新疆农业科学 ›› 2024, Vol. 61 ›› Issue (6): 1432-1440.DOI: 10.6048/j.issn.1001-4330.2024.06.016
史应武1,2(), 牛新湘2,3, 杨红梅1,2, 楚敏1,2, 包慧芳1, 王宁1,2, 詹发强1, 林青1, 杨蓉1, 龙宣杞1, 娄恺1
收稿日期:
2023-10-27
出版日期:
2024-06-20
发布日期:
2024-08-08
作者简介:
史应武(1973-),男,甘肃武山人,研究员,博士,研究方向微生物生态与植物健康,(E-mail)syw1973@126.com
基金资助:
SHI Yingwu1,2(), NIU Xinxiang2,3, YANG Hongmei1,2, CHU Min1,2, BAO Huifang1, WANG Ning1,2, ZHAN Faqiang1, LIN Qing1, YANG Rong1, LONG Xuanqi1, LOU Kai1
Received:
2023-10-27
Published:
2024-06-20
Online:
2024-08-08
Correspondence author:
SHI Yingwu (1973-),male,from Gansu,doctor,researcher,research direction:microbial ecology and plant health,( E-mail) syw1973@126.comSupported by:
摘要:
【目的】筛选出对库尔勒香梨(简称香梨)梨火疫病高效的防病药剂。【方法】选用1 000×108 CFU/g贝莱斯芽孢杆菌DP、1.8%辛菌胺醋酸盐水剂、3%噻霉酮微乳剂和6%春雷霉素水剂设置12个处理。【结果】高、中、低剂量Bacillus velezensis TK2019(以下简称Bacillus velezensis)可湿性菌粉、1.8%辛菌胺醋酸盐、3%噻霉酮微乳剂和6%春雷霉素水剂,分别对大田香梨梨火疫病的防效为71.64%、65.22%和51.30%,66.69%、56.18%和40.30%,66.50%、58.19%和41.89%,72.28%、60.49%和54.22%,其中Bacillus velezensis 可湿性菌粉稀释浓度107CFU/mL、6%春雷霉素水剂500倍液可显著降低梨火疫病的发生。【结论】Bacillus velezensis 菌剂和6%春雷霉素水剂对梨火疫病防效显著高于对照和1.8%辛菌胺醋酸盐水剂、3%噻霉酮微乳剂,较好地抑制梨火疫病的发生,控制发病枝条的数量,提高了香梨单果质量、改善果实品质、提升香梨果实防御酶活性,且高浓度生防菌改善作用更佳,施用后对香梨树生长发育安全。
中图分类号:
史应武, 牛新湘, 杨红梅, 楚敏, 包慧芳, 王宁, 詹发强, 林青, 杨蓉, 龙宣杞, 娄恺. 4种药剂对梨火疫病防病效果及库尔勒香梨产量与品质的影响[J]. 新疆农业科学, 2024, 61(6): 1432-1440.
SHI Yingwu, NIU Xinxiang, YANG Hongmei, CHU Min, BAO Huifang, WANG Ning, ZHAN Faqiang, LIN Qing, YANG Rong, LONG Xuanqi, LOU Kai. Field control effects of four fungicides on fragrant korla pear fire blight[J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1432-1440.
药剂名称 Name of agent | 平均落叶率 Average defoliation rate (%) | 平均异 形叶率 Average abnormal leaf rate (%) | 总药害率 Total harm rate(%) | |
---|---|---|---|---|
1 | 1 000×108 CFU/g 贝莱斯芽孢杆 菌300倍液 | 0d | 0d | 0c |
2 | 1.8%辛菌 胺醋酸盐 | 2.51±0.23a | 1.75±0.09a | 4.26±0.32a |
3 | 3%噻霉酮 | 1.73±0.14c | 1.37±0.12b | 3.10±0.26b |
4 | 6%春雷霉素 | 1.86±0.22b | 1.22±0.07c | 3.08±0.29b |
清水对照 Water control | 0d | 0d | 0c |
表1 4种不同农药安全性测评结果
Tab.1 Safety assessment results of 4 different pesticides
药剂名称 Name of agent | 平均落叶率 Average defoliation rate (%) | 平均异 形叶率 Average abnormal leaf rate (%) | 总药害率 Total harm rate(%) | |
---|---|---|---|---|
1 | 1 000×108 CFU/g 贝莱斯芽孢杆 菌300倍液 | 0d | 0d | 0c |
2 | 1.8%辛菌 胺醋酸盐 | 2.51±0.23a | 1.75±0.09a | 4.26±0.32a |
3 | 3%噻霉酮 | 1.73±0.14c | 1.37±0.12b | 3.10±0.26b |
4 | 6%春雷霉素 | 1.86±0.22b | 1.22±0.07c | 3.08±0.29b |
清水对照 Water control | 0d | 0d | 0c |
处理 Treat- ments | 药剂名称 Name of agent | 病害严重度 Disease severity | 相对防效 Relative efficacy (%) |
---|---|---|---|
T1 | 107CFU/mL 贝莱斯芽孢杆菌 | 7.50±0.32h | 71.64±1.21a |
