新疆农业科学 ›› 2025, Vol. 62 ›› Issue (2): 401-411.DOI: 10.6048/j.issn.1001-4330.2025.02.017
刘雪冰1(), 巴乐金2, 边拜3, 乌兰·吾尚1, 巴音达拉1(
)
收稿日期:
2024-07-14
出版日期:
2025-02-20
发布日期:
2025-04-17
通信作者:
巴音达拉(1982-),男,新疆额敏人,副教授,博士,硕士生导师,研究方向为森林生态学及植物资源学,(E-mail) bayandala@xjau.edu.cn作者简介:
刘雪冰(1998-),女,甘肃庆阳人,硕士研究生,研究方向为森林生态学,(Email) 373885806@qq.com
基金资助:
LIU Xuebing1(), Balejin 2, Bian Bai3, Wulan Wushang1, Bayindala 1(
)
Received:
2024-07-14
Published:
2025-02-20
Online:
2025-04-17
Supported by:
摘要:
【目的】研究新疆野果林不同植被下土壤微生物多样性。【方法】选择环境条件相似的新疆野苹果优势林、新疆野杏优势林、多个树种共生林和林中草地4种不同类型的林地作为样地,采集4种样地的土壤进行理化性质测定,采用Illumina-MiSeq高通量测序技术探究4种样地土壤微生物的多样性和群落结构组成。【结果】(1)4种土壤中的全氮、全钾、有机碳和易氧化有机碳都无显著差异,而多个树种共生林内的全磷含量显著高于其他样地内土壤全磷的含量。(2)4种土壤中细菌的OTU数显著高于真菌,新疆野杏优势林的土壤细菌、真菌丰度最高,草地的土壤细菌、真菌丰度最低。新疆野苹果优势林内土壤细菌共鉴定出30门76纲135目185科233属,土壤真菌共鉴定出7门20纲40目70科90属;新疆野杏优势林内土壤细菌共鉴定出31门78纲141目183科220属,土壤真菌8门17纲35目69科94属;多个树种共生林内土壤细菌共鉴定出29门75纲137目179科221属,土壤真菌共鉴定出7门15纲31目53科72属;林中草地内土壤共鉴定出28门72纲126目162科201属,土壤真菌共鉴定出5门13纲35目61科84属。(3)门分类水平的细菌群落中,优势菌为放线菌门、酸杆菌门和变形菌门,在真菌群落中优势菌为子囊菌门、被孢霉门和担子菌门;属分类水平下,优势细菌属为RB41属和Rokubacteriales属,优势真菌属为Humicola属、被孢霉属和Linnemannia属。【结论】新疆野果林不同植被下土壤细菌群落多样性存在差异,林地的土壤微生物种类最丰富,而草地的土壤微生物种类较为贫乏。
中图分类号:
刘雪冰, 巴乐金, 边拜, 乌兰·吾尚, 巴音达拉. 新疆野果林不同植被土壤微生物多样性分析[J]. 新疆农业科学, 2025, 62(2): 401-411.
LIU Xuebing, Balejin , Bian Bai, Wulan Wushang, Bayindala . Study on soil microbial diversity under different vegetation in Xinjiang wild fruit forests[J]. Xinjiang Agricultural Sciences, 2025, 62(2): 401-411.
