[1] |
Videvall E, Burraco P, Orizaola G. Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands[J]. Environmental Pollution, 2023, 330: 121774.
|
[2] |
Chapon V, Piette L, Vesvres M H, et al. Microbial diversity in contaminated soils along the T22 trench of the Chernobyl experimental platform[J]. Applied Geochemistry, 2012, 27(7): 1375-1383.
|
[3] |
Zhdanova N N, Zakharchenko V A, Vember V V, et al. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor[J]. Mycological Research, 2000, 104(12): 1421-1426.
|
[4] |
Shah V, Shah S, MacKey H, et al. Microbial community in the soil determines the forest recovery post-exposure to gamma irradiation[J]. Environmental Science & Technology, 2013, 47(20): 11396-11402.
|
[5] |
Vázquez-Campos X, Kinsela A S, Bligh M W, et al. Response of microbial community function to fluctuating geochemical conditions within a legacy radioactive waste trench environment[J]. Applied and Environmental Microbiology, 2017, 83(17): e00729-17.
|
[6] |
Manobala T, Shukla S K, Subba Rao T, et al. A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm[J]. Journal of Biosciences, 2019, 44(5): 122.
|
[7] |
Li S S, Zhu Q Q, Luo J Q, et al. Application progress of Deinococcus radiodurans in biological treatment of radioactive uranium-containing wastewater[J]. Indian Journal of Microbiology, 2021, 61(4): 417-426.
|
[8] |
Xia W W, Zong J H, Zheng K, et al. DgCspC gene overexpression improves cotton yield and tolerance to drought and salt stress comparison with wild-type plants[J]. Frontiers in Plant Science, 2022, 13: 985900.
|
[9] |
Maqbool I, Sudharsan M, Kanimozhi G, et al. Crude cell-free extract from Deinococcus radiodurans exhibit anticancer activity by inducing apoptosis in triple-negative breast cancer cells[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 707.
|
[10] |
张志东, 顾美英, 王玮, 等. 基于高通量测序的辐射污染区细菌群落特征分析[J]. 微生物学通报, 2016, 43(6): 1218-1226.
|
|
ZHANG Zhidong, GU Meiying, WANG Wei, et al. Analysis of bacterial community in radiation polluted soils by high-throughput sequencing[J]. Microbiology China, 2016, 43(6): 1218-1226.
|
[11] |
Gu M Y, Zhang Z D, Wang W, et al. The effects of radiation pollution on the population diversities and metabolic characteristics of soil microorganisms[J]. Water, Air, & Soil Pollution, 2014, 225(9): 2133.
|
[12] |
朱静, 顾美英, 宋素琴, 等. 辐射污染区土壤中细菌对重金属的耐受和吸附研究[J]. 新疆农业科学, 2013, 50(6): 1101-1107.
|
|
ZHU Jing, GU Meiying, SONG Suqin, et al. Study on the tolerance and adsorption of heavy metal ions by bacteria isolated from radiation-polluted soil[J]. Xinjiang Agricultural Sciences, 2013, 50(6): 1101-1107.
|
[13] |
张志东, 谢玉清, 王玮, 等. 耐辐射黑色酵母状真菌的筛选和特性研究[J]. 微生物学通报, 2012, 39(5): 724-731.
|
|
ZHANG Zhidong, XIE Yuqing, WANG Wei, et al. Isolation and character of radio-resistant black yeast-like fungus[J]. Microbiology China, 2012, 39(5): 724-731.
|
[14] |
Mao J, Wang J, Dai H Q, et al. Yuhushiella deserti gen. nov., sp. nov., a new member of the suborder Pseudonocardineae[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 3): 621-630.
|
[15] |
Wang W, Mao J, Zhang Z D, et al. Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 9): 2006-2010.
DOI
PMID
|
[16] |
张志东, 茆军, 唐琦勇, 等. 辐射污染区土壤中放线菌的分离及多样性[J]. 微生物学通报, 2009, 36(9): 1329-1333.
|
|
ZHANG Zhidong, MAO Jun, TANG Qiyong, et al. Diversity investigation of actinomycetes isolated from radiation-polluted soil[J]. Microbiology, 2009, 36(9): 1329-1333.
|
[17] |
Mao J, Tang Q Y, Zhang Z D, et al. Streptomyces radiopugnans sp. nov., a radiation-resistant actinomycete isolated from radiation-polluted soil in China[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 11): 2578-2582.
|
[18] |
Wang W, Zhang Z D, Tang Q Y, et al. Lechevalieria xinjiangensis sp. nov., a novel actinomycete isolated from radiation-polluted soil in China[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 12): 2819-2822.
DOI
PMID
|
[19] |
Lagier J C, Armougom F, Million M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study[J]. Clinical Microbiology and Infection, 2012, 18(12): 1185-1193.
|
[20] |
Lagier J C, Dubourg G, Million M, et al. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16: 540-550.
|
[21] |
Lin X J, Kennedy D, Fredrickson J, et al. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site[J]. Environmental Microbiology, 2012, 14(2): 414-425.
DOI
PMID
|
[22] |
Ragon M, Restoux G, Moreira D, et al. Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels[J]. PLoS One, 2011, 6(7): e21764.
|
[23] |
Diakite A, Dubourg G, Dione N, et al. Extensive culturomics of 8 healthy samples enhances metagenomics efficiency[J]. PLoS One, 2019, 14(10): e0223543.
|
[24] |
Li S, Dong L, Lian W H, et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy[J]. Science of the Total Environment, 2021, 790: 148235.
|
[25] |
Zhu J, Li S H, Tang Q Y, et al. Deinococcus malanensis sp. nov., isolated from radiation-polluted soil[J]. Archives of Microbiology, 2017, 199(4): 621-626.
|
[26] |
Zhu J, Wang W, Li S H, et al. Paenibacillus wulumuqiensis sp. nov. and Paenibacillus dauci sp. nov., two novel species of the genus Paenibacillus[J]. Archives of Microbiology, 2015, 197(3): 489-495.
|
[27] |
Zhu J, Xie Y Q, Song S Q, et al. Study on the tolerance and adsorption of five heavy metal ions by a radiation-resistant Acinetobacter sp.[J]. Advanced Materials Research, 2013, 641/642: 183-188.
|