新疆农业科学 ›› 2021, Vol. 58 ›› Issue (12): 2256-2264.DOI: 10.6048/j.issn.1001-4330.2021.12.013
• 植物保护·园艺特产·土壤肥料·节水灌溉·农业生态环境·农业装备工程与机械化 • 上一篇 下一篇
收稿日期:
2020-09-24
出版日期:
2021-12-20
发布日期:
2021-12-31
通信作者:
姚举(1969-),男,山东人,研究员,研究方向为棉花病虫害综合防控,(E-mail)yaoju500@sohu.com作者简介:
刘海洋(1982-),男,山东人,副研究员,博士,研究方向为棉花病害综合防控与基础研究,(E-mail) liuhaiyang001@163.com
基金资助:
LIU Haiyang1(), WANG Wei1, ZHANG Renfu1, LEI Bin2, YAO Ju1(
)
Received:
2020-09-24
Published:
2021-12-20
Online:
2021-12-31
Correspondence author:
YAO Ju (1969- ), male, Shandong, Professor, research field: study on integrated prevention and control of cotton diseases and pests. (E-mail) yaoju500@sohu.comSupported by:
摘要: 目的 研究生物菌剂对棉田土壤细菌群落多样性及种群结构的影响,分析生物菌剂对新疆棉田土壤微生态的改善效应,为提高棉花土传病害的生物防治与化肥减施技术提供依据。方法 采集施用生物菌剂及对照棉田10~20 cm土壤,检测土壤理化性质并利用Illumina Hiseq 2500 PE250高通量测序平台分析土壤细菌多样性。结果 施用生物菌剂且停施头水肥后,土壤中全氮、有机质、速效钾含量分别下降28.7%、27.5%和31.9%,全磷、速效氮含量没有下降,全钾含量变化不大。施用生物菌剂后土壤中细菌的ACE、Chaol、Shannon指数与对照相比均无显著差异,与常规管理棉田相比停施头水肥后土壤细菌的ACE、Chaol丰富度指数显著降低。施用生物菌剂与对照相比能够影响土壤微生物群落组成,在减施化肥的情况下影响程度降低。施用生物菌剂且停施头水肥与常规管理棉田的土壤细菌种群之间没有显著差异标记。生物菌剂处理中芽孢杆菌属的丰度均高于对照,呈现出逐年增加的趋势,而假单胞菌属的丰度在生物菌剂处理中均低于对照,溶杆菌属、链霉菌属的丰度在不同处理中无一致规律。结论 棉田停施头水肥显著降低了土壤细菌的丰度,施用生物菌剂未对棉田土壤细菌的多样性和种群结构造成显著影响,增加了棉田土壤中有益细菌芽孢杆菌属的丰度。在新疆棉花耕作系统中,持续施用生物菌剂以形成作物根际微生物保护层,维持作物根际的健康。
中图分类号:
刘海洋, 王伟, 张仁福, 雷斌, 姚举. 施用生物菌剂对棉田土壤细菌群落多样性及种群结构的影响[J]. 新疆农业科学, 2021, 58(12): 2256-2264.
LIU Haiyang, WANG Wei, ZHANG Renfu, LEI Bin, YAO Ju. Influence of Biofertilizers on Community Diversity and Population Structure of Soil Bacteria in Cotton Field[J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2256-2264.