样地 Sample area | 海拔 Elevation (m) | 坡度 Slope (°) | 坡向 Aspect | 土壤水分 Soil moisture (%) | 草本盖度 Herb coverage (%) | 优势种 Dominant | 其他物种 Other species |
---|---|---|---|---|---|---|---|
M | 1 250.9 | 31 | 西北 | 11.8 | 65 | 新疆野苹果 | 小檗、忍冬、 疏花蔷薇 |
A | 1 325.3 | 25 | 东北 | 8.7 | 50 | 新疆野杏 | 忍冬、小檗 |
H | 1 249.2 | 23 | 东北 | 9.5 | 55 | 新疆野苹果、 新疆野杏 | 野山楂、忍冬、 小檗 |
CK | 1 268.5 | 13 | 东北 | 5.6 | 87 | 鸭茅 | 灰绿藜、车轴草 |
表1 不同样地的基本参数
Tab.1 Basic parameters for different sites
样地 Sample area | 海拔 Elevation (m) | 坡度 Slope (°) | 坡向 Aspect | 土壤水分 Soil moisture (%) | 草本盖度 Herb coverage (%) | 优势种 Dominant | 其他物种 Other species |
---|---|---|---|---|---|---|---|
M | 1 250.9 | 31 | 西北 | 11.8 | 65 | 新疆野苹果 | 小檗、忍冬、 疏花蔷薇 |
A | 1 325.3 | 25 | 东北 | 8.7 | 50 | 新疆野杏 | 忍冬、小檗 |
H | 1 249.2 | 23 | 东北 | 9.5 | 55 | 新疆野苹果、 新疆野杏 | 野山楂、忍冬、 小檗 |
CK | 1 268.5 | 13 | 东北 | 5.6 | 87 | 鸭茅 | 灰绿藜、车轴草 |
植被 Vegetation | 全氮TN Total nitrogen (g/kg) | 全磷TP Total phosphorus (g/kg) | 全钾TK Total kalium (g/kg) | 总有机碳TOC Total organic carbon (g/kg) | 活性有机碳LOC Labile organic carbon (g/kg) |
---|---|---|---|---|---|
A | 6.03±2.05a | 0.95±0.04a | 21.95±1.80a | 69.74±26.08a | 7.55±2.33a |
M | 4.56±0.47a | 0.98±0.10a | 24.09±2.44a | 53.42±12.54a | 7.00±0.47a |
H | 4.96±0.61a | 1.37±0.10b | 24.53±0.60a | 60.45±8.15a | 7.27±2.05a |
CK | 5.22±0.90a | 0.79±0.03a | 21.50±1.22a | 59.24±4.89a | 6.43±0.91a |
表2 不同植被下土壤的基本理化性质
Tab.2 Basic physical and chemical properties of soil under different vegetation
植被 Vegetation | 全氮TN Total nitrogen (g/kg) | 全磷TP Total phosphorus (g/kg) | 全钾TK Total kalium (g/kg) | 总有机碳TOC Total organic carbon (g/kg) | 活性有机碳LOC Labile organic carbon (g/kg) |
---|---|---|---|---|---|
A | 6.03±2.05a | 0.95±0.04a | 21.95±1.80a | 69.74±26.08a | 7.55±2.33a |
M | 4.56±0.47a | 0.98±0.10a | 24.09±2.44a | 53.42±12.54a | 7.00±0.47a |
H | 4.96±0.61a | 1.37±0.10b | 24.53±0.60a | 60.45±8.15a | 7.27±2.05a |
CK | 5.22±0.90a | 0.79±0.03a | 21.50±1.22a | 59.24±4.89a | 6.43±0.91a |
图1 不同植被下土壤微生物的稀疏曲线 注:A: 野杏优势林;M: 新疆野苹果优势林;H: 多个树种共生林地;CK: 林中草地,下同
Fig.1 Sparse curve of soil microorganisms under different vegetation Notes: A: Armeniaca vulgaris dominant forest; M: Malus sieversii dominant forest;H: symbiotic forest of multiple species; CK: forest grassland,the same as below
图2 不同植被下基于土壤微生物OTUs的Venn图 注:Venn图中每个色块代表一个样本,色块间的重叠区域指示相应样本间所共有的OTUs数目,没有重叠部分的数字代表样本特有的OTUs个数
Fig.2 Venn diagram based on soil microbial OTUs under different vegetation Notes: In the Venn figure, each color block represents a sample, and the overlapping area between the color blocks indicates the number of OTUs shared among the corresponding samples, while the number without overlapping part represents the number of OTUs unique to the sample
微生物 Microorganism | 植被 Veget- ation | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus |
---|---|---|---|---|---|---|
细菌 Bacteria | A | 31 | 78 | 141 | 183 | 220 |
M | 30 | 76 | 135 | 185 | 233 | |
H | 29 | 75 | 137 | 179 | 221 | |
CK | 28 | 72 | 126 | 162 | 201 | |
真菌 Fungus | A | 8 | 17 | 35 | 69 | 94 |
M | 7 | 20 | 40 | 70 | 90 | |
H | 7 | 15 | 31 | 53 | 72 | |
CK | 5 | 13 | 35 | 61 | 84 |
表3 不同植被下土壤微生物物种分类统计