T2 | 106CFU/mL 贝莱斯芽孢杆菌 | 9.20±0.14f | 65.22±0.53b |
T3 | 105CFU/mL 贝莱斯芽孢杆菌 | 12.88±0.16c | 51.30±0.60e |
T4 | 300倍1.8% 辛菌胺醋酸盐 | 8.81±0.12g | 66.69±0.45b |
T5 | 500倍1.8% 辛菌胺醋酸盐 | 11.59±0.15d | 56.18±0.57cd |
T6 | 1 000倍1.8% 辛菌胺醋酸盐 | 15.79±0.14b | 40.30±0.53f |
T7 | 500倍3% 噻霉酮微乳剂 | 8.86±0.13g | 66.50±0.49b |
T8 | 1 000倍3% 噻霉酮微乳剂 | 11.06±0.16d | 58.19±0.60c |
T9 | 1 500倍3% 噻霉酮微乳剂 | 15.37±0.16b | 41.89±0.60f |
T10 | 500倍6% 春雷霉素水剂 | 7.33±0.15h | 72.28±0.57a |
T11 | 1 000倍6% 春雷霉素水剂 | 10.45±0.14e | 60.49±0.53c |
T12 | 1 500倍6% 春雷霉素水剂 | 12.11±0.16c | 54.22±0.60d |
CK | 清水 | 26.45±0.67a | — |
表2 4种药剂对香梨火疫病的田间防效
Tab.2 Field prevention effect of 4 pesticides on fragrant pear fire disease
处理 Treat- ments | 药剂名称 Name of agent | 病害严重度 Disease severity | 相对防效 Relative efficacy (%) |
---|---|---|---|
T1 | 107CFU/mL 贝莱斯芽孢杆菌 | 7.50±0.32h | 71.64±1.21a |
T2 | 106CFU/mL 贝莱斯芽孢杆菌 | 9.20±0.14f | 65.22±0.53b |
T3 | 105CFU/mL 贝莱斯芽孢杆菌 | 12.88±0.16c | 51.30±0.60e |
T4 | 300倍1.8% 辛菌胺醋酸盐 | 8.81±0.12g | 66.69±0.45b |
T5 | 500倍1.8% 辛菌胺醋酸盐 | 11.59±0.15d | 56.18±0.57cd |
T6 | 1 000倍1.8% 辛菌胺醋酸盐 | 15.79±0.14b | 40.30±0.53f |
T7 | 500倍3% 噻霉酮微乳剂 | 8.86±0.13g | 66.50±0.49b |
T8 | 1 000倍3% 噻霉酮微乳剂 | 11.06±0.16d | 58.19±0.60c |
T9 | 1 500倍3% 噻霉酮微乳剂 | 15.37±0.16b | 41.89±0.60f |
T10 | 500倍6% 春雷霉素水剂 | 7.33±0.15h | 72.28±0.57a |
T11 | 1 000倍6% 春雷霉素水剂 | 10.45±0.14e | 60.49±0.53c |
T12 | 1 500倍6% 春雷霉素水剂 | 12.11±0.16c | 54.22±0.60d |
CK | 清水 | 26.45±0.67a | — |
处理 Treatments | 药剂名称 Name of agent | 单果质量 Single fruit quality (g) | 单株产量 Yield per plant (kg) | 产量 Production (kg/667m2) |
---|---|---|---|---|
T1 | 107CFU/mL贝莱斯芽孢杆菌 | 121.15±2.47a | 308.40±1.77a | 8 017.78±86.14a |
T2 | 106CFU/mL贝莱斯芽孢杆菌 | 120.53±3.21b | 308.14±2.06a | 8 010.53±84.10a |
T3 | 105CFU/mL贝莱斯芽孢杆菌 | 118.88±2.39d | 305.80±3.72ab | 7 949.27±92.68ab |
T4 | 300倍1.8%辛菌胺醋酸盐 | 117.81±1.23f | 300.43±3.33bc | 7 810.42±93.90bc |
T5 | 500倍1.8%辛菌胺醋酸盐 | 118.27±3.11d | 302.42±3.78abc | 7 866.00±91.06abc |
T6 | 1 000倍1.8%辛菌胺醋酸盐 | 118.59±2.45d | 299.50±6.12bc | 7 782.68±94.36bc |
T7 | 500倍3%噻霉酮微乳剂 | 117.86±4.58ef | 296.66±3.68c | 7 715.00±91.46c |
T8 | 1 000倍3%噻霉酮微乳剂 | 118.06±2.62de | 302.84±3.73abc | 7 872.63±92.27bc |
T9 | 1 500倍3%噻霉酮微乳剂 | 117.37±2.24f | 304.40±4.14abc | 7 913.13±90.23ab |
T10 | 500倍6%春雷霉素水剂 | 118.33±3.62d | 306.67±3.68ab | 7 970.18±85.57ab |
T11 | 1 000倍6%春雷霉素水剂 | 118.45±2.74d | 302.61±4.96abc | 7 865.98±93.09abc |
T12 | 1 500倍6%春雷霉素水剂 | 119.11±5.45c | 300.47±4.59bc | 7 812.72±91.45bc |
CK | 清水 | 117.45±3.89f | 288.67±4.61d | 7 505.80±93.49d |
表3 4种药剂处理下香梨产量变化
Tab. 3 Effects of 4 pesticides on the yield of Fragrant pear