处理 Treatment | pH值 pH value | 总盐 Total salt (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 速效氮 Available nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Biofer1 | 8.79 | 2.3 | 0.28 | 0.60 | 14.25 | 5.55 | 27.0 | 9.2 | 65.0 |
CK1 | 8.87 | 2.5 | 0.44 | 0.32 | 14.58 | 8.42 | 24.0 | 9.9 | 117.0 |
Biofer2 | 8.81 | 1.3 | 0.42 | 0.43 | 14.58 | 9.97 | 43.5 | 18.0 | 67.0 |
CK2 | 7.99 | 4.7 | 0.54 | 0.43 | 14.51 | 12.62 | 43.5 | 19.2 | 83.0 |
表1 2019年试验田土壤养分与理化性质
Table 1 Soil nutrients and physicochemical properties of the experimental plots in 2019
处理 Treatment | pH值 pH value | 总盐 Total salt (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 速效氮 Available nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Biofer1 | 8.79 | 2.3 | 0.28 | 0.60 | 14.25 | 5.55 | 27.0 | 9.2 | 65.0 |
CK1 | 8.87 | 2.5 | 0.44 | 0.32 | 14.58 | 8.42 | 24.0 | 9.9 | 117.0 |
Biofer2 | 8.81 | 1.3 | 0.42 | 0.43 | 14.58 | 9.97 | 43.5 | 18.0 | 67.0 |
CK2 | 7.99 | 4.7 | 0.54 | 0.43 | 14.51 | 12.62 | 43.5 | 19.2 | 83.0 |
取样年度 Sampling year | 处理 Treatment | ACE指数 ACE index | Chao指数 Chao1 index | 香农指数 Shannon index |
---|---|---|---|---|
2017年 | Biofer | 1 704.9±57.9a | 1 728.0±63.2a | 6.34±0.11a |
CK | 1 681.7±67.1a | 1 691.5±72.1a | 6.26±0.12a | |
B-Biofer | 1 695.9±23.6a | 1 699.7±34.1a | 6.20±0.08a | |
B-CK | 1 675.4±29.6a | 1 684.6±34.0a | 6.25±0.08a | |
2018年 | Biofer | 1 667.6±45.7a | 1 686.9±42.0a | 6.33±0.04a |
CK | 1 680.6±34.1a | 1 694.1±46.8a | 6.30±0.06a | |
2019年 | Biofer1 | 970.7±109.5b | 997.9±119.7b | 5.48±2.17a |
CK1 | 1 154.6±36.3a | 1 228.0±57.7a | 5.32±0.49a | |
Biofer2 | 974.6±66.9b | 820.6±106.1b | 4.44±0.66a | |
CK2 | 1 119.9±96.3a | 1 003.6±74.9a | 4.30±0.56a |
表2 生物菌剂不同年份施用后棉田土壤细菌多样性指数
Table 2 Diversity index of soil bacteria in cotton field after applying biofilm in different years
取样年度 Sampling year | 处理 Treatment | ACE指数 ACE index | Chao指数 Chao1 index | 香农指数 Shannon index |
---|---|---|---|---|
2017年 | Biofer | 1 704.9±57.9a | 1 728.0±63.2a | 6.34±0.11a |
CK | 1 681.7±67.1a | 1 691.5±72.1a | 6.26±0.12a | |
B-Biofer | 1 695.9±23.6a | 1 699.7±34.1a | 6.20±0.08a | |
B-CK | 1 675.4±29.6a | 1 684.6±34.0a | 6.25±0.08a | |
2018年 | Biofer | 1 667.6±45.7a | 1 686.9±42.0a | 6.33±0.04a |
CK | 1 680.6±34.1a | 1 694.1±46.8a | 6.30±0.06a | |
2019年 | Biofer1 | 970.7±109.5b | 997.9±119.7b | 5.48±2.17a |
CK1 | 1 154.6±36.3a | 1 228.0±57.7a | 5.32±0.49a | |
Biofer2 | 974.6±66.9b | 820.6±106.1b | 4.44±0.66a | |
CK2 | 1 119.9±96.3a | 1 003.6±74.9a | 4.30±0.56a |
图1 生物菌剂不同年份施用后棉田土壤细菌群落聚类 注:a:2017年试验站病圃各处理土壤;b:2018年试验站各处理土壤;c:2019年试验站1号棉田各处理土壤;d:2019年试验站2号棉田各处理土壤
Fig.1 Cluster analysis of soil bacteria in cotton field after applying biofilm in different years Note: a:soilsof different treatment in disease nursery of test station in 2017; b: soils of different treatment of test station in 2018; c: soils of different treatment in No.1 cotton field of test station in 2019; d: soils of different treatment in No.2 cotton field of test station in 2019