Tab.3 Classification statistics of species of soil microorganisms under different vegetation
微生物 Microorganism | 植被 Veget- ation | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus |
---|---|---|---|---|---|---|
细菌 Bacteria | A | 31 | 78 | 141 | 183 | 220 |
M | 30 | 76 | 135 | 185 | 233 | |
H | 29 | 75 | 137 | 179 | 221 | |
CK | 28 | 72 | 126 | 162 | 201 | |
真菌 Fungus | A | 8 | 17 | 35 | 69 | 94 |
M | 7 | 20 | 40 | 70 | 90 | |
H | 7 | 15 | 31 | 53 | 72 | |
CK | 5 | 13 | 35 | 61 | 84 |
植被 Vegetation | 细菌Bacteria | 真菌Fungus | ||||
---|---|---|---|---|---|---|
Chao1指数 Chao1 index | Shanoon指数 Shanoon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | Shanoon指数 Shanoon index | Simpson指数 Simpson index | |
A | 2 613.100±77.966a | 10.357±0.023a | 0.999±0.000a | 247.414±0.808a | 6.100±0.136a | 0.971±0.004a |
M | 2 500.770±20.223a | 10.300±0.010a | 0.999±0.000a | 221.721±37.228a | 5.892±0.007ab | 0.966±0.007a |
H | 2 548.895±66.518a | 10.346±0.030a | 0.999±0.000a | 197.012±1.431a | 5.468±0.062bc | 0.947±0.012a |
CK | 2 195.570±125.823b | 10.036±0.100b | 0.998±0.000b | 228.014±5.782a | 5.316±0.327c | 0.929±0.035a |
表4 Alpha多样性分析
Tab.4 The Alpha diversity analysis
植被 Vegetation | 细菌Bacteria | 真菌Fungus | ||||
---|---|---|---|---|---|---|
Chao1指数 Chao1 index | Shanoon指数 Shanoon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | Shanoon指数 Shanoon index | Simpson指数 Simpson index | |
A | 2 613.100±77.966a | 10.357±0.023a | 0.999±0.000a | 247.414±0.808a | 6.100±0.136a | 0.971±0.004a |
M | 2 500.770±20.223a | 10.300±0.010a | 0.999±0.000a | 221.721±37.228a | 5.892±0.007ab | 0.966±0.007a |
H | 2 548.895±66.518a | 10.346±0.030a | 0.999±0.000a | 197.012±1.431a | 5.468±0.062bc | 0.947±0.012a |
CK | 2 195.570±125.823b | 10.036±0.100b | 0.998±0.000b | 228.014±5.782a | 5.316±0.327c | 0.929±0.035a |
图7 细菌和真菌 PCoA 分析图(OTU level) 注:第1主成分轴(PCo1)和第2主成分轴(PCo2)表示2个选定的主坐标轴,坐标轴括号中的百分比代表了对应的坐标轴所能解释的样本差异数据的比例;PCo1 轴和 PCo2轴的刻度是相对距离,无实际意义;不同颜色的点代表不同的样本,2样本点越接近,2样本的物种组成越相似
Fig.7 PCoA analysis diagram of bacteria and fungus on OTU level Notes: The first principal component axis (PCo1) and the second principal component axis (PCo2) represent the two selected principal axes, and the percentage in the brackets represents the proportion of the sample difference data that can be explained by the corresponding axes.The scale of PCo1 axis and PCo2 axis is relative distance, which has no practical significance; Different colored dots represent different samples, and the closer the two sample points are, the more similar the species composition of the two samples is
[1] | He Z M, Yu Z P, Huang Z Q, et al. Litter decomposition, residue chemistry and microbial community structure under two subtropical forest plantations: a reciprocal litter transplant study[J]. Applied Soil Ecology, 2016, 101: 84-92. |
[2] | 巴音达拉. 病原菌及菌根菌维持森林植物多样性机制的研究进展[J]. 中国野生植物资源, 2023, 42(10): 96-100. |
Bayindala. Advances in mechanisms of pathogenic and mycorrhizal fungi maintenance on forest plant diversity[J]. Chinese Wild Plant Resources, 2023, 42(10): 96-100. | |
[3] |
席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182.