处理 Treatments | 药剂名称 Name of agent | 单果质量 Single fruit quality (g) | 单株产量 Yield per plant (kg) | 产量 Production (kg/667m2) |
---|---|---|---|---|
T1 | 107CFU/mL贝莱斯芽孢杆菌 | 121.15±2.47a | 308.40±1.77a | 8 017.78±86.14a |
T2 | 106CFU/mL贝莱斯芽孢杆菌 | 120.53±3.21b | 308.14±2.06a | 8 010.53±84.10a |
T3 | 105CFU/mL贝莱斯芽孢杆菌 | 118.88±2.39d | 305.80±3.72ab | 7 949.27±92.68ab |
T4 | 300倍1.8%辛菌胺醋酸盐 | 117.81±1.23f | 300.43±3.33bc | 7 810.42±93.90bc |
T5 | 500倍1.8%辛菌胺醋酸盐 | 118.27±3.11d | 302.42±3.78abc | 7 866.00±91.06abc |
T6 | 1 000倍1.8%辛菌胺醋酸盐 | 118.59±2.45d | 299.50±6.12bc | 7 782.68±94.36bc |
T7 | 500倍3%噻霉酮微乳剂 | 117.86±4.58ef | 296.66±3.68c | 7 715.00±91.46c |
T8 | 1 000倍3%噻霉酮微乳剂 | 118.06±2.62de | 302.84±3.73abc | 7 872.63±92.27bc |
T9 | 1 500倍3%噻霉酮微乳剂 | 117.37±2.24f | 304.40±4.14abc | 7 913.13±90.23ab |
T10 | 500倍6%春雷霉素水剂 | 118.33±3.62d | 306.67±3.68ab | 7 970.18±85.57ab |
T11 | 1 000倍6%春雷霉素水剂 | 118.45±2.74d | 302.61±4.96abc | 7 865.98±93.09abc |
T12 | 1 500倍6%春雷霉素水剂 | 119.11±5.45c | 300.47±4.59bc | 7 812.72±91.45bc |
CK | 清水 | 117.45±3.89f | 288.67±4.61d | 7 505.80±93.49d |
处理 Treatments | 药剂名称 Name of agent | 可溶性固形物 Soluble solids (%) | 硬度 Hardness (kg/cm2) | 可溶性糖含量 Soluble sugar content (g/100g) | 可滴定酸 Titratable acidity (%) |
---|---|---|---|---|---|
T1 | 107CFU/mL贝莱斯芽孢杆菌 | 13.47±0.53a | 3.66±0.15a | 10.76±0.47a | 0.074±0.007ab |
T2 | 106CFU/mL贝莱斯芽孢杆菌 | 13.20±0.49a | 3.47±0.15ab | 10.26±0.46ab | 0.075±0.002a |
T3 | 105CFU/mL贝莱斯芽孢杆菌 | 12.85±0.33a | 3.31±0.18ab | 10.30±0.50ab | 0.069±0.002cd |
T4 | 300倍1.8%辛菌胺醋酸盐 | 11.80±0.54cd | 3.32±0.19ab | 8.67±0.39abc | 0.072±0.003abc |
T5 | 500倍1.8%辛菌胺醋酸盐 | 12.73±0.37ab | 3.40±0.17ab | 9.17±0.43abc | 0.071±0.002abcd |
T6 | 1 000倍1.8%辛菌胺醋酸盐 | 12.59±0.36ab | 3.44±0.17ab | 9.32±0.34abc | 0.075±0.002a |
T7 | 500倍3%噻霉酮微乳剂 | 10.81±0.50d | 3.29±0.20b | 5.62±3.71c | 0.074±0.001ab |
T8 | 1 000倍3%噻霉酮微乳剂 | 11.10±0.62cd | 3.41±0.18b | 8.13±0.43bc | 0.069±0.001bcd |
T9 | 1 500倍3%噻霉酮微乳剂 | 12.36±0.62b | 3.31±0.18ab | 8.82±0.37abc | 0.066±0.002d |
T10 | 500倍6%春雷霉素水剂 | 11.32±0.52cd | 3.62±0.17a | 7.23±0.42c | 0.076±0.001a |
T11 | 1 000倍6%春雷霉素水剂 | 11.44±0.66cd | 3.53±0.16a | 9.46±0.39abc | 0.072±0.001abc |
T12 | 1 500倍6%春雷霉素水剂 | 12.05±0.63c | 3.29±0.17b | 9.23±0.45abc | 0.068±0.001cd |
CK | 清水 | 11.46±0.49cd | 3.15±0.13b | 8.21±0.36bc | 0.072±0.002abc |
表4 4种药剂处理下香梨品质变化
Tab. 4 Effects of 4 pesticides on the quality of Fragrant pear
处理 Treatments | 药剂名称 Name of agent | 可溶性固形物 Soluble solids (%) | 硬度 Hardness (kg/cm2) | 可溶性糖含量 Soluble sugar content (g/100g) | 可滴定酸 Titratable acidity (%) |
---|---|---|---|---|---|
T1 | 107CFU/mL贝莱斯芽孢杆菌 | 13.47±0.53a | 3.66±0.15a | 10.76±0.47a | 0.074±0.007ab |