图2 生物菌剂不同年份施用后棉田土壤细菌群落显著差异 注:a:2017库尔勒棉花病圃各处理土壤;b:2018年试验站各处理棉田土壤;c:2019年试验站1号棉田各处理土壤;d:2019年试验站2号棉田各处理土壤
Fig.3 Significant difference analysis of soil bacteria in cotton field after applying biofilm in different years Note: a: soils of different treatment in disease nursery of test station in 2017; b: soils of different treatment of test station in 2018; c: soils of different treatment in No.1 cotton field of test station in 2019; d: soils of different treatment in No.2 cotton field of test station in 2019
取样年度 Samplingyear | 处理 Treatment | 芽孢杆菌属 Bacillus (%) | 链霉菌属 Streptomyces (%) | 溶杆菌属 Lysobacter (%) | 假单胞菌属 Pseudomonas (%) |
---|---|---|---|---|---|
2017年 | Biofer | 0.21 | 0.48 | 0.28 | 0.37 |
CK | 0.15 | 0.44 | 0.27 | 0.40 | |
B-Biofer | 0.10 | 0.75 | 0.66 | 0.57 | |
B-CK | 0.12 | 0.64 | 0.83 | 0.31 | |
2018年 | Biofer | 1.72 | 0.74 | 1.31 | 1.64 |
CK | 1.30 | 1.22 | 1.14 | 2.59 | |
2019年 | Biofer1 | 2.78 | 0.20 | 0.10 | 0.48 |
CK1 | 1.01 | 0.18 | 0.11 | 0.63 | |
Biofer2 | 3.43 | 0.15 | 0.60 | 0.83 | |
CK2 | 2.48 | 0.06 | 0.05 | 0.87 |
表3 4种主要细菌种群在不同处理土壤中的丰度值
Table 3 Abundance values of 4 major bacterial populations in soils of different treatments
取样年度 Samplingyear | 处理 Treatment | 芽孢杆菌属 Bacillus (%) | 链霉菌属 Streptomyces (%) | 溶杆菌属 Lysobacter (%) | 假单胞菌属 Pseudomonas (%) |
---|---|---|---|---|---|
2017年 | Biofer | 0.21 | 0.48 | 0.28 | 0.37 |
CK | 0.15 | 0.44 | 0.27 | 0.40 | |
B-Biofer | 0.10 | 0.75 | 0.66 | 0.57 | |
B-CK | 0.12 | 0.64 | 0.83 | 0.31 | |
2018年 | Biofer | 1.72 | 0.74 | 1.31 | 1.64 |
CK | 1.30 | 1.22 | 1.14 | 2.59 | |
2019年 | Biofer1 | 2.78 | 0.20 | 0.10 | 0.48 |
CK1 | 1.01 | 0.18 | 0.11 | 0.63 | |
Biofer2 | 3.43 | 0.15 | 0.60 | 0.83 | |
CK2 | 2.48 | 0.06 | 0.05 | 0.87 |
[1] | 刘海洋, 姚举, 张仁福, 等. 黄萎病不同发生程度棉田中土壤微生物多样性[J]. 生态学报, 2018,38(5):1619-1629. |
LIU Haiyang, YAO Ju, ZHANG Renfu, et al. Analysis of soil microbial diversity in cotton fields differing in occurrence of cotton Verticillium wilt in Xinjiang[J]. Acta Ecologica Sinica, 2018,38(5):1619-1629. | |
[2] | 鹿秀云, 马平, 李社增. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J]. 植物病理学报, 2005,35(5):451-455. |
LU Xiuyun, MA Ping, LI Shezeng. Evaluation of biocontrol potential of a bacterial strain NCD-2 against Cotton Verticillium wilt in field trials[J]. Acta Phytopathologica Sinica, 2005,35(5):451-455. | |
[3] | 李社增, 马平, 刘杏忠, 等. 利用拮抗细菌防治棉花黄萎病[J]. 华中农业大学学报, 2001,20(5):422-425. |
LI Shezeng, MA Ping, LIU Xingzhong, et al. Biological control of cotton Verticillium wilt by antagonistic bacteria[J]. Journal of Huazhong Agricultural University, 2001,20(5):422-425. | |
[4] | 魏娇洋, 冯龙, 陈英化, 等. 解淀粉芽孢杆菌X-278片剂的研制、定殖及田间防效[J]. 农药学学报, 2014,16(3) : 347-353. |
WEI Jiaoyang, FENG Long, CHEN Yinghua, et al. Development, colonization and field control effect of antiamyloidosis Bacillus x-278 tablets[J]. Journal of Pesticide Science, 2014,16(3):347-353. | |
[5] | 曾红, 杨生强. 棉花黄萎病菌拮抗细菌TUBP1 的分离鉴定及其防病作用[J]. 棉花学报, 2014,26(5):445-451. |