DOI |
XI Nianxun, ZHANG Yuanye, ZHOU Shurong. Plant-soil feedbacks in community ecology[J]. Chinese Journal of Plant Ecology, 2023, 47(2): 170-182.
DOI |
|
[4] |
Li Z L, Zeng Z Q, Song Z P, et al. Vital roles of soil microbes in driving terrestrial nitrogen immobilization[J]. Global Change Biology, 2021, 27(9): 1848-1858.
DOI PMID |
[5] |
Qi J J, Fu D Q, Wang X Z, et al. The effect of alfalfa cultivation on improving physicochemical properties soil microorganisms community structure of grey desert soil[J]. Scientific Reports, 2023, 13(1): 13747.
DOI PMID |
[6] |
Wardle D A. The influence of biotic interactions on soil biodiversity[J]. Ecology Letters, 2006, 9(7): 870-886.
PMID |
[7] | Pii Y, Mimmo T, Tomasi N, et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 2015, 51(4): 403-415. |
[8] | Saville Waid J. Does soil biodiversity depend upon metabiotic activity and influences?[J]. Applied Soil Ecology, 1999, 13(2): 151-158. |
[9] | 伍思宇, 李宝财, 李纪元, 等. 不同树种林下套种金花茶土壤微生物多样性分析[J]. 广西林业科学, 2021, 50(2): 115-124. |
WU Siyu, LI Baocai, LI Jiyuan, et al. Soil microbial diversity of planting Camellia nitidissima under different tree species[J]. Guangxi Forestry Science, 2021, 50(2): 115-124. | |
[10] | 刘炜璇, 李依蒙, 江红星, 等. 吉林莫莫格国家级自然保护区四种典型植物群落下土壤微生物组成的对比分析[J]. 生态学杂志, 2023. |
LIU Weixuan, LI Yimeng, JIANG Hongxing, et al. Comparative analysis of soil microbial composition of four typical vegetation communities in Momoge National Nature Reserve, Jilin Province[J]. Chinese Journal of Ecology, 2023. | |
[11] | 曾全超. 黄土高原不同植被生态系统土壤微生物多样性及其影响因素研究[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015. |
ZENG Quanchao. The soil factors affecting soil microbial under different vegetation ecozones on the Loess Plateau of China[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2015. | |
[12] | 程智超, 杨立宾, 隋心, 等. 黑龙江中央站黑嘴松鸡国家级自然保护区不同森林类型土壤微生物功能多样性分析[J]. 环境科学研究, 2021, 34(5): 1177-1186. |
CHENG Zhichao, YANG Libin, SUI Xin, et al. Soil microbial functional diversity responses to different revegetation types in Heilongjiang Zhongyangzhan black-billed capercaillie nature reserve[J]. Research of Environmental Sciences, 2021, 34(5): 1177-1186. | |
[13] | Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 145-168. |
[14] | 张旋, 杜薇, 白立东, 等. 包头市劳动公园林下土壤微生物多样性与功能研究[J]. 内蒙古农业大学学报(自然科学版), 2023, 44(1): 60-65. |