T2 | 106CFU/mL贝莱斯芽孢杆菌 | 13.20±0.49a | 3.47±0.15ab | 10.26±0.46ab | 0.075±0.002a |
T3 | 105CFU/mL贝莱斯芽孢杆菌 | 12.85±0.33a | 3.31±0.18ab | 10.30±0.50ab | 0.069±0.002cd |
T4 | 300倍1.8%辛菌胺醋酸盐 | 11.80±0.54cd | 3.32±0.19ab | 8.67±0.39abc | 0.072±0.003abc |
T5 | 500倍1.8%辛菌胺醋酸盐 | 12.73±0.37ab | 3.40±0.17ab | 9.17±0.43abc | 0.071±0.002abcd |
T6 | 1 000倍1.8%辛菌胺醋酸盐 | 12.59±0.36ab | 3.44±0.17ab | 9.32±0.34abc | 0.075±0.002a |
T7 | 500倍3%噻霉酮微乳剂 | 10.81±0.50d | 3.29±0.20b | 5.62±3.71c | 0.074±0.001ab |
T8 | 1 000倍3%噻霉酮微乳剂 | 11.10±0.62cd | 3.41±0.18b | 8.13±0.43bc | 0.069±0.001bcd |
T9 | 1 500倍3%噻霉酮微乳剂 | 12.36±0.62b | 3.31±0.18ab | 8.82±0.37abc | 0.066±0.002d |
T10 | 500倍6%春雷霉素水剂 | 11.32±0.52cd | 3.62±0.17a | 7.23±0.42c | 0.076±0.001a |
T11 | 1 000倍6%春雷霉素水剂 | 11.44±0.66cd | 3.53±0.16a | 9.46±0.39abc | 0.072±0.001abc |
T12 | 1 500倍6%春雷霉素水剂 | 12.05±0.63c | 3.29±0.17b | 9.23±0.45abc | 0.068±0.001cd |
CK | 清水 | 11.46±0.49cd | 3.15±0.13b | 8.21±0.36bc | 0.072±0.002abc |
处理 Treatments | 药剂名称 Name of agent | 防御酶活性Defense enzyme activity | ||
---|---|---|---|---|
POD | PPO | PAL | ||
T1 | 107CFU/mL贝莱斯芽孢杆菌 | 726.10±21.39a | 19.32±1.44ab | 116.23±2.64a |
T2 | 106CFU/mL贝莱斯芽孢杆菌 | 715.03±17.77ab | 19.55±1.66a | 114.38±2.04ab |
T3 | 105CFU/mL贝莱斯芽孢杆菌 | 712.97±18.26ab | 19.41±1.67ab | 114.50±1.56ab |
T4 | 300倍1.8%辛菌胺醋酸盐 | 656.48±16.03d | 17.35±0.95abc | 108.15±3.81cd |
T5 | 500倍1.8%辛菌胺醋酸盐 | 671.21±17.49cd | 18.27±0.97abc | 105.22±2.35cd |
T6 | 1 000倍1.8%辛菌胺醋酸盐 | 704.85±17.51abc | 18.36±0.68abc | 106.27±2.33cd |
T7 | 500倍3%噻霉酮微乳剂 | 663.03±20.96cd | 16.36±0.86c | 107.83±3.11cd |
T8 | 1 000倍3%噻霉酮微乳剂 | 675.80±18.91bcd | 17.43±0.78abc | 106.01±2.80cd |
T9 | 1 500倍3%噻霉酮微乳剂 | 703.73±16.23abc | 17.24±86bc | 103.90±3.50d |
T10 | 500倍6%春雷霉素水剂 | 680.30±22.12bcd | 18.17±0.77abc | 110.10±2.34bc |
T11 | 1 000倍6%春雷霉素水剂 | 710.03±20.86abc | 18.49±0.98abc | 109.98±2.68bc |
T12 | 1 500倍6%春雷霉素水剂 | 713.80±17.77ab | 18.39±0.98abc | 107.61±2.51cd |
CK | 清水 | 666.92±19.87cd | 16.2±0.99d | 97.35±2.43e |
表5 4种药剂处理下香梨防御酶活性变化
Tab. 5 Effects of 4 pesticides on the defense enzyme activity of Fragrant pear
处理 Treatments | 药剂名称 Name of agent | 防御酶活性Defense enzyme activity | ||
---|---|---|---|---|
POD | PPO | PAL | ||
T1 | 107CFU/mL贝莱斯芽孢杆菌 | 726.10±21.39a | 19.32±1.44ab | 116.23±2.64a |
T2 | 106CFU/mL贝莱斯芽孢杆菌 | 715.03±17.77ab | 19.55±1.66a | 114.38±2.04ab |
T3 | 105CFU/mL贝莱斯芽孢杆菌 | 712.97±18.26ab | 19.41±1.67ab | 114.50±1.56ab |
T4 | 300倍1.8%辛菌胺醋酸盐 | 656.48±16.03d | 17.35±0.95abc | 108.15±3.81cd |
T5 | 500倍1.8%辛菌胺醋酸盐 | 671.21±17.49cd | 18.27±0.97abc | 105.22±2.35cd |
T6 | 1 000倍1.8%辛菌胺醋酸盐 | 704.85±17.51abc | 18.36±0.68abc | 106.27±2.33cd |