ZENG Hong, YANG Shengqiang. Isolation, identification, and antifungal activity of the antagonistic bacterial strain TUBP1 against Verticillium dahliae Kleb[J]. Cotton Science, 2014,26(5):445-451. | |
[6] | 张冬冬, 李术娜, 郭晓军, 等. 一株棉花黄萎病拮抗芽胞细菌的分离鉴定及活性检测[J]. 棉花学报, 2012,24(4):358-362. |
ZHANG Dongdong, LI Shuna, GUO Xiaojun, et al. Isolation, identification and activity of an antagonistic spore bacterium against cotton Verticillium wilt[J]. Cotton Science, 2012,24(4):358-362. | |
[7] | 翟枫, 段军娜, 张鑫, 等. 棉花黄萎病拮抗细菌LW-4的筛选鉴定及其防治效果[J]. 植物保护学报, 2014,41(3):379-380. |
ZHAI Feng, DUAN Junna, ZHANG Xin, et al. Screening, identification and control effects of antagonistic bacterium LW-4 against cotton Verticillium wilt[J]. Acta Phytophylacica Sinica, 2014,41(3):379-380. | |
[8] | 张慧, 杨兴明, 冉炜, 等. 土传棉花黄萎病拮抗菌的筛选及其生物效应[J]. 土壤学报, 2008,45(6):1095-1101. |
ZHANG Hui, YANG Xingming, RAN Wei, et al. Screening of bacteria antagonistic against soil-borne cotton Verticillium wilt and their biological effect onthesoil-cotton system[J]. Acta Pedologica Sinica, 2008,45(6):1095-1101. | |
[9] | 李斌, 谢关林, 陈若霞, 等. 耕作与栽培方式对瓜类土壤细菌数量及枯萎病拮抗细菌分布的影响[J]. 应用生态学报, 2006,17(10):1937-1940. |
LI Bin, XIE Guanlin, CHEN Ruoxia, et al. Effects of cropping system and cultivation pattern on bacterial populations and anti -fusarium wilt bacteria in melon soils[J]. Chinese Journal of Applied Ecology, 2006,17(10):1937-1940. | |
[10] | 李胜华, 谷丽萍, 刘可星. 有机肥配施对番茄土传病害的防治及土壤微生物多样性的调控[J]. 植物营养与肥料学报, 2009,15(4):965-969. |
LI Shenghua, GU Liping, LIU Kexing. Effects of combined application of organic fertilizers on the control of soilborne diseases andthe regulation of soil microbial diversity[J]. Plant Nutrition and Fertilizer Science, 2009,15(4):965-969. | |
[11] | Marschner P, Yang C.H, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 2001,33(11):1437-1445. |
[12] | Tóth Z, Táncsics A, Kriszt B, et al. Extreme effects of drought on composition of the soil bacterial community and decomposition of plant tissue[J]. European Journal of Soil Science, 2017,Doi: 10.1111/ejss.12429. |
[13] | Suzuki C, Nagaoka K, Shimada A, et al. Bacterial communities are more dependent on soil type than fertilizer type, but the reverse is true for fungal communities[J]. Soil Science and Plant Nutrition, 2009, (55):80-90. |
[14] | Luo J, Ran W, Hu J, et al. Application of Bio-Organic Fertilizer Significantly Affected Fungal Diversity of Soils[J]. Soil Science Society of America Journal, 2010,74(6):2039. |
[15] | Preem J K, Truu J, Truu M, et al. Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories[J]. Ecological Engineering, 2012, (49):10-17. |
[16] | Yang L, Tan L, Zhang F, et al. Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields[J]. Canadian Journal of Microbiology, 2017,64(3):167-181. |
[17] | Shen W, Ni Y, Gao N, et al. Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates[J]. Applied Soil Ecology, 2016, (108):76-83. |
[18] | Bainard L D, Hamel C, Gan Y. Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agro ecosystem[J]. Applied Soil Ecology, 2016, (105):160-168. |