ZHANG Xuan, DU Wei, BAI Lidong, et al. Microbial diversity and function of understory soil in Baotou labor park[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2023, 44(1): 60-65. | |
[15] | 孔亚丽, 秦华, 朱春权, 等. 土壤微生物影响土壤健康的作用机制研究进展[J]. 土壤学报, 2024, 61(2): 331-347. |
KONG Yali, QIN Hua, ZHU Chunquan, et al. Research progress on the mechanism by which soil microorganisms affect soil health[J]. Acta Pedologica Sinica, 2024, 61(2): 331-347. | |
[16] | 刘会梅, 张天宇. 土壤真菌研究进展[J]. 山东农业大学学报(自然科学版), 2008, 39(2): 326-330. |
LIU Huimei, ZHANG Tianyu. Research progress on soil fungi[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2008, 39(2): 326-330. | |
[17] | 鲍士旦. 土壤农化分析(3版.)[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Soil and agricultural chemistry analysis(3rd ed.)[M]. Beijing: China Agriculture Press, 2000. | |
[18] | Chen Y F, Ye J R, Kong Q Q. Potassium-Solubilizing Activity of Bacillus aryabhattai SK1-7 and Its Growth-Promoting Effect on Populus alba L[J]. Forests, 2020, 11(12): 1348. |
[19] | 周伟, 吴红慧, 张运龙, 等. 土壤活性有机碳测定方法的改良[J]. 土壤通报, 2019, 50(1): 70-75. |
ZHOU Wei, WU Honghui, ZHANG Yunlong, et al. Improvement of determination method for soil labile organic carbon[J]. Chinese Journal of Soil Science, 2019, 50(1): 70-75. | |
[20] | Berg J, Brandt K K, Al-Soud W A, et al. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure[J]. Applied and Environmental Microbiology, 2012, 78(20): 7438-7446. |
[21] | 朱立月, 丁美月, 黄冠南, 等. 内蒙古通辽市砂质土壤中微生物群落结构及其与环境因子的关系[J]. 科学技术与工程, 2018, 18(20): 347-352. |
ZHU Liyue, DING Meiyue, HUANG Guannan, et al. Microbial community structure and the correlation between environmental factors and community structure in sandy soil of Tongliao in Inner Mongolia[J]. Science Technology and Engineering, 2018, 18(20): 347-352. | |
[22] | 董学德. 麻栎-刺槐林凋落物分解过程中土壤微生物群落变化特征及影响因素[D]. 泰安: 山东农业大学, 2021. |
DONG Xuede. Changing characteristics and influencing factors of the soil microbial community during litter decomposition in the Mixed Quercus acutissima Carruth and Robinia pseudoacacia L. Forest[D]. Taian: Shandong Agricultural University, 2021. | |
[23] |
Stach J E M, Maldonado L A, Masson D G, et al. Statistical approaches for estimating actinobacterial diversity in marine sediments[J]. Applied and Environmental Microbiology, 2003, 69(10): 6189-6200.