T7 | 500倍3%噻霉酮微乳剂 | 663.03±20.96cd | 16.36±0.86c | 107.83±3.11cd |
T8 | 1 000倍3%噻霉酮微乳剂 | 675.80±18.91bcd | 17.43±0.78abc | 106.01±2.80cd |
T9 | 1 500倍3%噻霉酮微乳剂 | 703.73±16.23abc | 17.24±86bc | 103.90±3.50d |
T10 | 500倍6%春雷霉素水剂 | 680.30±22.12bcd | 18.17±0.77abc | 110.10±2.34bc |
T11 | 1 000倍6%春雷霉素水剂 | 710.03±20.86abc | 18.49±0.98abc | 109.98±2.68bc |
T12 | 1 500倍6%春雷霉素水剂 | 713.80±17.77ab | 18.39±0.98abc | 107.61±2.51cd |
CK | 清水 | 666.92±19.87cd | 16.2±0.99d | 97.35±2.43e |
[1] | Gaganidze D L, Aznarashvili M A, Sadunishvili T A, et al. Fire blight in Georgia[J]. Annals of Agrarian Science, 2018, 16(1): 12-16. |
[2] | Bonn W G, van der Zwet T. Distribution and economic importance of fire blight[M]// Fire blight: the disease and its causative agent, Erwinia amylovora.. UK: CABI Publishing, 2000: 37-53. |
[3] | van der Zwet T, Orolaza-Halbrendt N, Zeller W. Fire Blight: History, Biology, and Management[M]. APS Press: The American Phytopathological Society, 2016. |
[4] | 王俊, 高建诚, 巴音克西克, 等. 利用电加热自动消毒修枝剪阻断梨火疫病田间传播[J]. 植物检疫, 2022, 36(2): 25-28. |
WANG Jun, GAO Jiancheng, Bayinkexike, et al. Blocking field spread of fire blight by electric heating automatic disinfection pruning scissors[J]. Plant Quarantine, 2022, 36(2): 25-28. | |
[5] | 杨金花, 徐叶挺, 张校立. 梨火疫病研究进展[J]. 分子植物育种, 2022, 20(3): 1003-1013. |
YANG Jinhua, XU Yeting, ZHANG Xiaoli. Advances of fire blight in pear[J]. Molecular Plant Breeding, 2022, 20(3): 1003-1013. | |
[6] | Sholberg P L, Bedford K E, Haag P, et al. Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple[J]. Canadian Journal of Plant Pathology, 2001, 23(1): 60-67. |
[7] | Brisset M N, Cesbron S, Thomson S V, et al. Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight[J]. European Journal of Plant Pathology, 2000, 106(6): 529-536. |
[8] | Sparla F, Rotino L, Valgimigli M C, et al. Systemic resistance induced by benzothiadiazole in pear inoculated with the agent of fire blight (Erwinia amylovora)[J]. Scientia Horticulturae, 2004, 101(3): 269-279. |
[9] | Vanneste J L, Cornish D A, Spinelli F, et al. Colonisation of apple and pear leaves by different strains of biological control agents of fire blight[J]. New Zealand Plant Protection, 2004, 57: 49-53. |
[10] | Zeller W. Status of biocontrol methods against fire blight[J]. Phytopatol, 2006, 39: 71-78. |
[11] |
Tancos K A, Villani S, Kuehne S, et al. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards[J]. Plant Disease, 2016, 100(4): 802-809.
DOI PMID |
[12] | Peil A, Bus V G, Geider K, et al. Improvement of fire blight resistance in apple and pear[J]. International Journal of Plant Breeding & Genetics, 2009, 3(1): 1-27. |