[19] | Meng M, Lin J, Guo X, et al. Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests[J]. Catena, 2019, (175):167-173. |
[20] | Zhao Q, Dong C, Yang X, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology, 2011,47(1):67-75. |
[21] | Sui J, Ji C, Wang X, et al. A plant growth-promoting bacterium alters the microbial community of continuous cropping poplar trees' rhizosphere[J]. Journal of Applied Microbiology, 2019,126(4):1209-1220. |
[22] | Li R, Tao R, Ling N, et al. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality[J]. Soil and Tillage Research, 2017, (167):30-38. |
[23] | Chen D, Wang X, Zhang W, et al. Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community[J]. Plant and Soil, 2020, (452):313-328. |
[24] | Shin K, Van Diepen G, Blok W, et al. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens[J]. Crop Protection, 2017, (99):168-176. |
[25] | Giotis C, Markelou E, Theodoropoulou A, et al. Effect of soil amendments and biological control agents (bcas) on soil-borne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production systems[J]. European Journal of Plant Pathology, 2009,123(4):387-400. |
[26] | Lihua L, Jincai M, Ibekwe A, et al. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150[J]. Agriculture, 2015,6(1):2. |
[27] | Larkin R P, Brewer M T. Effects of biological amendments on soil microbiology and soilborne potato diseases in different cropping systems[J]. Phytopathology, 2005,(95):S56. |
[1] | 苗雨, 陈翠霞, 马艳明, 邢国芳, 董裕生, 陈智军, 王仙, 向莉. 276份中亚大麦种质资源表型性状的遗传多样性分析[J]. 新疆农业科学, 2024, 61(8): 1888-1895. |
[2] | 杨璐, 王娜, 范少丽, 程平, 李宏, 汪阳东. 黑桑种质资源表型性状变异特征分析[J]. 新疆农业科学, 2024, 61(5): 1172-1181. |
[3] | 高沐甜, 肖艳梅, 廖志杰, 黄成. 玉米-大刍草渗入系群体籽粒及品质性状的综合评价[J]. 新疆农业科学, 2024, 61(4): 885-891. |
[4] | 杨祥波, 陈亮宇, 杨松楠, 陈喜凤, 邢伟明, 李雪莹, 丛炜轩, 臧振原, 臧远波, 张君. 东北春大豆种质资源表型分析及综合性评价[J]. 新疆农业科学, 2024, 61(12): 2921-2933. |
[5] | 唐丽, 田可川, 张昕宁, 刘黎, 阿布力克木·阿地力, 杨智, 杨存明, 张晓雪, 黄锡霞, 田月珍. 不同生长阶段和田羊体重体尺指标的聚类与主成分分析[J]. 新疆农业科学, 2024, 61(11): 2853-2860. |
[6] | 汪天玲, 侯献飞, 施俊杰, 孙全喜, 贾东海, 顾元国, 单世华, 苗昊翠, 李强. 67份匍匐型花生种质资源遗传多样性分析[J]. 新疆农业科学, 2024, 61(1): 42-54. |
[7] | 欧阳单华, 赵康, 宋东博, 柳自清, 郭旺珍, 刘燕, 顾爱星, 阿扎提古丽·麦麦提图尔, 艾力卡尔江·艾麦尔. 35份棉花品系对黄萎病抗性鉴定及综合分析[J]. 新疆农业科学, 2024, 61(1): 9-18. |
[8] | 王朋, 郑凯, 赵杰银, 高文举, 龙遗磊, 陈全家, 曲延英. 陆地棉种质资源材料的耐热性评价及指标筛选[J]. 新疆农业科学, 2023, 60(9): 2081-2090. |
[9] | 王丹丹, 李燕, 张庆银, 李世东, 庞永超, 马琨芝, 马龙, 牛瑞生, 钟增明, 齐连芬, 师建华. 不同微生物菌处理对番茄土壤微生物多样性的影响[J]. 新疆农业科学, 2023, 60(9): 2248-2257. |
[10] | 黄倩楠, 马尔合巴·艾司拜尔, 邹辉, 王彩荣, 艾力买买提·库尔班, 孙娜, 雷钧杰. 新疆冬小麦种质资源主要农艺性状遗传多样性分析[J]. 新疆农业科学, 2023, 60(5): 1050-1058. |
[11] | 杨植, 董梦怡, 王振磊, 闫芬芬, 吴翠云, 王玖瑞, 刘孟军, 林敏娟. 基于TPA法枣酸枣杂交F1果实质地与裂果对比分析[J]. 新疆农业科学, 2023, 60(3): 608-615. |
[12] | 马旭, 赵英, 韩炜, 武胜利, 韩晓燕. 14种沙棘果实中氨基酸组成的主成分分析与综合评价[J]. 新疆农业科学, 2023, 60(2): 378-388. |
[13] | 王威, 徐乐, 樊艳星, 王帆, 马艳明, 唐中华. 鹰嘴豆种子代谢产物的GC-MS分析[J]. 新疆农业科学, 2023, 60(12): 2962-2972. |
[14] | 岳丽, 王卉, 山其米克, 再吐尼古丽·库尔班, 涂振东. 基于高通量测序的甜高粱青贮饲料中微生物群落分析[J]. 新疆农业科学, 2023, 60(11): 2742-2750. |
[15] | 李春艳, 刘芳婷, 张王斌. 基于高通量测序对引起苹果外观异常病原的鉴定[J]. 新疆农业科学, 2023, 60(1): 171-177. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||