DOI PMID |
[24] | 鲍佳书, 汤玉洁, 刘俊萍, 等. 不同品种薄壳山核桃林地土壤微生物多样性及群落组成[J]. 中南林业科技大学学报, 2022, 42(9): 24-36. |
BAO Jiashu, TANG Yujie, LIU Junping, et al. Study on soil microbial diversity and community composition of different pecan plantations[J]. Journal of Central South University of Forestry & Technology, 2022, 42(9): 24-36. | |
[25] | 陈新. 季节性雪被下新疆天山雪岭云杉林凋落物分解与土壤微生物的关系[D]. 乌鲁木齐: 新疆大学, 2019. |
CHEN Xin. Relationship between litter decompositionand soil microbes of Schrenk spruceinforest under seasonal snowfall in Tianshan Mountains, Xinjiang[D]. Urumqi: Xinjiang University, 2019. | |
[26] | 岳雪娇, 黄沛, 李永华, 等. 敦煌三道泉典型植物群落土壤微生物群落结构特征与影响因素[J]. 陆地生态系统与保护学报, 2023(3): 37-47. |
YUE Xuejiao, HUANG Pei, LI Yonghua, et al. Structural characteristics and influencing factors of soil microbial community in typical plant communities in Sandaoquan Region of Dunhuang[J]. Terrestrial Ecosystem and Conservation, 2023(3): 37-47. | |
[27] | 蔡冠霞, 夏凡, 李栋, 等. 不同土地利用类型下土壤微生物群落结构特征的模拟试验研究[J]. 矿物岩石地球化学通报, 2022, 41(5): 1023-1032. |
CAI Guanxia, XIA Fan, LI Dong, et al. A simulation study on characteristics of soil microbial community structure under different land uses[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(5): 1023-1032. | |
[28] | 张蓉, 于亚军. 煤矸山复垦林地和草地土壤微生物多样性和群落组成的差异及其影响因素[J]. 生态学杂志, 2018, 37(6): 1662-1668. |
ZHANG Rong, YU Yajun. Differences of soil microbial diversity and community composition between reclaimed woodland and grassland in coal waste pile and their influencing factors[J]. Chinese Journal of Ecology, 2018, 37(6): 1662-1668. | |
[29] | 王改萍, 阿依古丽·托乎提, 王茹, 等. 新疆乌尔禾地区盐渍土壤耐盐细菌多样性与群落结构研究[J]. 微生物学杂志, 2021, 41(2): 17-26. |
WANG Gaiping, AyiguliTuohuti, WANG Ru, et al. Diversity and community structure of salt-tolerant bacteria in salinized soil in Wuerhe area in Xinjiang[J]. Journal of Microbiology, 2021, 41(2): 17-26. | |
[30] | 王岳, 丁国栋, 刘梦婕, 等. 榆林沙区典型林地不同植被类型对土壤微生物群落结构的影响[J]. 土壤通报, 2022, 53(4): 907-918. |
WANG Yue, DING Guodong, LIU Mengjie, et al. Influence of different vegetation types on soil microbial characteristics of typical forest land in Yulin sandy area[J]. Chinese Journal of Soil Science, 2022, 53(4): 907-918. | |
[31] | 熊冰杰, 何舒, 张澳, 等. 基于高通量测序技术的林下三七土壤微生物多样性研究[J]. 山东农业科学, 2023, 55(8): 80-87. |
XIONG Bingjie, HE Shu, ZHANG Ao, et al. Study on microbial diversity of Panax notoginseng rhizosphere soil in forest based on high-throughput sequencing[J]. Shandong Agricultural Sciences, 2023, 55(8): 80-87. | |
[32] | 王晶, 张会萍, 苏晓, 等. 阿尔泰银莲花根际土壤微生物多样性研究[J]. 广西植物, 2023, 43(8): 1467-1477. |
WANG Jing, ZHANG Huiping, SU Xiao, et al. Microbial diversity in rhizosphere soil of Anemone altaica[J]. Guihaia, 2023, 43(8): 1467-1477. | |
[33] | Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. |
[34] | 王诗慧, 常顺利, 李鑫, 等. 天山林区土壤真菌多样性及其群落结构[J]. 生态学报, 2021, 41(1): 124-134. |
WANG Shihui, CHANG Shunli, LI Xin, et al. Soil fungal diversity and its community structure in Tianshan Forest[J]. Acta Ecologica Sinica, 2021, 41(1): 124-134. | |
[35] | 陈秀波, 朱德全, 赵晨晨, 等. 不同林型红松林土壤真菌群落组成和多样性[J]. 土壤学报, 2019, 56(5): 1221-1234. |
CHEN Xiubo, ZHU Dequan, ZHAO Chenchen, et al. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests[J]. Acta Pedologica Sinica, 2019, 56(5): 1221-1234. | |
[36] |
Stone B W, Li J H, Koch B J, et al. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community[J]. Nature Communications, 2021, 12(1): 3381.