[13] | Mikiciński A, Pu awska J, Molzhigitova A, et al. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora)[J]. European Journal of Plant Pathology, 2020, 156(1): 257-272. |
[14] |
Ngugi H K, Lehman B L, Madden L V. Multiple treatment meta-analysis of products evaluated for control of fire blight in the eastern United States[J]. Phytopathology, 2011, 101(5): 512-522.
DOI PMID |
[15] | Girotti S, Ghini S, Maiolini E, et al. Trace analysis of pollutants by use of honeybees, immunoassays, and chemiluminescence detection[J]. Analytical and Bioanalytical Chemistry, 2013, 405(2/3): 555-571. |
[16] | Vanneste J L. Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear[J]. Biocontrol News and Information, 1996, 17, 67N-78N. |
[17] |
McManus P S, Stockwell V O, Sundin G W, et al. Antibiotic use in plant agriculture[J]. Annual Review of Phytopathology, 2002, 40: 443-465.
PMID |
[18] | Roselló G, Bonaterra A, Francés J, et al. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum[J]. European Journal of Plant Pathology, 2013, 137(3): 621-633. |
[19] | Wilson M, Lindow S E. Interactions between the biological control agent pseudomonas fluorescens a506 and erwinia amylovora in pear blossoms[J]. Acta Horticulturae, 1993(338): 329-330. |
[20] | CN112458012B. 一种贝莱斯芽孢杆菌微生物菌剂及其应用[P]. |
CN112458012B. Bacillus velezensis microbial agent and application thereof[P]. | |
[21] |
Korenblum E, der Weid I, Santos A L S, et al. Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus HO-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil[J]. Journal of Applied Microbiology, 2005, 98(3): 667-675.
PMID |
[22] | 郭荣君, 李世东, 张晶, 等. 基于营养竞争原理的大豆根腐病生防芽孢杆菌的筛选及其特性研究[J]. 植物病理学报, 2010, 40(3): 307-314. |
GUO Rongjun, LI Shidong, ZHANG Jing, et al. Characterization of Bacillus strains screened via nutritional competition for biocontrol of soybean root rot disease[J]. Acta Phytopathologica Sinica, 2010, 40(3): 307-314. | |
[23] |
Van Wees S C M, Van der Ent S, Pieterse C M J. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443-448.
DOI PMID |
[24] |
刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报(自然科学版), 2019, 39(3): 302-310.
DOI |
LIU Xuejiao, LI Hongya, LI Shuna, et al. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 302-310. | |
[25] |
Martínez-Raudales I, De La Cruz-Rodríguez Y, Alvarado-Gutiérrez A, et al. Draft genome sequence of Bacillus velezensis 2A-2B strain: a rhizospheric inhabitant of Sporobolus airoides (Torr.) Torr., with antifungal activity against root rot causing phytopathogens[J]. Standards in Genomic Sciences, 2017, 12: 73.
