[J]. 保鲜与加工, 2022, 22(10): 1-9. |
YU Xinyi, XU Jiayan, CHEN Fangyuan, et al. Investigation on antibacterial properties and characteristic components of five kinds of plant essential oils[J]. Storage and Process, 2022, 22(10): 1-9. | |
[9] | 朱燕. 薰衣草精油的提取及抑制枯草芽孢杆菌组效关系研究[D]. 乌鲁木齐: 新疆大学, 2018. |
ZHU Yan. Study on the extraction of lavender essential oil and its synergistic effect on inhibition of Bacillus subtilis[D]. Urumqi: Xinjiang University, 2018. | |
[10] | 陈天意. 薰衣草内生菌的分离鉴定及其促生作用研究[D]. 伊宁: 伊犁师范大学, 2022. |
CHEN Tianyi. Isolation, identification and growth promotion of endophytes from lavender[D]. Yining: Yili Normal University, 2022. | |
[11] | 努兰·拜都拉. 伊犁河谷薰衣草根系分泌物对根际ACC脱氨酶活性细菌促生作用的影响[D]. 伊宁: 伊犁师范大学, 2023. |
Nulan Baidula. Effect of root exudates of lavender in Ili Valley on the growth promotion of ACC deaminase-active bacteria in rhizosphere[D]. Yining: Yili Normal University, 2023. | |
[12] | 努兰·拜都拉, 恩特马克·布拉提白. 伊犁州薰衣草根际促生真菌的分离鉴定及活性探究[J]. 生物化工, 2023, 9(1): 57-60. |
Nulan Baidula; Entemake Bulatibai. Isolation,Identification and Activity Research of lavender rhizosphere growth-promoting fungi in Yili State[J]. Biological Chemical Engineering, 2023, 9(1): 57-60. | |
[13] | Nedeltcheva-Antonova D, Gechovska K, Bozhanov S, et al. Exploring the chemical composition of Bulgarian lavender absolute (Lavandula angustifolia mill.) by GC/MS and GC-FID[J]. Plants, 2022, 11(22): 3150. |
[14] | Koycheva I K, Vasileva L V, Amirova K M, et al. Biotechnologically produced Lavandula angustifolia mill. extract rich in rosmarinic acid resolves psoriasis-related inflammation through Janus kinase/signal transducer and activator of transcription signaling[J]. Frontiers in Pharmacology, 2021, 12: 680168. |
[15] | Xiao X M, Cheng Z H, Meng H W, et al. Intercropping with garlic alleviated continuous cropping obstacle of cucumber in plastic tunnel[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2012, 62(8): 696-705. |
[16] | Tan S J, Jiang L J, Liu J Y, et al. Rhizosphere microorganisms and soil physicochemical properties of restored wetland plant communities at cutting slash of Populus deltoides in Dongting Lake[J]. Wetlands, 2023, 43(5): 48. |
[17] | 刘颖. 霍城县薰衣草产业发展问题及对策研究[D]. 雅安: 四川农业大学, 2019. |
LIU Ying. Study on the development problems and countermeasures of lavender industry in Huocheng County[D]. Yaan: Sichuan Agricultural University, 2019. | |
[18] |
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
DOI PMID |
[19] |
Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us[J]. FEMS Microbiology Ecology, 2004, 47(2): 161-177.
DOI PMID |
[20] | Wang J L, Zhang J W, Wang C J, et al. Precipitation exerts a strong influence on arbuscular mycorrhizal fungi community and network complexity in a semiarid steppe ecosystem[J]. European Journal of Soil Biology, 2021, 102: 103268. |
[21] | Jia A Q, Xu L, Wang Y. Venn diagrams in bioinformatics[J]. Briefings in Bioinformatics, 2021, 22(5): bbab108. |
[22] | Ji L F, Ni K, Wu Z D, et al. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization[J]. Biology and Fertility of Soils, 2020, 56(5): 633-646. |
[23] | Xiao X M, Cheng Z H, Lv J, et al. A green garlic (Allium sativum L.) based intercropping system reduces the strain of continuous monocropping in cucumber (Cucumis sativus L.) by adjusting the micro-ecological environment of soil[J]. PeerJ, 2019, 7: e7267. |
[24] | 吾尔恩·阿合别尔迪, 焦子伟, 江波拉提, 等. 高通量测序技术分析新疆新源县过度放牧土壤细菌多样性[J]. 微生物学通报, 2017, 44(3): 545-553. |
Wueren Ahebieerdi, JIAO ZiWei, Jiangbolati, et al. Determination of bacteria diversity of degraded grassland in Xinyuan county by high-throughput sequencing technology[J]. Microbiology China, 2017, 44(3): 545-553. | |
[25] | Dong L L, Xu J, Feng G Q, et al. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system[J]. Scientific Reports, 2016, 6: 31802. |
[26] | Wang M Y, Wu C N, Cheng Z H, et al. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.)[J]. Frontiers in Plant Science, 2015, 6: 262. |
[27] |
Vives-Peris V, de Ollas C, Gómez-Cadenas A, et al. Root exudates: from plant to rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39(1): 3-17.