DOI PMID |
[37] |
杨虎, 王佩瑶, 李小伟, 等. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构[J]. 生态环境学报, 2022, 31(2): 239-247.
DOI |
YANG Hu, WANG Peiyao, LI Xiaowei, et al. Distribution of soil fungal diversity and community structure in different vegetation types on the eastern slopes of Helan Mountains[J]. Ecology and Environmental Sciences, 2022, 31(2): 239-247. |
[1] | 陈勇, 宋素琴, 蔺彩霞, 乔旭. 种植模式对板蓝根内生真菌多样性的影响[J]. 新疆农业科学, 2025, 62(2): 412-418. |
[2] | 王丹丹, 李燕, 张庆银, 李世东, 庞永超, 马琨芝, 马龙, 牛瑞生, 钟增明, 齐连芬, 师建华. 不同微生物菌处理对番茄土壤微生物多样性的影响[J]. 新疆农业科学, 2023, 60(9): 2248-2257. |
[3] | 徐静, 石书兵, 秦小钢, 朱军. 核桃林间作西红花对其土壤微生物数量的动态变化[J]. 新疆农业科学, 2023, 60(8): 2022-2027. |
[4] | 李凯亮, 张振宇, 胡红英. 新疆哈密地区枣园昆虫群落结构及多样性分析[J]. 新疆农业科学, 2023, 60(8): 2028-2037. |
[5] | 田敬宇, 高雁, 高兴旺, 曾军, 赵鹏安, 苏比努尔·居来提. 哈密瓜种植对根际土壤细菌群落组成和多样性的影响[J]. 新疆农业科学, 2023, 60(5): 1253-1262. |
[6] | 岳丽, 王卉, 山其米克, 再吐尼古丽·库尔班, 涂振东. 基于高通量测序的甜高粱青贮饲料中微生物群落分析[J]. 新疆农业科学, 2023, 60(11): 2742-2750. |
[7] | 李春艳, 刘芳婷, 张王斌. 基于高通量测序对引起苹果外观异常病原的鉴定[J]. 新疆农业科学, 2023, 60(1): 171-177. |
[8] | 李选文, 熊智, 王金华, 周艺萍, 熊忠平. 思茅松毛虫成虫肠道细菌多样性[J]. 新疆农业科学, 2022, 59(9): 2276-2287. |
[9] | 王玉丽, 吕昭智, 令狐伟, 王强, 高桂珍. 新疆野果林杏树鬃球蚧的发生及危害[J]. 新疆农业科学, 2022, 59(7): 1741-1747. |
[10] | 李海强, 王冬梅, 刘建. 核棉间作对棉田节肢动物群落结构及自然天敌种群发生的影响[J]. 新疆农业科学, 2022, 59(4): 934-941. |
[11] | 朱晓锋, 蔡淑琳, 苏卓文, 张殿朋, 宋博, 徐兵强, 阿布都克尤木·卡德尔, 杨森. 果园脐腹小蠹伴生(共生)真菌群落组成及功能分析[J]. 新疆农业科学, 2022, 59(3): 691-699. |
[12] | 顾美英, 徐万里, 马凯, 欧提库尔·玛合木提, 张志东, 朱静, 唐琦勇, 楚敏, 张丽娟. 基于主成分-聚类分析评价不同定植年限核桃土壤微生物生态[J]. 新疆农业科学, 2022, 59(2): 474-484. |
[13] | 郭晓雯, 杜思垚, 王芳霞, 叶扬, 杨茂琪, 闵伟. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923. |
[14] | 艾海白尔·卡斯木, 樊永红, 迪拉热·海米提. 盐碱地白刺不同部位微生物群落高通量分析[J]. 新疆农业科学, 2022, 59(10): 2562-2573. |
[15] | 何伟, 罗文芳, 于镇华, 许建军, 孙晓军. 高温闷棚对设施蔬菜根结线虫的防治效果及土壤微生物群落结构的影响[J]. 新疆农业科学, 2022, 59(1): 179-189. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 47
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||