DOI PMID |
[26] | 刘世程, 李磊, 张雪艳, 等. 贝莱斯芽胞杆菌ZF145的诱变及抑菌防病效果研究[J]. 农业生物技术学报, 2022, 30(12): 2417-2424. |
LIU Shicheng, LI Lei, ZHANG Xueyan, et al. Study on mutagenesis, bacteriostasis and disease prevention effect of Bacillus velezensis ZF145[J]. Journal of Agricultural Biotechnology, 2022, 30(12): 2417-2424. | |
[27] | Wu L M, Wu H J, Chen L N, et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens[J]. Scientific Reports, 2015, 5: 12975. |
[28] | 周向平, 滕凯, 肖启明, 等. 贝莱斯芽胞杆菌F10促生作用及对烟草青枯病的防治效果[J]. 烟草科技, 2022, 55(7): 9-16. |
ZHOU Xiangping, TENG Kai, XIAO Qiming, et al. Tobacco growth promoting effect of Bacillus velezensis F10 and its control effect against tobacco bacterial wilt[J]. Tobacco Science & Technology, 2022, 55(7): 9-16. | |
[29] |
李姝江, 梁漫, 朱天辉, 等. 杂交竹梢枯病拮抗菌的筛选及抗菌蛋白分析[J]. 南京林业大学学报(自然科学版), 2013, 37(6): 27-32.
DOI |
LI Shujiang, LIANG Man, ZHU Tianhui, et al. Selection of an antagonistic bacterium against Arthrinium phaeospermum and its antibacterial protein analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(6): 27-32. | |
[30] | 徐婷, 朱天辉, 李姝江, 等. 贝莱斯芽孢杆菌Bacillus velezensis YB15β-葡聚糖酶的抑菌作用与基因克隆[J]. 中国生物防治学报, 2014, 30(2): 276-281. |
XU Ting, ZHU Tianhui, LI Shujiang, et al. Fungus-inhibitory activity and gene cloning of β-glucanase from Bacillus velezensis YB15[J]. Chinese Journal of Biological Control, 2014, 30(2): 276-281. | |
[31] | Liu X Y, Ren B, Chen M, et al. Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1881-1893. |
[32] | CN102199563A. 一种防治植物病害的生防菌及其制备方法[P]. |
CN102199563A. Biocontrol bacterium for controlling plant diseases and preparation method thereof[P]. | |
[33] | Toral L, Rodríguez M, Béjar V, et al. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea[J]. Frontiers in Microbiology, 2018, 9: 1315. |
[34] | Lim S M, Yoon M Y, Choi G J, et al. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi[J]. The Plant Pathology Journal, 2017, 33(5): 488-498. |
[35] | 吴黎明. 解淀粉芽孢杆菌FZB42生防功能及环二肽激发子功能研究[D]. 南京: 南京农业大学, 2016. |
WU Liming. Research Aoubt Biocontrol Activity of Bacillus Amyloliquefaciens FZB42 and Cyclodipeptides as a Novel Elicitor[D]. Nanjing: Nanjing Agricultural University, 2016. | |
[36] | Lee S Y, Weon H Y, Kim J J, et al. Biocontrol of Leaf Mustard Powdery Mildew Caused by Erysiphe cruciferarm using Bacillus velezensis YP2[J]. The Korean Journal of Pesticide Science, 2016, 20(4): 369-374. |
[37] | Huang L, Li Q C, Hou Y, et al. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus[J]. Biocontrol Science and Technology, 2017, 27(5): 636-653. |