DOI PMID |
[28] | Tan Y, Cui Y S, Li H Y, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 2017, 194: 10-19. |
[29] | Slatko B E, Gardner A F, Ausubel F M. Overview of next-generation sequencing technologies[J]. Current Protocols in Molecular Biology, 2018, 122(1): e59. |
[30] | Xue D, Huang X D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa)[J]. World Journal of Microbiology & Biotechnology, 2014, 30(2): 389-397. |
[31] |
Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6578-6583.
DOI PMID |
[32] | Liebner S, Harder J, Wagner D. Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia[J]. International Microbiology, 2008, 11(3): 195-202. |
[33] | 杨宝钰. 瘤胃液处理甜高粱秸秆对其发酵品质及微生物多样性的影响[D]. 阿拉尔: 塔里木大学, 2022. |
YANG Baoyu. Effects of rumen fluid treatment of sweet Sorghum stalk on its fermentation quality and microbial diversity[D]. Aral: Tarim University, 2022. | |
[34] |
An J X, Liu C, Wang Q, et al. Soil bacterial community structure in Chinese wetlands[J]. Geoderma, 2019, 337: 290-299.
DOI |
[35] |
Yun J L, Ju Y W, Deng Y C, et al. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China[J]. Microbial Ecology, 2014, 68(2): 360-369.
DOI PMID |
[36] | Shen Z Z, Xue C, Taylor P W J, et al. Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome[J]. Biology and Fertility of Soils, 2018, 54(7): 793-806. |
[37] | Kolaríková V, Brodsky K, Petrásková L, et al. Sulfation of phenolic acids: chemoenzymatic vs. chemical synthesis[J]. International Journal of Molecular Sciences, 2022, 23(23): 15171. |
[38] | Bolan N, Sarmah A K, Bordoloi S, et al. Soil acidification and the liming potential of biochar[J]. Environmental Pollution (Barking, Essex), 2023, 317: 120632. |
[39] |
Pankratov T A, Ivanova A O, Dedysh S N, et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat[J]. Environmental Microbiology, 2011, 13(7): 1800-1814.
DOI PMID |
[40] | Wang X D, Feng J G, Ao G, et al. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness[J]. Soil Biology and Biochemistry, 2023, 179: 108982. |
[41] | Prudence S M M, Addington E, Castaño-Espriu L, et al. Advances in actinomycete research: an ActinoBase review of 2019[J]. Microbiology, 2020, 166(8): 683-694. |
[42] |
Choudhary D K, Johri B N. Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR)[J]. Microbiological Research, 2009, 164(5): 493-513.
DOI PMID |
[43] | Zhou M, Liu Z S, Wang J Q, et al. Sphingomonas relies on chemotaxis to degrade polycyclic aromatic hydrocarbons and maintain dominance in coking sites[J]. Microorganisms, 2022, 10(6): 1109. |
[44] | 翟盼盼, 吴宇骞, 陆坚. 不动杆菌属分类的研究进展[J]. 新发传染病电子杂志, 2020, 5(1): 51-55, 59. |
ZHAI Panpan, WU Yuqian, LU Jian. Progress of study on Acinetobacter classification[J]. Electronic Journal of Emerging Infectious Diseases, 2020, 5(1): 51-55, 59. | |
[45] | 陈雪静, 吾尔恩·阿合别尔迪, 木古丽·木哈西, 等. 不同种植年限薰衣草根际土壤真菌群落结构的演变[J]. 微生物学杂志, 2024, 44 (2): 33-41. |
CHEN Xuejing, Wueren Ahebieerdi, Muguli Muhaxi, et al. Evolution of rhizosphere soil fungal community structure in different planting years of lavender[J]. Journal of microbiology, 2024, 44 (2): 33-41. | |
[46] | Tan G, Liu Y J, Peng S G, et al. Soil potentials to resist continuous cropping obstacle: three field cases[J]. Environmental Research, 2021, 200: 111319. |
[47] | Zhang X X, Sun H F, Wang C, et al. Optimizing fertilizer management mitigated net greenhouse gas emissions in a paddy rice-upland wheat rotation system: a ten-year in situ observation of the Yangtze River Delta, China[J]. Agriculture, Ecosystems & Environment, 2023, 356: 108640. |
[48] | Bourke P M, Evers J B, Bijma P, et al. Breeding beyond monoculture: putting the “intercrop” into crops[J]. Frontiers in Plant Science, 2021, 12: 734167. |
[49] | Chimonyo V G P, Govender L, Nyathi M, et al. Can cereal-legume intercrop systems contribute to household nutrition in semi-arid environments: a systematic review and meta-analysis[J]. Frontiers in Nutrition, 2023, 10: 1060246. |
[50] | Biradarar P, Saravanan S, Yadravi R N, et al. Studies on the effect of different biofertilizers and organic manures on yeild and quality of strawberry (Fragaria ananasa duch.) cv. chandler under Allahabad agro climatic condition[J]. International Journal of Environment and Climate Change, 2022: 2863-2867. |
[51] |
Wang W C, Qu K Q, Zhang X R, et al. Integrated instillation technology for the synthesis of a pH-responsive sodium alginate/biomass charcoal soil conditioner for controlled release of humic acid and soil remediation[J]. Journal of Agricultural and Food Chemistry, 2021, 69(45): 13386-13397.
DOI PMID |
[52] | Lian Y L, Zheng X F, Xie S Q, et al. Microbiota composition and correlations with environmental factors in grass carp (Ctenopharyngodon idella) culture ponds in South China[J]. PeerJ, 2023, 11: e15892. |
[1] | 谢文文, 王慧楠, 艾尼江·尔斯满, 朱静, 顾美英, 张志东. 辐射污染区细菌多样性及相关菌株筛选的多方法分析[J]. 新疆农业科学, 2025, 62(3): 715-722. |
[2] | 盛杨倩, 周嘉琦, 黄杨捷, 张美琪, 薛娜娜. 苦豆子浸提液对哈密瓜种子萌发的化感效应[J]. 新疆农业科学, 2025, 62(3): 732-738. |
[3] | 刘雪冰, 巴乐金, 边拜, 乌兰·吾尚, 巴音达拉. 新疆野果林不同植被土壤微生物多样性分析[J]. 新疆农业科学, 2025, 62(2): 401-411. |
[4] | 陈勇, 宋素琴, 蔺彩霞, 乔旭. 种植模式对板蓝根内生真菌多样性的影响[J]. 新疆农业科学, 2025, 62(2): 412-418. |
[5] | 王丹丹, 李燕, 张庆银, 李世东, 庞永超, 马琨芝, 马龙, 牛瑞生, 钟增明, 齐连芬, 师建华. 不同微生物菌处理对番茄土壤微生物多样性的影响[J]. 新疆农业科学, 2023, 60(9): 2248-2257. |
[6] | 李凯亮, 张振宇, 胡红英. 新疆哈密地区枣园昆虫群落结构及多样性分析[J]. 新疆农业科学, 2023, 60(8): 2028-2037. |
[7] | 田敬宇, 高雁, 高兴旺, 曾军, 赵鹏安, 苏比努尔·居来提. 哈密瓜种植对根际土壤细菌群落组成和多样性的影响[J]. 新疆农业科学, 2023, 60(5): 1253-1262. |
[8] | 于秀针, 穆晓路, 张杰, 赵超, 李浩, 冯斌. 两种香料植物秸秆发酵复配后育苗基质效果评价[J]. 新疆农业科学, 2023, 60(3): 735-741. |
[9] | 岳丽, 王卉, 山其米克, 再吐尼古丽·库尔班, 涂振东. 基于高通量测序的甜高粱青贮饲料中微生物群落分析[J]. 新疆农业科学, 2023, 60(11): 2742-2750. |
[10] | 李春艳, 刘芳婷, 张王斌. 基于高通量测序对引起苹果外观异常病原的鉴定[J]. 新疆农业科学, 2023, 60(1): 171-177. |
[11] | 李选文, 熊智, 王金华, 周艺萍, 熊忠平. 思茅松毛虫成虫肠道细菌多样性[J]. 新疆农业科学, 2022, 59(9): 2276-2287. |
[12] | 李海强, 王冬梅, 刘建. 核棉间作对棉田节肢动物群落结构及自然天敌种群发生的影响[J]. 新疆农业科学, 2022, 59(4): 934-941. |
[13] | 朱晓锋, 蔡淑琳, 苏卓文, 张殿朋, 宋博, 徐兵强, 阿布都克尤木·卡德尔, 杨森. 果园脐腹小蠹伴生(共生)真菌群落组成及功能分析[J]. 新疆农业科学, 2022, 59(3): 691-699. |
[14] | 郭晓雯, 杜思垚, 王芳霞, 叶扬, 杨茂琪, 闵伟. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923. |
[15] | 艾海白尔·卡斯木, 樊永红, 迪拉热·海米提. 盐碱地白刺不同部位微生物群落高通量分析[J]. 新疆农业科学, 2022, 59(10): 2562-2573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||