[38] | Liu G Q, Kong Y Y, Fan Y J, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J]. Journal of Biotechnology, 2017, 249: 20-24. |
[39] | 何永新. 1.8%辛菌胺醋酸盐等4种药剂防治柑橘溃疡病药效试验[J]. 南方园艺, 2017, 28(2): 31-32. |
HE Yongxin. Efficacy test of 4 pesticides, such as 1.8% octylamine acetate, against citrus canker[J]. Southern Horticulture, 2017, 28(2): 31-32. | |
[40] | 叶淦, 夏长秀. 3%噻霉酮微乳剂防治柑桔溃疡病试验[J]. 现代园艺, 2016,(23): 147. |
YE Gan, XIA Changxiu. Experiment on control of Citrus canker with 3% thiamethoxam microemulsion[J]. Xiandai Horticulture, 2016,(23): 147. | |
[41] | 王孟泉. 3%噻霉酮微乳剂防治黄瓜靶斑病田间药效试验[J]. 现代农业科技, 2018,(10): 118, 127. |
WANG Mengquan. Field efficacy test of 3% thiamethoxam microemulsion against cucumber target spot disease[J]. Modern Agricultural Science and Technology, 2018,(10): 118, 127. | |
[42] | 闫佳会. 6%春雷霉素可湿性粉剂防治马铃薯黑胫病田间药效试验[J]. 青海农林科技, 2020,(4): 75-77. |
YAN Jiahui. Field Test of 6%Kasugamycin WP controlling Potato Blackleg[J]. Science and Technology of Qinghai Agriculture and Forestry, 2020,(4): 75-77. |
[1] | 沈煜洋, 洪高洁, 范贵强, 陈利, 雷钧杰, 李广阔, 高海峰. 杀虫剂减施和添加助剂对红枣-小麦间作麦田蚜虫防效的影响[J]. 新疆农业科学, 2024, 61(9): 2257-2268. |
[2] | 王庆朋, 闫成才, 王喆, 苟长青, 王兰, 冯宏祖, 郝海婷. 库尔勒香梨开花前后花药细菌多样性分析[J]. 新疆农业科学, 2024, 61(8): 1976-1982. |
[3] | 许进宗, 包建平. 不同滴灌灌水量对库尔勒香梨果实贮藏品质的影响[J]. 新疆农业科学, 2024, 61(7): 1696-1709. |
[4] | 马百幻, 赵强, 谢佳, 徐开玥, 任若飞, 宋兴虎. 生物药剂复配对棉花黄萎病防治及生长发育的影响[J]. 新疆农业科学, 2024, 61(7): 1748-1756. |
[5] | 马翔宇, 班学, 唐丽, 苏宣乐, 刘振亚, 张王斌. 库尔勒香梨树生长期园艺修剪技术对梨火疫病的控害作用[J]. 新疆农业科学, 2024, 61(6): 1441-1446. |
[6] | 吐尔逊·阿合买提, 刘旭坤, 赵雯慧, 朱晓峰, 阿尔孜姑丽·肉孜, 帕丽达姆·塔依尔, 付开赟, 丁新华, 贾尊尊, 阿地力·沙塔尔, 郭文超. 10种杀虫剂对桃小食心虫防治效果评价[J]. 新疆农业科学, 2024, 61(6): 1447-1453. |
[7] | 钱涛, 吴莉莉, 李磊, 安尼瓦尔·库尔班, 丁瑞丰. 砜吡草唑与二甲戊灵混配对棉田阔叶杂草的防效及安全性评价[J]. 新疆农业科学, 2024, 61(4): 861-868. |
[8] | 崔宇同, 张翠芳, 王世伟. 库尔勒香梨芽变材料物候期及坐果特性观测[J]. 新疆农业科学, 2024, 61(2): 365-372. |
[9] | 王贺亚, 罗静静, 王康, 王瑞楠, 王旭, 高光瑞, 房艳. 不同微生物菌剂对甜菜根腐病的防效及产量影响[J]. 新疆农业科学, 2024, 61(2): 448-454. |
[10] | 刘振亚, 苏宣乐, 唐丽, 蒋思铭, 李亚鹏, 但红侠, 张王斌. 22种抗生素对梨火疫病菌的室内毒力测定及对花器安全性评价[J]. 新疆农业科学, 2024, 61(2): 461-468. |
[11] | 齐平, 索银·图娅, 魏杨, 张硕, 阿地力·沙塔尔, 阿地里·艾合买提. 10种药剂防治梅下毛瘿螨的田间防效评价[J]. 新疆农业科学, 2024, 61(11): 2761-2768. |
[12] | 朱夏芬, 何伟, 罗文芳, 周军辉, 李克梅, 许建军. 基于防御酶与代谢组学分析贝莱斯芽孢杆菌JTB8-2诱导番茄拮抗瓜列当机制[J]. 新疆农业科学, 2024, 61(10): 2396-2407. |
[13] | 曹艺洁, 艾沙江·买买提, 仙米斯娅·塔依甫, 史智勇, 玉苏甫·阿不力提甫. 库尔勒香梨不同类型果柄差异比较[J]. 新疆农业科学, 2023, 60(6): 1442-1450. |
[14] | 宋单波, 张国新, 王权, 刘保军, 黄涛, 韩宏伟, 白剑宇, 郭庆元. 巴旦木细菌性穿孔病菌的生物学特性及抑菌药剂筛选[J]. 新疆农业科学, 2023, 60(6): 1515-1522. |
[15] | 姬瑞, 王兰, 王喆, 苟长青, 郝海婷, 冯宏祖. 授粉液中添加几丁聚糖对库尔勒香梨树坐果率及果实品质的影响[J]. 新疆农业科学, 2023, 60(5): 1208-1215. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||